
PHYSICAL REVIEW E VOLUME 51, NUMBER 3 MARCH 1995

Bifurcation analysis of two coupled periodically driven Dufflng oscillators

J. Koziowski
Institute of Physics, University of Szczecin, ulica Wielkopolska 15, 70-$61 Szczecin, Poland

U. Parlitz and W. Lauterborn
Institut fur Angemandte Physik, Technische Hochschule Darmstadt, SchlojSgartenstrafle 7, D 642-B9 Darmstadt, Germany

(Received 11 July 1994)

Bifurcation diagrams and phase diagrams of two coupled periodically driven identical DuKng
oscillators are presented. It is shown that the global pattern of bifurcation curves in parameter
space consists of repeated subpatterns similar to the superstructure observed for single, periodically
driven, strictly dissipative oscillators. The subpattern itself, however, is different from that of a single
DufBng oscillator due, in particular, to Hopf bifurcations that are newly added to the bifurcation
scenario.

PACS number(s): 05.45.+b, 47.52.+j, 46.10.+z, 02.30.Hq

I. INTRODUCTION

Coupled oscillators play an important role in differ-
ent scientific disciplines, e.g. biology, electronics, and
physics. Since the type of the oscillators, the type and
topology of coupling, and the external perturbations in-
cluding driving may be different, a large variety of cou-
pled systems exists. The (individual) oscillators may
roughly be divided into two classes: self-excited. oscilla-
tors, which possess a stable limit cycle without external
driving, and strictly dissipative oscillators, which con-
verge to the quiescent state when not driven.

Self-excited oscillators (also called limit-cycle oscilla-
tors) can approximately be decribed by phase models.
Using this idealization, large arrays of coupled oscillators
have been investigated with respect to synchronization
phenomena [1] or the occurrence of collective frequencies
[2]. In some cases such systems admit the application of
methods &om statistical mechanics [3,4] and may also be
modeled by coupled circle or torus maps [5].

The oscillators investigated in this paper are strictly
dissipative and externally driven. Coupled systems using
this type of oscillator have been investigated in the liter-
ature less intensely than self-excited models. In Ref. [6]
the transition to hyperchaos for a system of coupled Duff-
ing oscillators was studied and in Ref. [7] synchronization
phenomena for different types of coupled systems were
investigated. Furthermore, nonlinear resonances and bi-
furcation scenarios of a chain of coupled Toda oscillators
were studied in detail by Geist and Lauterborn [8—10] and
a chain of coupled Duffing oscillators was investigated by
Dressier and Lauterborn with special attention paid to
symmetry properties of the Lyapunov spectrum [11]and
Ruelle's rotation number [12]. Umberger et al. [13] ob-
served domainlike spatial structures in a chain of driven
Duffing oscillators.

The symmetry properties of different coupling schemes
are an important feature, which may drastically change
the bifurcation structure of the coupled system. In

particular, for electronic oscillators, symmetry prob-
lems have been studied extensively by Ashwin and Swift
[14,15]. Since the driving force of the system investigated
in this paper acts on one oscillator only, all coupling sym-
metries are broken.

Other interesting topics in the field of coupled oscilla-
tors are universal scaling features [16], the energy ex-
change between coupled oscillators [17], the dynamics
of coupled conservative oscillators [18], and, for practi-
cal applications, arrays of coupled Josephson junctions
[19,20].

In the following, we discuss some bifurcation proper-
ties of two mutually coupled, identical Duffing oscillators
that are driven by an external sinusoidal force. Special
attention will be paid to those features of the bifurcation
structure that are similar to the typical bifurcation pat-
tern found for single Duffing oscillators [21—26] and other
nonlinear oscillators [27]. Many features of these strictly
dissipative oscillators can be modeled by a special type
of two-dimensional map [22].

The system that we are investigating is given by the
following system of equations:

9'& = 92~

V2 dyz yl yl + c(ys —yi) + f cos(2~ys)

y3 ——y4,

y4 = ~y4 —ys —y3 —c(ys —yl),
ys ——(u/2vr.

The state space is B x S, i.e. , y5 is always considered
mod 1 giving a cyclic variable ys C [0, 1].

The frequency u and the amplitude f of the driving
force are used as control parameters in the bifurcation
diagrams and phase diagrams that will be presented in
the following. For all examples we chose the fixed damp-
ing parameter d = 0.1 and the coupling constant c = 5.

Due to the linear coupling and the symmetric potential
of both oscillators, the coupled system (1) possesses the
same symmetry properties as a single Duffing oscillator
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[22]. Therefore, not only may saddle-node (sn), period-
doubling (pd), and Hopf bifurcations (H) occur in the
coupled system (1), but also symmetry-breaking (sb) bi-
furcations. As in the case of a single DuKng oscillator,
only asymmetrical orbits can undergo period-doubling bi-
furcations.

For better visualization of the attractors and their bi-
furcations the dynamics is investigated in the Poincare
section defined by
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1.00 —~:
sn-.

Z = ((yy, y2, ys, y4, ys) F R x S:ys ——const). (2)
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The coordinates of the four-dimensional Poincare cross
section Z will be called u; in the following.

II. BIFURCATION DIAGRAMS

FIG. 2. Bifurcation diagram for the driving amplitude
f = 3 showing the first coordinate uq of the Poincare sec-
tion vs the driving frequency u. At u 0.8 and u —2.15
pairs -(sb-sb)- of symmetry-breaking bifurcations occur.

In order to investigate the dependence of the system
on a single control parameter (here, the frequency w of
the driving force), several bifurcation diagrams have been
computed. Each bifurcation diagram is calculated by in-
creasing and decreasing the value of the control param-
eter in small steps. The step size has been varied from
0.01 to 0.0001. The last computed u; values (for a partic-
ular w value) are used as a new set of initial values for the
next ~ value. The bifurcation diagrams given show the
projection of the attractors in the Poincare section onto
the ui or the u2 coordinate versus the control parameter
Cd.

furcations near w = 0.8 for f = 3. In the following
each pair of sb bifurcations will be abbreviated as -(sb-
sb)-. The notation -(sb-sb)- means that there are two
parameter values where symmetry-breaking bifurcations
take place: the erst one, where a symmetrical periodic
solution splits into two coexisting asymmetrical attrac-
tors (branches), and the second one, where these two

2.00
In the following we will show a sequence of diagrams for

increasing driving amplitude f Figure . 1 shows a bifur-
cation diagram for a comparatively small driving ampli-
tude of f = 2. Different resonances and sn bifurcations
occur and a pair of sb bifurcations near ~ = 2.1. At
~ = 3.95 a Hopf bifurcation takes place and quasiperi-
odic as well as chaotic attractors occur. This bifurca-
tion scenario will be discussed in more detail in Sec. IV.
When the driving amplitude f is increased, sb bifurca-
tions occur between further resonances. As an example,
Fig. 2 shows the occurrence of a second pair of sb bi-
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FIG. 1. Bifurcation diagram for the driving amplitude
f = 2 showing the second coordinate u2 of the Poincare sec-
tion vs the driving frequency cu. Several resonances and a pair
of symmetry-breaking bifurcations at u 2.1 occur. Near
~ = 3.95 a Hopf bifurcation takes place.
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FIG. 3. Bifurcation diagrams for the driving amplitude
f = 4.5 snd f = 4.8. (a) f = 4.5. Near the -(sb-sb)- region at
u = 0.8 for f = 3 shown in Fig. 2, another -(sb-sb)-bifurcation
occurs at tu = 0.93. (h) f = 4.8. In the frequency region
between the two -(sb-sb)- bifurcation regions additional Hopf
bifurcstions -(H-H)- snd thereby quasiperiodic attractors and
periodic windows occur.
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FIG. 4. Bifurcation diagram for f = 17. A period-doubling
(pd) bifurcation occurs in the parameter region where the
symmetry is broken.
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attractors (branches) join, again forming a symmetrical
period-one solution.

For f = 4.5 we observe that a sequence of two pairs
of symmetry-breaking bifurcations -(sb-sb)-(sb-sb)- oc-
curs as can be seen in Fig. 3(a). When the amplitude
is increased further to f = 4.8, between the two pairs
of symmetry-breaking bifurcations an additional pair of
Hopf bifurcations occurs, as can be seen in Fig. 3(b). As
we shall see later on, the sequence -(sb-sb)-(H-H)-(sb-sb)-
is a characteristic feature of the bifurcation structure of
this system.

In the -(sb-sb)- regions period-doubling and further
Hopf bifurcations emerge with increasing f As an ex.am-
ple we consider the symmetry-breaking bifurcation to the
left of the Hopf bifurcation shown in Fig. 3(b). Figure 4
shows, for f = 17, a sequence -sb-(pd-pd)-sb- consisting
of a symmetry-breaking, a period-doubling, a reversed
period-doubling, and a reversed symmetry-breaking bi-
furcation. When the amplitude reaches the value f = 19,
in the middle of the period-two region another Hopf bi-
furcation takes place, as shown in Fig. 5 for f = 20.
Windows of periodic solutions separated by quasiperiodic
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FIG. 6. Bifurcation diagrams for (a) f = 20 and (b)
f = 25 showing the occurrence of a bifurcation sequence
-(sb-sb)-(H-H)-(sb-sb)- near ~ 0.45 that is similar to that
shown in Fig. 3.

oscillations are clearly visible. The Poincare sections of
the quasiperiodic attractors in this case consist of two
invariant circles.

For f = 20, in another u region, a pair of two
symmetry-breaking bifurcations occurs [see Fig. 6(a)]
and again a Hopf bifurcation emerges when the driving
amplitude f is increased further [Fig. 6(b)]. Comparing
Fig. 6 with Fig. 3 we recognize that both diagrams show,
for different frequency regions, the same structure (sb-
sb)-(H-H)-(sb-sb), consisting of symmetry-breaking and
Hopf bifurcations. This bifurcation sequence turned out
to be one building block of a recurring pattern of bifurca-
tions. A corresponding superstructure of the bifurcation
set is well known for single oscillators [21,22,27] and can
best be visualized using phase diagrams.
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I
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III. PHASE DIACB,AMS

Phase diagrams show bifurcation points, curves, or
even surfaces in parameter space. As an example, Fig. 7
shows the phase diagram of the single DuKng oscillator

2.00 I I I I ! I I I I ! I I I I ! I I I I

0.990 1.015 1.040 1.065 1.090 y'+ dy+ y+y = f cos(~t).

FIG. 5. Bifurcation diagrams for f = 20. In the pe-
riod —doubling region shown in Fig. 4 a Hopf bifurcation occurs
and in the quasiperiodic region thus generated high-periodic
orbits appear.

As can be seen in Fig. 7, the bifurcation structure consists
of repeated subpatterns of sn, sb, and pd horns. Inside
the pd horns, further period-doubling bifurcations take
place and chaotic attractors occur [22]. In the case of the
coupled DufFing oscillators (1), the bifurcation structure
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FIG. 11. Phase diagram showing the (asymptotic) bifurca-
tion structure of the two coupled Duffing oscillators (1) for
small driving frequencies. The sb and sn bifurcation curves
shown are plotted as solid and dotted lines, respectively.

I I I I I I I I I
I

I I I I I I I I I
I

I I I I I I I I I-0.50 —0.00 0.50 1.00

yq and y3, the quantities yz and y3 in the matrix Dv may
be neglected. In this case the solution of Eq. (4) is given
by

Y(t) = Yp exp(tA), (6)

oI, = e "" = e ""[cos(TOI,) +i si n(TO I) j.

where the time-independent matrix A equals Dv(O) and
the matrix Y(0) = Yo contains the initial conditions. Let
pI, = AI, + iOI, (k = 1,2,3,4) be the eigenvalues of the
matrix A. Then the eigen~alues of the linearized Poincare
map DP may be written as
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FIG. 12. Bifurcation diagram and Lyapunov exponents
of the coupled Dufling oscillators (1) for f = 2 showing a
quasiperiodic route to chaos. The Lyapunov exponents are
those of the Poincare map, i.e., another vanishing exponent
exists. Therefore, for the cu values denoted by the arrows, two
Lyapunov exponents are zero.

FIG. 13. Typical attractors for f = 2, c = 5, d = 0.1, and ~
values from the bifurcation diagram shown in Fig. 12. Shown
is the projection of the attractors in the Poincare section onto
the first two coordinates of the Poincare section. The two
chaotic attractors shown in (b) and (c) possess two vanishing
exponents and one positive Lyapunov exponent (see Fig. 12).
(a) u = 3.97, three-torus. (b) ~ = 3.98, chaotic attractor. (c)
u = 3.99, chaotic attractor (note the difFerent scale).
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Since for stable solutions the real part Ay is negative,
these eigenvalues spiral into the origin of the complex
plane when the driving frequency ur = 27r/T is decreased.
In particular the eigenvalues equal positive and negative
real numbers in an alternating way. For larger values of
the driving amplitude f the inffuence of the nonlineari-
ties becomes more important and the eigenvalues move
toward the critical values +1 (sn bifurcation) or —1 (pd
bifurcation). This leads, for systems without any symme-
tries, to a pattern of alternating sn- and pd-bifurcation
curves in parameter space [27]. In the case of the coupled
Duffing oscillators (1) the symmetry of their potentials
implies the existence of a root P = —H of the Poincare
map P = PoP = (—H)2, where the map H is obtained
by integrating the variables of the Poincare map over
half a period of the oscillation. After linearization the
eigenvalues of the linearized map DH also spiral into the
origin of the complex plane when the driving frequency
u is decreased. For increasing driving amplitude f the
eigenvalues (may) converge again to the critical values
+1 and —1. However, an eigenvalue of +1 (—1) of DH
implies an eigenvalue of —1 (+1) for the root DP and
therefore leads to an eigenvalue of (—1)2 [(+l)2] for the
linearized Poincare map DP. Therefore, an alternating
sequence of symmetry-breaking bifurcations [(—1)2 = 1]
and saddle-node bifurcations [(+1)2 = 1] has to be ex-
pected. Furthermore, this simple linear analysis indicates
that a similar eigenvalue scenario and the resulting alter-
nating bifurcation sequences have to be expected for all
systems of coupled strictly dissipative oscillators that are
driven periodically.

IV. QUASIPERIODICITY
AND CHAOTIC ATTRACTORS

Two routes to chaos have been observed so far for the
two coupled Duffing oscillators (1). The ffrst is the well
known period-doubling cascade that occurs in parameter
regions where the symmetry of the attractors is broken.
The first two steps of such a cascade are shown, for ex-
ample, in Fig. 4. However, in contrast to the single DufF-
ing oscillator (where Hopf bifurcations are not possible),
period doubling is not the only route to chaos. Figure
12 shows a bifurcation diagram and the parameter de-
pendence of the corresponding Lyapunov exponents for
f = 2, where a quasiperiodic route to chaos occurs (com-
pare Fig. 1). Since the Lyapunov exponents given are
those of the Poincare map, another vanishing exponent

exists. At w = 3.97 a quasiperiodic attractor with three
incommensurate frequencies (a three-torus) occurs and at
w = 3.98 and tu = 3.99, for example, chaotic attractors
with one positive Lyapunov exponent and two exponents
equal to zero occur. Projections of the Poincare sections
of the corresponding attractors are shown in Fig. 13.

It is somewhat surprising to observe such a high-
dimensional chaotic attractor for a small driving ampli-
tude (f = 2). This value is far below the threshold for
the first period doubling of the coupled system (1) as well
as for the single oscillator (3). Another interesting fea-
ture is that over almost the whole interval from ~ = 3.95
to u = 4.005 two vanishing Lyapunov exponents occur.
The investigation of details of the underlying bifurcation
scenario is left to future work.

V. CONCLUSION

The structure of local bifurcations in the parameter
space of two coupled DuKng oscillators has been inves-
tigated in terms of bifurcation diagrams and phase dia-
grams. It has been shown that the bifurcation structure
consists of repeated subpatterns similar to the super-
structure observed for single, periodically driven, DufBng
oscillators. The basic pattern, however, is more compli-
cated and additional Hopf bifurcations occur. Further-
more, Hopf bifurcations of period-two solutions, three
tori, and chaotic attractors with two vanishing Lyapunov
exponents have been observed. For a better understand-
ing of the periodic superstructure in the bifurcation set
more detailed numerical investigations are necessary. On
the basis of the results obtained so far we conjecture
that, analogous to the case of the single DuKng oscil-
lator, some asymptotic bifurcation structures for ~ ~ 0
and suKciently small damping exists.
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