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This paper is devoted to the calculation of the density expansions (at fixed temperature) of the
Maxwell-Boltzmann thermodynamic functions for a quantum plasma. We start from a standard identity
that relates the free energy to the particle correlations. These correlations are represented by diagram-
matic series, which have been introduced in a previous paper. In the corresponding graphs, the ordinary
points are replaced by extended objects, the filaments, which are linked by resummed bonds depending
on the particle densities p. A scaling analysis of the spatial integrals involved in the graphs shows that
the free energy can be represented by a double integer series in p' and lnp. Furthermore, we derive
simple rules that give the leading order in p of the contribution from every previous graph. The exact
density expansion of the free energy is explicitly calculated up to order p' . In the corresponding ex-
pression, the contributions of various physical effects, such as screening, diffraction, or recombination,
are clearly identified. At the order p, we recover the expansion obtained via the efFective-potential
method. Our present terms of order p' correctly reproduce results that are known in some particular
limits.

PACS number(s): 05.30.—d, 05.70.Ce, 52.25.Kn

I. INTRODUCTION

This paper is the second of a series devoted to the
study of the density expansions of the thermodynamic
quantities for quantum plasmas. We consider a mul-
ticomponent system 4 made of electrons and nuclei that
are assumed to be point particles. Each particle has a
mass m and carries a charge e and a spin o. where a is
a species index that specifies the nature of the particle.
The Hamiltonian of 4 is nonrelativistic and only involves
two-body Coulomb interactions of the form e e&/r for
two charges separated by a distance r. It does not depend
on the spins of the particles. Such a purely Coulombic
description of matter is well suited for a very large
variety of physical situations. Beside their own conceptu-
al interest, the virial expansions are useful in practice for
studying regimes where the density is not too high and
the temperature is not too low (for instance these condi-
tions are met in the core of the sun).

In an earlier paper [1] (hereafter referred to as paper I),
we derived a diagrammatic representation for the particle
correlations of 4 in the framework of Maxwell-
Boltzmann statistics. As in the work by Ginibre [2], the
application of the Feynman-Kac formula [3] to the densi-

ty matrix leads to the introduction of an auxiliary classi-
cal system 4 made of closed filaments. Since the fila-
ments interact via two-body forces, all the familiar di-
agrammatical methods [4] can be applied to eV'. Howev-
er, the corresponding Mayer-like graphs diverge because
of the long-range Coulombic nature of the interaction po-
tential between two filaments. These long-range diver-
gencies are removed via the chain resummations first in-

troduced by Mayer [5] and Salpeter [6] for classical point
charges. In fact, inspired by the works of Meeron [7] and
Abe [8] for classical Coulomb systems, we have shown
that the whole set of Mayer graphs defining the correla-
tions of 4 can be transformed exactly into a new set of
prototype graphs II built with resummed bonds. This
provides a well-behaved diagrammatic representation for
the particle correlations of 4, where the integrability of
each graph is guaranteed by a sufficiently fast decay of
the resummed bonds. We stress that some resummed
bonds decay only algebraically in agreement with the ab-
sence of exponential screening in the quantum case
[9,10].

In the present paper, the above diagrammatical repre-
sentation is used for studying the density expansions of
the Maxwell-Boltzmann thermodynamic functions (at
fixed inverse temperature P) in a systematic way. On the
basis of simple scaling arguments, we show that the virial
expansions involve half-integer powers of the densities
and integer powers of the logarithm of the densities.
(The presence of logarithmic terms was first conjectured
by Friedman [11].) We also give detailed prescriptions
for selecting the graphs (in finite number) that contribute
to a given order in p where p is a generic notation for the
particle densities. This allows us to recover the known
results up to order p, and to calculate exactly the next
term of order p

As announced previously [1], the above expansions are
term-to-term well defined despite the macroscopic col-
lapse of the Maxwell-Boltzmann (MB) system [12]. In a
future paper, the exchange contributions due to Fermi or
Bose statistics will be evaluated via a perturbative
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scheme, in which the MB quantities are the reference in-
gredients. A brief description of this scheme has been al-
ready given [13],as well as the complete form of the viri-
al expansion up to order p

The present paper is organized as follows. In Sec. II,
we recall the form of the diagrammatic representation for
the particle correlations. The topological rules, statistical
weights, and resummed bonds defining the II graphs are
explicited.

In Sec. III, we study the general structure of the densi-
ty expansion of the free energy. We start from a standard
identity, which expresses the free energy in terms of the
particle correlations via an integral over a coupling pa-
rameter. Inserting the above H representation into this
identity, we rewrite the free energy as a sum of H contri-
butions. Simple arguments suggest that the contribution
of each graph can be expanded in a double integer series
in p' and lnp. This nonanalytic structure rejects the
screening of the bare Coulomb potential. The half
powers of p are linked to partial scaling of the resummed
bonds with respect to the Debye length

'=(4~P g e p )
' . The logarithms arise from the

presence of 1/r tails in some bonds. We give simple
rules for evaluating the order in the density of the leading
contribution of any graph. Roughly speaking, the latter
increases with the number of points and the number of
resummed bonds. Only a finite number of graphs then
contributes to a given term in the density expansion of
the free energy.

The explicit calculations are carried out up to order
p in Sec. IV. The contributions of the various physical
effects mentioned in paper I, can be clearly identified.
There are purely classical terms that arise from Debye
screening at large distances. The short-range quantum
effects associated to bound and scattering states enter in
suitably truncated traces of the quantum Gibbs factors
for a finite number of charges. Eventually, there are
diffraction terms that appear as quantum corrections to a
classical treatment of the long-range part of the interac-
tions. All these physical effects should be coupled togeth-
er at higher orders in the density. Comparisons to previ-
ous results and checkings are briefly described;

The other thermodynamic functions are considered in
Sec. V. Their density expansions can be obtained from
that of the free energy via partial differentiations with
respect to the temperature or the densities. In particular,
we calculate the pressure up to order p

Of course, the virial expansions can be also studied by
using other first-principles formalisms. First, the
effective-potential method formulated by Morita [14] for
quantum systems with two-body interactions, has been
applied to the present Coulomb case by Ebeling [15].
This method consists in introducing classical equivalent
systems made of point objects with two-, three-, and
higher-order many-body effective interactions. In prac-
tice, only two-body effective potentials have been retained
[15—17]. This amounts to considering well-behaved clas-
sical systems with two-body Coulomb interactions that
are regularized at short distances. (Quantum effects
smooth out the singularity of 1/r at the origin. ) The cor-
responding calculations [16,17] provide the exact form of

the virial expansions up to order p, which is indeed
recovered by our formalism [13]. However, the expres-
sions proposed for the p

~ term [17] are not complete be-
cause the three-body effective potentials do contribute at
this order [18]. Our formalism allows a precise evalua-
tion of this missing contribution, which is of the
diffraction type. We stress that the presence of this addi-
tional diffraction term is crucial for recovering the
Wigner-Kirkwood fi corrections [19] to the classical
quantities for the one-component plasma. By the way,
we also do recover the virial expansion for the classical
one-component plasma calculated by Cohen and Murphy
[20].

Another possible approach is based on the standard
many-body perturbative expansions with respect to the
Coulomb interaction potential u, (r)=1/r in the frame-
work of the grand-canonical ensemble. These expansions
can be written in terms of graphs similar to those that ap-
pear in field theory, where fermionic or bosonic loops as-
sociated to imaginary-time free propagators are connect-
ed at different times by an arbitrary number of interac-
tion lines u, [21]. The long-range Coulomb divergencies
are eliminated via the well-known ring resummations
[22,23]. To our knowledge, analytic evaluations of the
corresponding Feynman graphs have been restricted to
the high-density regime at zero temperature [22], and to
the high-temperature limit [24]. Explicit calculations of
the virial coefficients at finite nonzero temperature should
be also possible by following Rogers's idea [25]. This au-
thor proposed a classical treatment of the ring resumma-
tions combined with a proper account of the Ladder
graphs that describe quantum effects at short distances.
In this procedure, some terms are left over since they are
expected to be quantitatively small in the physical re-
gimes considered by the author [26] (i.e., at moderately
high densities where complex entities made of several
charges may be formed). At the moment, we have
checked that the high-temperature expansions up to or-
der P of our virial coefficients do coincide with the
terms found by DeWitt [24].

II. THE PARTICLE CORRELATIONS

In paper I, we have shown that the two-particle corre-
lations pT(a, r„abrb ) of 4 can be represented by the di-
agrammatic series

pT(a. r. , abrb ) =g J&(g. )&(gb )p(@, )p(@b )
1

i-i ~rr

(2.1)

where the ordinary points are replaced by filaments.
Each graph II is made of the two root filaments 6, and
8b, and of N internal filaments P„(N =0, . . . , oo ). The
state of each filament is characterized by its species index
a, its position r, and its shape. The latter is parametrized
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by A, g(s) (0 s 1) where A, =(pfi /m )'~ is the de
Broglie wavelength of species a and g(s) is a Brownian
bridge subjected to the constraint g(0)=g'(l)=0. The
phase-space measure d P means a discrete summation
over a combined to a spatial integration over r, and a
functional integration over g'(s) with the normalized
Gaussian measure 2)(g') defined by its covariance

F„(P,,PJ)=fD= p—e e QD(~r, —rJ~) (2.3)

and

Fq, (P, , PJ)=A, g; V;fD

charge-charge and screened dipole-charge potential be-
tween the filaments P; and PJ, i.e.,

s(1 t), s—(tf2)(g)g„(s)g (t)=5„,X 't
1 t ( (2.2)

= —Pe e f ds A, g;(s).V;PD( r; —rj ~
) .

(2.4)

(g„ is the component of g along the p axis. )

The topological prescriptions that define the graphs II
are similar to that of the familiar Mayer graphs. Each
graph II is connected and contains no articulation fila-
ment. Two filaments are linked by at most one resummed
F bond. [QF]ti is the product of the F bonds in the
graph H and Sz is its symmetry factor, i.e., the number
of permutations of the internal filaments P„, which do
not change this product. The sum (2.1) runs over all the
unlabeled topologically different diagrams II.

There are four kinds of resummed bonds F. Two of
them are short ranged and proportional to the screened

In (2.3) and (2.4), PD is the usual Debye potential

exp( xr)—
D

The other two resummed bonds reduce to

fs;~(P;, P~)= —Pe e f ds f ds'{A, g;(s) V, )

and

(2.5)

(2.6)

f (P;,P~)=exp Pe e—(Pii —v )(r J) Pe e—f ds[v (~r +A, g;(s) —rj —A, gj(s)~)

+{A, g';(s).V;+A, gJ(s).VJ )(PD —u, )(r; )]

Pe e—f ds f ds'(A, g';(s) V;){X gj(s') VJ)(PD —v, )(rj) '

—1+Pe e Pn(r J )+Pe e f ds(A, g;(s).V;+A, gj(s).V~ }PD(rJ )

+Pe e f ds f ds'(A. g;(s).V;)(A, g'~(s') V~)(PD —u, )(r J ), (2.7)

and decay only as 1/r, . when r,"~~. Each of the resummed bonds may link any pair of filaments with the sole restric-
tion that the convolution structures F„oF„,Fz, o F„,F„oF,z, and Fz, && F,z are excluded (this avoids double counting).

The statistical weights of the filaments in the graphs II are the filament densities p(8), which are complicated func-
tionals of the shapes of the filaments, i.e., p(@)=p (g'). These functionals are determined from their expansions with
respect to the particle densities, which reduce to double integer series in p' and lnp. The first two terms of these series
read

p (g)=p +g'p~s fdr fZ(g, ) exp pe e& f ds—u, (~r+Ag, (s) —Ag(s)~)
P 0

—fN(g')exp —pe e& f 'ds v, ( ~r+ t'ai(s) —~ g'(s)
~
)

.+0 (ps~~) . (2.8)
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be calculated by inserting the II representation (2.1) of
pz s in the right-hand side of (3.1). The corresponding
contribution of a given prototype diagram II reads (with
obvious notations)

—,'Pe e f dg fdr —II (r), (3.2)

FIG. 1. A typical graph II, which contributes to p&(N„@&).
The white circles represent the root filaments 6, and 8&, while

the black circles denote field filaments. The solid lines and the
hatched bubbles are, respectively, Debye and fz bonds.

In Fig. 1, we draw a typical graph II, which contrib-
utes to (2.1) (for clarity, the filaments are merely
represented by circles).

The diagrammatic representation (2.1) is the quantum
extension of the expansion first derived by Meeron [7] for
classical systems. Indeed, in the classical limit A~O, the
bonds F,z and f~; vanish, while f~ and p (g) reduce to
[exp(fD) —1 fD] and —p, respectively. The graphs II
then become identical to the classical Meeron graphs.

with

lls(r)= fX)(g. )&(g, )pg(6', )pg(6's)II, (r, g„f„). (3.3)

The subscript g means that the resummed bonds in II are
calculated with the coupling constant ge;e instead of e, e
(consequently, a is changed into &g a) like the statistical
weights p (6 ). Each contribution (3.2) can be itself ex-

panded in powers of the particle densities because of the
following two mechanisms. First, as noticed in Sec. II,
the functionals p (@) have to be replaced by double in-

teger series in p' and lnp. Second, the distance depen-
dence of some resummed bonds is scaled by the Debye
length (&g a) '=(4~gP+ e p )

'~ . Thus, as shown
in the Sec. IIIB, the space integrations in II provide
series in ~, whose structure is independent of the precise
form of the functional p ( 6 ). This allows us to determine
the general form of the contribution (3.2).

B. General structure of the density expansion

III. THE FREE ENERGY

A. Principle of the method

1 1
Pe e f dg fdrpr (a, Oa&r) —.

0 r
'

a' b

(3.1)

In this identity, g is a dimensionless coupling parameter,
while pz g(a,,O, abr) is the two-point correlation of the
system 4' where the coupling between two charges e
and e& is multiplied by g and becomes ge e& (F;z is the
free energy of the ideal system Sg o). Furthermore, the
temperature and the particle densities of the systems 4
are identical to those of the genuine system 4' corre-
sponding to g =1.

The required density expansion of the free energy will

The free energy (PF/A) per unit of volume and in
units of k~ T, is related to the particle correlations via

PF PF~q

A A

First, we study the density dependence of the spatial
integrations over the positions of the field filaments in
(3.2), which is related to the scaling properties of the
resummed bonds with respect to ~ '. This analysis does
not depend neither on the coupling parameter g nor on
the internal degrees of freedom (a, g'(s) ) of the filaments.
So, in the meantime, we omit part of the dependences
with respect to g, the shapes g(s) of the filaments, and
their species nature a, which are considered as given pa-
rameters. These dependences will be easily reestablished
at the end of Sec. III 8, where we will show that the in-
tegration over g, the summations over a, and the func-
tional integrations over g'(s), with the measure
2)(g')p&(A'), do not modify the structure of the density ex-
pansion of the spatial contribution to (3.2).

In fact, the present analysis is strictly identical to that
of the resummed graphs in the fugacity expansion of p( e )

[1]. So, here, we just describe the basic outlines of the
method. In particular, we give the scaling decomposi-
tions of the resummed bonds F, which are quite useful in
the following. The bonds (2.3), (2.4), and (2.6) are obvi-
ously scaled by ~ ', i.e.,

e
fD = —ap; (3.4)

g';.V;fD =a. P;iA, f ds(g';(s). x) e
X

(3.5)

X

f~;~=a P,ik, A, f ds f ds' (g;(s) gj(s'))
X

(3—3~ "—3xe
J X
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with x=~(r, —r ) and P; =Pe;e . However, the bond fIt
is not entirely scaled by sc

' since it is not proportional to
a dimensionless integrable function of x only. (Other-
wise, the present analysis would be immediately per-
formed by making the variable changes r, ~x;=~r; in
II.) In fact, the spatial behavior of fz is also controlled
by the Landau lengths I &=Pe~e& and the de Broglie
wavelengths A, . These lengths only depend on the tem-
perature and remain fixed in the zero-density limit. In
order to disentangle the various scales associated to ~
Pe e&, and A, , it is convenient to rewrite fIt as
(r=r; —rj )

with

(3.7)

fT(g, , gj. ;r)=exp —
P;z f ds U, ( ~r+A, ;g';(s) —A,zg'~. (s)

~
)

13ij P;',

2r

(3.9)

p2 —2x

G2(g;, g;x) =G2(x) =
X

(3.10)

G3(g';, g'J;x}= (1—e "}

+P';, f ds(A, g;(s).x —A, g, (s).x)

1 —(1+x)eX (3.1 1)

(3.8)

while the ~-scaled functions H„and G„can be calculated
from (2.7). For instance, we find

The functions G„are integrable at large distances as the
functions H„ for n &4 since they decay at most as 1/x"
for x large. The truncated bond fT does not depend on

', and is scaled by the above temperature-dependent
lengths.

The decompositions (3.4) —(3.7) with respect to the
various scales are quite useful for our purpose, because
they provide a series representation of any graph II in
terms of graphs where all bonds are scaled either by x
or by the fixed lengths Pe e& and A, . These graphs are
called scaling-decomposed graphs and noted G 1-1"' .
Each prototype diagram II with one or more bonds fIt
generates an infinite set of graphs G~"' . If II is made
with only ~-scaled bonds, there is only one graph Gz"',
identical to II of course. In Fig. 2, we show four graphs
Gz'" arising in the scaling decomposition of the dia-
gram II drawn in Fig. 1.

In each graph G~z'", the long-range Coulomb diver-
gencies are removed because all the terms in the decom-
positions (3.4) —(3.7) decay at least as I/r at large dis-
tances. However, there may appear spurious noninte-
grable singularities at short distances because some of
these terms diverge at the origin. These unphysical
divergencies, also present in the classical Abe-Meeron
graphs [27], are eliminated by suitably collecting together
the dangerous contributions (see Sec. IV C for an exam-
ple). The corresponding procedure is a pure mathemati-
cal artifact and does not reQect any density-dependent
many-body effect. Consequently, the structure of the ~
expansion of the spatial integrals in each Gz"' can be
determined without any explicit consideration of the pre-
vious short-range divergencies. The analysis is carried
out in Fourier space with the help of the generalized
Plancherel identity. The spatial contribution of each
Gz"', and consequently of any graph II, reduces to a
double integer series in ~ and ln~. Only integer powers of
a appear because both large-r expansion offT and small-r
expansions of G„and H„ involve only integer powers of
r More.over, the logarithms arise in part from the 1/r
tail in fT.

Now, we turn to the functional integrations over the
shapes of the filaments of the spatial contribution to (3.2).
As argued in paper I, the general term in the density ex-

FIG. 2. Four graphs Gz"', which arise in
the scaling decomposition of the graph H
shown in Fig. 1. The double solid lines (bub-
bles} represent bonds fD/2 while the dashed
lines are bonds fr.
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pansion of the functional pz(A') around p is a product of
integer powers of p, a, and in~, by functionals of g', which
only depend on the temperature (and on the coupling pa-
rameter g of course). The structure of the density expan-
sion of the previous spatial contribution is identical, be-
cause the g dependence of the functions H„and G„only
enters as polynomials in g', which multiply functions of X.
(The g' dependence of the function fz is more complicat-
ed but does not play any role since fz does not depend on
the density. ) Therefore, the functional integrations over
the g s weighted by p~(6; ) may be factored in each term
of order p'~"In& (with l, n, p integers) and does not change
the structure of the density expansion [some terms may
disappear because of the parity of the measure
l)(g)pg (@)]. Since a~ is proportional to g'~, the integra-
tion over the coupling parameter g in (3.2) is also factored
out in each term of order p'sc"ln%, while the discrete sum-
mations over the species may only kill some terms be-
cause of the neutrality condition g e p =0. The densi-
ty expansion of the excess free energy (3.1) finally reads

F = g P, [p [ 4n.P+e'p
l, n, p a

X in~ const X4~P g e p (3.12)

Now we turn to the evaluation of the leading contribu-
tion of a given prototype graph II. In fact, we just sketch
the main arguments that allow such an evaluation in the
most general case. The precise order of this leading con-
tribution is estimated only in a few simple cases. Like in
Sec. IIIB, the central part of the analysis relies in the
determination of the density dependence of the spatial in-
tegrals over the filament positions involved in (3.2). Con-
sequently, in the meantime, the dependences with respect
to the filament shapes, the species indexes, and the cou-
pling parameter g are not explicitly taken into account.

where P&Ip ] are homogeneous polynomials of degree I
in the densities p with coe%cients depending on the tem-
perature, while the "constants" in the arguments of the
logarithmic terms are built with the temperature-
dependent lengths Pe e& and A, .

C. Leading II contribution

In particular, the filaments are assimilated to points. The
effects of the integrations and summations over the omit-
ted variables will be briefly mentioned at the end of the
method. All the eventual logarithmic terms are con-
sidered to be of order p = 1.

For the present analysis, it is convenient to introduce
the following numbers: N (internal points), Mit (bonds

f~), Mti (bonds fbi), MD (bonds A, g, V,fD), .MD (bonds

fz;~), and M =Mit+MD+MD+M~ (F bonds). Since
each pg(A'; ) is at least of order p, according to the expan-
sion (2.8), the product of the statistical weights in a graph
II is at least of order p

+ . The scaling decomposition
(3.7) shows that the lowest order contributions arise from
K G2(x) =fD /2 and fz. because fz. is integrable [except
for possible logarithmic singularities, which ultimately
give In(const Xx) terms]. Indeed, all the other a.-scaled
terms in (3.7) are at least of order a, while the mixed
functions a"H„fz with n ~ 1 introduce a" multiplicative
factor to the bare contribution of fr. Therefore, the
lowest-order contribution to (3.2) is given by one of the
decomposed graphs G ii"';„with Mz bonds fz and
(Mz —Mz ) bonds i~ G2(x). For instance, in the case of
the graph II (N =2,MJt =2,MD=2, MD =O, MD =0)
shown in Fig. 1, the lowest-order Gz"';„graphs are those
drawn in Fig. 2.

Since fr is integrable and entirely controlled by the
lengths Pe e& and A. , which do not depend on the densi-
ty, the dominant space configurations in Gz"';„are such
that each pair [ij ] connected by a fr bond is contained
in a "contraction" disk with a finite radius o., which only
depends on the temperature. In the low-density limit,

' is large compared to o and the a-scaled bonds f~,
fD2/2, g g,. V,fD, and fd, . , which connect part of the

points belonging to the same contraction disk, can be re-
placed by their respective short-distance forms
—P,"/r, —P,"/(2r ), —P; A, g';. V, (1/r, ), and P;"—
(k g; V;)(k g~ V~)rj/2. Therefore, the order of the

contribution of Gz"';„ is directly related to the one of the
contracted graph made with disks of radius o located at
R, and connected by the remaining ~-scaled bonds. For
the graphs G&"';„shown in Fig. , this first step o the
contraction process leads to the graphs represented in
Fig. 3. (The points that do not enter in the contraction

FIG. 3. The four contracted graphs, which
are obtained from the graphs shown in Fig. 2
after the first step of the contraction process.
The big hatched circles are contraction disks.
Each solid line represents a bond fz.
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+ ] Mcont+Mrcont+ 3M»cont+ 1 cont
2 D 2 D r~ (3.13)

If Mz &%+1, the contraction procedure leads to the
collapse of all the points of G~ mjn into a single disk. The
order of the contribution of Gn"';„ to (3.2) reduces then

2MDto the one of the weighting prefactor multiplied by K

i.e., to p with

procedure can be also replaced by disks. )

At this level, in a contracted graph derived from a
G'„"";„,some disks may be connected by products of K-

scaled bonds involving at least either three fD bonds; two

fD bonds and one fd;~ bond; one fD bond and two fd;~
bonds; one fD bond and one Ag VfD bond; three fd;~
bonds; two fd;~ bonds and one A,g.VfD bond; one fd;~
bond and one A,g'. VfD bond; or two A,g Vfa bonds. All
these products decay at least as 1/r over a length scale
o «K ', which does not depend on the density, so the
corresponding disks can be themselves contracted into a
single one. We point out that fd; behaves as x /r for
r-o, while fz;~ decays as 1/r for r large compared to

For instance, Figs. 3(b) and 3(c) are transformed
into Fig. 3(d), while 3(a) and 3(d) remain unchanged in
the second step of the contraction. At the end of this
contraction process, the contracted disks that are left
over are connected either by a single fD bond, two fD
bonds, one fD bond and one fd;~ bond, a single fd,~
bond, two fd;~ bonds, or a single A,g' VfD bond.

If Mz. &N+1, the contracted graph resulting from
Gz'm;„contains Nd disks with Nd ~N+2 Mz, MD—'"'fD

0~MD""'~MD. In the contraction procedure, the order
of the contribution of Gz"';„remains unchanged when

fD bonds and A, g'. VfD bonds are absorbed because their
respective short-range behaviors at distances r -o. do not
depend on the density. On the contrary, each absorption
of one fd; bond introduces a multiplicative factor a .
Therefore, the order of the contribution of 6g mj is equal
to the one of the contracted graph multiplied by

~~» ~recant~
p . The order of the remaining integrals over
the (Nd —1) positions R, of the contraction disks, which
are integrated over in (3.2), is easily determined via the
variable change X, =KR;. In this simple scaling transfor-
mation, each integration volume d R; gives a factor K

while, according to (3.4)—(3.6), each of the bonds fz,
A,g'. VfD, and fd;~ gives factors a, a, and a, respectively.
Moreover, the potential term 1/r in (3.2) gives a factor

contK' with c""'=1 if a and b are not contracted into the
same disk and c""'=0, otherwise. So, when all the fac-
tors arising from the density weights, the absorption of
fd;~ bonds, and the previous scaling transformation are
taken into account, the order of the contribution of
Gz"';„ to (3.2) reduces to p with

nG =N+2+MD MD""' ,'(N„——1)——

1+ (M N)+ a—+M" .
M'

2 D (3.15)

It is quite reasonable to assume that the order of the
leading contribution of II is, roughly speaking, an in-
creasing function with respect to the number N of inter-
nal points and the number M of F bonds. This assump-
tion is supported by the following simple qualitative ar-
guments. If II contains a few bonds f„, the numbers M
or/and ML, and MD are large enough since II must obey
the excluded-convolution rule. In particular, the power
(3.15) relative to graphs without any bond fz do increase
with N, because the chain graphs made only with bonds

fD (M —N =1, MD=0, and MD =0} are not allowed.
When II contains many bonds fz, the order of the graph
Gn'";„with a few functions fz should be analogous to
(3.15) while it reduces to (3.14) if Mz ~ N +1: both quan-
tities do exhibit the above monotonicity. Consequently,
there is a finite number of graphs that contribute to a
given order in the density expansion (3.12) and the
minimal power (1+n /2) in (3.12) is —,'.

IV. EXPLICIT CALCULATIONS AT THE ORDER p

According to the general power-counting rules derived
in Sec. III C, the graphs II contributing to the expansion
(3.12) up to the order p

~ are found to have at most two

For similar reasons as those exposed in Sec. III 8, the
integration over g does not change the above orders,
while the functional integrations over the g's and the
summation over the a's may only kill some contributions.
Therefore, strictly speaking, the powers (3.13) and (3.14)
should be understood in fact as lower bounds in the
present study.

In principle, the order of the leading contribution of
any graph II might be determined by taking either the
infimum of the nG's if Mz & N + 1, or the infimum of the
nG's and mG's, otherwise. For instance in the case of the
graph II (N=2, Mz =2,MD=2, MD=0, MD =0) shown
in Fig. 1, the order in p of the corresponding four graphs
Gn'";„shown in Fig. 2 are, according to (3.13), nG'=3

'4 Moon —6 Econ —1) and n (b) n (c) n (d) 7
d ~ D G G G

(Nd =2, MD "'=1, c,""'=1 }. The leading contribution of
this graph II obviously is of order p . However, such
quantitative evaluations are not easy to carry out, in gen-
eral, because the determination of the numbers Xd, MD "',
M'Dn', MD""', and c.' "' requires a careful analysis of the
topological structure of the considered graph II. When
the graph is highly connected (as it is the case for the
bridges), many points may be contracted in the same disk
through cascade mechanisms, the control of which is far
beyond the scope of the present paper. In the simple case
Mz =0, there is no contraction, these numbers obviously
reduce to N+2, Mz, MD, MD, and 1, respectively, and
the contribution of II is exactly of order

mG =N +2+MD (3.14)

Notice that in the case of short-range forces, the leading
order of the Mayer graphs is always p FIG. 4. The simplest Debye graph IID (1V =O, M& =1).
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bonds fz (simple examples strongly suggest that all the
remaining graphs with three or snore bonds fz are at
least of order p ). Taking into account the excluded-
convolution rule as well as the parity of the measure
2)( g)ps ( 8 ), which makes some contributions vanish, the
graphs of interest can be listed as follows.

FIG. 5. The bare bridge graph IID (N =2,MD =5).

A. Debye graphs (Mz =O, Mn =O, M/=0)

There are five graphs IID built only with bonds fD that
contribute: the simplest graph IID(N=0, MD=1) (see
Fig. 4) and the bridge graphs shown in Figs. 5 and 6 (the
bridges in Fig. 6 are built by convoluting the bridge in
Fig. 5 with one or two bonds fD).

Their contributions read

(4.1)

—,
' y P.,f dg fn(g. m(g, )/, (C. )p, (C, ) fdr [ g—P,&—exp( g~—r)/r]= —

—,'QP, s f dg p p 4m/3, &v g'
~a ~b a, b

K

12m

for the familiar Debye graph,

/3, q f dg f2)(g, )2)(g'q)2)(g()2)(gq)ps(b, )pg(@q)pg(6))ps(62)
0.'clb cxl txg

exp( —g
' zr, )

X f dr —fdr, dr2 —g/3, & r)

exp( g' "~r„)—
exp( —g

' "irr„)
gPzs-

"2b

exp( g' "Irr,)—
X —gp, 2

72

exp( g' "irr„)—
x~ —x2

G X 8X) QX2
X X( X) X X2 X2 XI X2 X) ~

for the bare bridge graph, and

e
,' f dx—d—x,dx,

e X
—x )

—
) x) —xf —x~ —

Jx2
—xI —

fx2
—I) [

~ps3 (4.3)

FIG. 6. The three graphs obtained by con-
voluting the bridge graph shown in Fig. 5 with
one or two bonds fD.
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for the convoluted bridges. The contribution (4.1) of the simplest graph is nothing but the well-known classical Debye-
Hiickel term. In (4.2) and (4.3), the dimensionless integrals can be evaluated numerically by Legendre polynomial ex-
pansion. We stress that the contributions (4.1)—(4.3) are exactly proportional to half-integer powers of p. This is due to
the fact that the functional integrations over the filament shapes exactly amount to replace each p (6, ) by the corre-
sponding particle density p . This property holds for any Debye graph IID with only bonds fD.

t

B. DiÃraction graphs (M& =0, M~ %0, or/and M&'%0)

The sole contributing diffraction graph Ild;& (N =1,MD =O, MD =2,M~ =0) has one internal point 6, linked to 8,
and 0'b by the bonds A, g'& V&fD(~r, —r, ~) and k g'&. V&fD(~r, —rb) (see Fig. 7).

Only the leading contribution of this graph has to be retained since it is of order p . It is obtained by replacing

p (8, ) by p and reads

1

PabP„P, gapa pa pa ka f—dg g fdxdx) —f2)(g')) f ds f dt g, (s) V„
a b 1

—]xq —I)

gi(t) V„
X) X

1 1 4m 4vri u-
e p A, GU

' (4m. ) & (2n. ) u u +1
1

47Tl U ) 2 2 3

0 +1
——„p g ~ca~a~ pa (4.4)

where we have used the covariance (2.2) of the Gaussian measure 2)( g'), Fourier-Plancherel identity, and

J o"du u /(u + 1) =n /4. In the following cases, there proves to be no other diagram with A, g, V;fD bonds and/or
l

fd; bonds that contributes to the order p
~ .

C. Chain graphs with one fz bond

(i) First we consider the simple graph Ilz (%=0,M~ =1) with only one bond f~(6„A'b) (see Fig. 8). The leading
contribution of this graph is of order p and is obtained by replacing f~ by either fz. or fD/2 in the scaling decomposi-
tion (3.7), and p (6, ) (p (8&)) by p (p ). In fact, each of the two graphs Gz"' built with fz or fD/2 gives a diver-

gent contribution to the free energy because of a spurious singularity at the origin. In accordance with the general ar-
guments exposed in Sec. III B, this nonphysical divergency is removed by merely adding both contributions. The finite
total contribution of these two graphs can then be calculated as

g P,bp p f dg lim f dr —(2m.A, ) (r exp( —Phs )~r) —1+
ab

g Pab 1 —exp( —2g' ~r)
2 p

2

g p p lim ' ' f dgg4nf dx
aaab

p2

a ab

= —,y p~, »m f dr (2~~'.,)'"(riexp( —ph.,)lr) —1+ ' —,+ 13"'.e&»(«)-
2r

——(C+ln2 —
—,') gP eaepp~p,

aP

(4.5)

where h & is the one-body Coulomb Hamiltonian of the relative particle with reduced mass m m&/(m +m&) in the

potential ge e&lr (h &
' =h &), and A, & is the corresponding thermal de Broglie wavelength (C is Euler-Mascheroni's

constant). The matrix elements of exp( —phs&) are introduced by applying backwards the Feynman-Kac formula [3]
and by factoring out the trivial kinetic contribution of the center of mass, i.e.,

fr(g. )n(g, )exp —pge e f dsv, (~r+A, gb(s) —1, g'.(s)~)

=(2+A, )
~ (2vrA, ) ~ (Or~exp. —P

=(2~A. ) (r~exp( —ph )~r) .a ab

2m aa

g2

2m
b

rab
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In the first line of (4.5), the introduction of limz is just a mathematical trick (the integral does converge). The
second line is obtained through the identity (A13) derived in the Appendix. This identity is a suitable extension to the
Coulomb case of the usual differentiation trace identity

(8/Bg)Tr[exp( —P(ho+gV;„, ))—exp( —Pho)]= —PTr[ V;„,exp( —P(ho+gV;„, ))],
valid for any integrable potential V;„, (ho is the kinetic Hamiltonian). The long-range part of the Coulomb potential
gives rise to the last additional term in the second line of (4.5). It turns out that this term vanishes because of the neu-
trality condition. In the third line of (4.5) the logarithmic divergency when R —&oo of the truncated trace of
exp( —Ph &) and the logarithmic term (2m/3)P e e&ln(~R) cancel out, as it should be. The resulting quantity limz
takes the form Const Xln(Const Xa.) where the involved "constants" depend on the temperature and are built with the
Landau and de Broglie lengths, i.e., Pe e& and A, &.

The next contribution of order p
~ of Ilz (N=0, Mz =1) is given by the mixed function ~H, (x)fT and by the ~-

scaled function x p, b [1—exp( —3x)]/6x in (3.7). It can be expressed as

g P,bp p f dg f dr —g
'

[1—exp( —g' ~r)] (2m', ) (r exp( Ph — )~r) —1+
aa ab

3 3 3 3
~ab iy2 g &ab

[1—exp( —g ar)]+ [1—exp( —3g ar)] .
2T 6T

g P bp p
' f dg fdrg [1—exp( —g'i ~r)] (2+A, —) (r~exp( —Phg ) r) —1+

aa ab

Pab i 7yp ~ (1—e ")(2—e "—e ")
K dg g 4~ dx

6 o 0 X
(4.6)

The integral fdr in the right-hand side of (4.6) can be rewritten as the sum of J, +dr and fx „dr for any given R.
By choosing R large enough compared to Pe e, I, , and A, , we can replace Iz dr by

a b a b R &r

2 2

f drg
'

[1—exp( —g'~ xr)] =2~g7~~~p3b f dx
R&r T 2T g 1/2~R X

(4.7)

disregarding terms that go to zero when R —+ 00 uniformly with respect to lr. In the integral j dr, we can first re-
Place gp, b[1 —exp( —g' ~r)]/r by g zp, b and then proceed to an integration by parts over g by using the
dh&'«entiation trace identity (A13). The resulting expression for the term of order p5~2 in the contributjon (4.6) then
reads

—
—,+pe e&~p~& lim p e e&ln(~R)+ f dr (2mki&) ~2(r~exp( —ph &)~r) —1+

R~oo 3 r&RaP

P2e2e2

2T

+ —,', +Pe Amp + , ( —", —C —ln3) gg'e e&~p~&
a aP

+4 +Pe ep&p~pf dg g' lim '
g p e e&ln(aR)+ f dr (2nA~&)3i2(r~exp( ph~&)~r)—

0 R~oo 3 r&RaP

gge e g2P2e2 2

—1+
T 2T

(4.8)

(ii) ~e turn now to the contributions of the chain graphs II,h„„with one bond fz and one or two bonds f, i.e., the
three graphs shown in Fig. 9. The leading contributions of these graphs are associated to the graphs G '„'";„arising
from the replacement of f„by f& /2. The total contribution of the latter graphs is of order p2 and can be calculated as
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, y p.,p. p. f 'dg g' fd�'—, —
xaa�

—2/xl —x/
2 2 e ' e
, gp. ,p. p

IC 2~x) —I

1
1 1 2 e 2

—lx -xl

+, & i a,S a/a pipit f dxi dx2
aa x& 2x —x ~2 ~x2 x

1 2

g P383 8 3

7T aP

1 4m 4n 4m
GU

(2m) u (1+u ) u

0
arctan

2

1 1 4~ 4a
dU

8~ (2') u (1+u )

2
4m Q

arctan
Q 2

=—(ln2 —ln3 —
—,') QP e e&p~&,

aP

(4.9)

where we have used the Fourier-Plancherel identity together with the convolution theorem [(4n./u)arctan(u /2) is the

Fourier transform of exp( —2x)/x ].
The next contributions of the above chain graphs are of order p and arise either from the ~-scaled term

~ p~ [1—exp( —3x)]/6x or from fT in the scaling decomposition (3.7) of fz (here the term of order ~ linear in the g's

does not give any contribution for parity reasons). The contributions associated to the v-scaled term can be again
calculated along similar lines to (4.9) by using the Fourier transform of [1—exp( —3x)]/x, which is

4m[( —,')ln((9+u )/u )+(3/u)arctan(u/3)]. Their sum is equal to

—(2 ln3 —3 ln4) g P'e e&~p~& .
aP

(4.10)

For calculating the contributions of order p associated to the decomposed graphs with fT in place of fz, we can re-

place p(A, . ) by p . Since these decomposed graphs have a chain structure, their total contribution can be easily ex-

pressed in Fourier space as

with

——+Pe ep~p~pf dg g'~ f du f~~ p(g'~ xu)
7T p

1

(1+u )
(4.11)

gpe 8& g pe e&~

fTg &(k)= f dr exp(ik r) (2m', p) {r~exp( Phg&)~—r) —1+ —
2

(4.12)

When k —&0, jz~, &(k) diverges logarithmically as

f~z &(k)= lim f dr (2m', &) (r~exp( Ph~&)~r) —1+—
A~co r &R

2mg 3 3 3P e e&(1—C)+o(1) .

2p2 2 2

+ g P e 8 &In( kR )
2p'

(4.13)

The resulting low-density behavior of (4.11) follows by inserting (4.13) with k =g' vu, and reads at the order p
~

—( —' —C) gP 848&gp~& —' +Pe e&p—cp~&f dg g'~ lim f dr (2ni, &) {r~exp( —Ph~&)~r) —1
9 a 0 gazoo r&R

aP

gPe~ep+
7"

2 2e282
+ g P 8 epln(a. R) ', (4.14)

2r

where we have used f o"du (lnu)[2/(1+u ) —1/(1+u ) ]=a/4 and f0"du[2/(1+u )]—1/(1+u ) ]=3m/4.
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D. Loop graphs with one f& bond

The two simplest loop graphs with one fz bond and two fD bonds are shown in Figs. 10(a) and 10(b). Their leading
contributions are of order p

i and are obtained by replacing fR by fD /2. Using the Fourier-Plancherel identity and
the convolution theorem, we find that the sum of these contributions reads

32m ~ 1
du 3 arctan —arctan(u) g p e e~ a p~~Q 5 3 4 3 —1 (4.15)

9 o (1+u ) 2

(4.17)

as well as the three other graphs obtained by convolutions with one or two bonds fz (see Fig. 13},the total contribution
of which reads

The loop graphs shown in Fig. 11 are obtained by convoluting the graphs in Figs. 10(a} and 10(b) with one or two
bonds fD. Their total leading contribution is also of order ps' and reads

r

327K oo 1 Q Q Q 5 3 4 3 —1

9 o (u3+ 1) 2
dQ arctan — arctan ——arctan( u )—

2 2(u +4) pr
+pe ey a p~~ y ' (4.16}

The loop graph with three bonds fD shown in Fig. 12 also gives a leading contribution of order p i, i.e.,

64m ~ 1
du

2 zarctan —arctan(u) g p e eg e&z p~~ p&,
Q 3 3 3 3 —1

(1+u ) aPy5

64m ~ 1 Q Q Q 3 3 3 3 —3du 3 3
arctan — arctan(u) —arctan —+ g p e eg e&~ p~~ pz .

(u +1) 2(u +4)
(4.18)

E. Chain graphs with two fa bonds

1 2
1 — + ~ ee ea.1

(1+u2) (1+u2) (1+u2)2 ~ + ii I' s P~H 'YP~ (4.19)

The corresponding graphs are built with two bonds fz and at most three bonds fz. These graphs are shown in Figs.
14—17. Their leading contributions are of order p and arise from the replacement of the two bonds fz by f~l2.
After use of the convolution theorem in Fourier space, they can be rewritten as

2
32m ~ 1 Q

du —arctan
9 0 u 2

1 — +2 1 5 3 4 3~—1

(1+u 2) (1+u 3)3

for the four graphs shown in Figs. 14 and 15, and
2

8m ~ 1

9 0 uf Q
du —arctan

2
(4.20)

for the four remaining graphs shown in Figs. 16 and 17.

F. Final results and comments

The final expression of the excess free-energy density at the order p is obtained by summing the contributions
[(4.1)—(4.5), (4.8)—(4.10), and (4.14)—(4.20)] with the result

3

A A 12m 3
——(C+ln3) gP e e p~a P P

a,P

—
—,
' gp~& lim ' f dr (2m', &) (riexp( Ph &)ir) —1+—

R —+oo r(R

2 2 2Pe~e& 2~ 3 3 3
2 + P e e&ln(aR) .

2T

+—(1—C —21n2) QP'e e&xp~i3+ ', C, g P e e—I3e a 'p~~
a,P a,P, y

2f2~2
+—', C2 g P e egress p~~~ps+ —,', g ~ p

a,P, y, 5 ma

—
—,
' +Pe e&ap~& lim f dr (2m', ~) (riexp( —Ph ~)ir) —1+

R~oo r(R TatP

p2e 2 e 2
a P

2p

+ P e e&ln(aR) +O(p lnp), (4.21)



51 VIRIAL EXPANSIONS FOR QUANTUM PLASMAS: MAXWELL-. . . 1737

FIG. 7. The diffraction graph IId;z (N = 1,M& =2). The solid
lines with an arrow represent bonds A, g';. V;fD (the arrow indi-

cates the point i on which acts the gradient).

where the pure constants C& and C2 have been estimated
by numerical evaluations of the dimensionless integrals
involved in [(4.2), (4.3), and (4.15)—(4.20)] as C,
=15.201+0.001 and Cz-——14.734+0.001 [28]. All the
graphs Gz"' that contribute to (4.21) are represented in
Fig. 18.

The truncated expansion (4.21) does exhibit the struc-
ture (3.12) obtained from the general qualitative analysis
of Sec. IIIB. The various terms can be associated to
specific physical effects. The purely classical terms "a. la
Debye" arise from graphs Gz"' built with only ~-scaled
bonds independent of the shapes of the filaments. Conse-
quently, they can be viewed as long-range contributions
of the classical part of the interactions screened with the
Debye length ~ '. The term of order p exactly pro-
portional to fi is of the diffraction type in the sense that
it describes quantum corrections to a classical treatment
of the long-range part of the interactions. These quan-
tum effects are associated to multipolelike interactions
between the filaments, which enter in shape-dependent
bonds like fz or 1, g;.V;f~, for instance. Note, in par-

ticular, that both graphs Ilz (%=0,Mz =1) [with
~H, (x)fr in place of fz] and the purely diffraction
graph II&;z (N = 1,MD =O, MD =2,MD =0) contribute to
the above diffraction term of order p, as shown by Eq.
(4.8) and (4.4), respectively. We stress that the presence
of these diffraction terms shows that the interactions can-
not be entirely treated at a classical level at large dis-
tances. Eventually, there are terms that involve truncat-
ed traces of the quantum Gibbs factor for a finite number
of charges. They describe short-range quantum effects
and take into account the contributions of both bound
and scattering states. They arise from graphs Gz'"
made with at least one function fr. Here, at the present

FIG. 8. The graph II& (X=O,M~ =1).

order p, it turns out that the short-range quantum con-
tributions can be entirely expressed in terms of the one-
body density matrix ( r

~
exp( —Ph & ) ~

r ) [the last terms of
(4.8) and (4.14), which are related to nontrivial integrals
over g of ( r

~
exp( —Ph ~& ) ~

r ), cancel out]. Such
simplifications in favor of few-body density matrices cal-
culated at g =1 only, might no longer occur at higher or-
ders [in particular because of the functional dependence
of p ( 8), which has then to be taken into account].

At the order p, the above physical effects are com-
pletely disentangled. At higher orders, they may be cou-
pled together in graphs G&"' involving simultaneously
classical a.-scaled bonds, purely diffraction bonds (with a
polynomial dependence in the g's) and the truncated
bonds fr. These graphs describe the many-body screen-
ing effects on the quantum states with a finite number of
charges. It turns out that the quantum aspect of these
collective phenomena can be treated perturbatively, as
shown by the occurrence of the classical and diffraction
bonds. Physically, this is due to the fact that the charges
belonging to the screening clouds behave almost classical-
ly, i.e., their de Broglie wavelength becomes small com-
pared to their relative distances in the low-density limit.
The previous coupling mechanism appears already at the
order p, and is illustrated by the term involving the
truncated trace of exp( —Ph &).

G. Comparisons and checkings

At the order p, we recover exactly the MB part of the
expressions computed by Ebeling et al. [16,17]. For in-
stance, the truncated trace of exp( —Ph & ), i.e.,
limz „Jdr is nothing but the second virial quantum
coefficient first introduced by Ebeling. All our terms of
order p do coincide with those determined from the
efFective-potential method, except the purely diffraction
term

FIG. 9. The three chain graphs obtained by
convoluting the graph II& shown in Fig. 8 with
one or two bonds fD.
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tities. The quantities that are related to the free energy
via partial differentiations with respect to the density are
the most easy to calculate because of the simple polyno-
mial and logarithmic structure in the densities of (4.21).
In particular, the pressure is calculated by inserting (4.21)
in the thermodynamic relation

8 PF I3FF=.p-ap.
L

FIG. 12. The loop graph II&„„(N=2,M& = 1,M& =3).
Since ~ is a homogeneous function of the p 's of order —,',

Xp K= —K—1
2

(5.2)

V. EVALUATION OF THE PRESSURE AND
OF THE OTHER THERMODYNAMIC FUNCTIONS

The virial expansion of any thermodynamic function
can be inferred from (4.21) by using thermodynamic iden-

g p ln(const Xv) ~&= —,',a

a ~Pa

and we 6nd

(&.3)

K»=Xp.—24vr
——( —,'+C+ln3) gP e e&p~& ,' g—

p—~& lim I I+a—,' ———. ln2 g g'e e&xp~&
a, p

+C& g P e egza 'p~epz+C2 g P e egress p~epzps
a,p, y a, p, y, 5

P2/2e 2

+ —,', g Ir p
—

—,
' +Pe e&ap~& lim I )+O(p lnp),

R —+ oo
(5.4)

FIG. 13. The three graphs obtained by con-
voluting the graph shown in Fig. 12 with one
or two bonds fD.
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for instance) are calculated in terms of the above virial
coefficients by combining thermodynamic identities and
relations between Jacobians.

%'e recall that all the present density expansions have
been calculated in the framework of Maxwell-Boltzmann
statistics. The exchange contributions will be included in
a future paper.

APPENDIX

FIG. 14. The chain graph H,z„„(X=2,Mg =2,MD = 1).

where limR „I j is the truncated trace of exp( —Ph &)
appearing in (4.21).

The calculations of the quantities that are related to
the free energy via partial differentiations with respect to
the temperature, like the internal energy or the specific
heat at constant volume, for instance, require the
knowledge of the temperature dependence of the virial
coefficients of the density expansion (4.21). For the clas-
sical and diffraction terms, these coefficients merely
reduce to polynomials in P. The temperature dependence
of the short-range quantum contributions enters in the
truncated trace of exp( —Ph & ), for which, to our
knowledge, no simple analytic expressions are available in
the literature. However, there exist high-temperature ex-
pansions, the coefficients of which are all known in terms
of Riemann's functions [17]. Eventually, all the other
thermodynamic functions (like the adiabatic coefficients,

valid for any integrable potential V;„,(r). Of course, in
ihe present case, the traces have to be de6ned via suitable
truncations, which eliminate the long-range Coulomb
divergencies and we set

I = fdr (2+a &) &r~exp( phd&)~r)——1+gl3u p(r)

2 3

2
P u &(r)+ P v &(r)g (r) (A2)

where g (r) is a given function of r such that
g(r)-constXr when r~o, and g(r)~1 when r~co.
Using

In this Appendix, we derive a differentiation trace
identity for the Coulomb Hamiltonian h ~&

fi l(2m—&)6+gv &(r) with u &(r)=e e&v, (r), which
is the extension of the familiar identity

PTr I V;„,exp [
—P( h p+g V;„„)] ]

TrIexp[ —P(h &+gV,„,)]—exp( —Ph &)],
Bg

(Al)

( r
~
exp( —Ph & )

~
r ) = —f dr f d r'( r

~ exp[ (P r) h
&
—] ~

r' —) u &(r') ( r'~ exp( rh sp ) ~
r )—,

0

which follows from the Dyson equation, we 6nd

(A3)

(A4)

FICs. 15. The three graphs obtained by con-
voluting the graph shown in Fig. 14 with one
or two bonds f&.
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(X= 1,M~ =2).FIG.CJ. 16 The chaiIl graph chain

with

ir') (r'iexp( ~h'p—) ir )d~(r~exp[ —(P—~)h~p] r+ (r r')=v p(r') ~ (2nA, p)'Yg r~ r ap

r —r' — + g u' (r)g(r)—P5(r —r'} 1 gPu~p(r—)+ (A5)

fi y gz

)+D'"'(r, r')+R (r, r'),g (r, r')=g (r', rg

art of the difference [fs(r, r'—r r') — (r', r)],mte rable asymptotic part o e'& is the nonabsolutely I egwhere D "(r,r & is e

d ' are sent simultaneouslynver ent becaus,e when r an r a
'

eousl
write (r, r ) as

y o gThe integral in the rig

(A6)

(r r') decays as the Con om pto in nit, r, r

d [(1—s)r'+sr]'"' r r')=[u p(r') —v p(r)] 1 —g s u p

d~(r~exp[ —(P—r)h~p] r rX(2n.A, p} ~ r

and R (r r') is the corresponding res,g 7

r — — s r'
& & r'~exp( —~ p rr r' —hs )~r),

' =[ r —
p f d~. &r~exp[ —(P—~)hspRs(r, I') =

L v~p r —
p,

' =[ (r') —u p(r)](2mk2p ~. r — — s r r

(A7}

—(r ~exp[ —(P—&r — —)h ]Ir'&(r'~exp( ~h p ~r—
I+1 —gPJ dsu p[ 1 —s r+sr

0

(A6) in (A4), we obtainnh = — mp= —iri /(2m )h. Insertingis the pure y inis p 1 k'netic Hamiltonian,In (A7) and (A8), h p is p

(A8)

ra hs obtained by con-g p
voluting t eh graph shown in Fig. 1 wi

or two bonds fu.
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FICx. 18. The 12 primary graphs Gz"', which contribute to the expansion (4.21) of the free energy (all the other graphs obtained
by convoluting these primary graphs with one or two bonds fv are not drawn). The dashed-dotted lines represent bonds «H, (xl.
The bubble with the symbol 63 inside represents the function ~ G3, which appears in the sealing decomposition (3.7). At the present
order p', this function can be replaced by («'fD2H, /2+ «'fDH, /2+ «'H', /6), as illustrated at the bottom of the figure.

2

I = Pf—drv &(r) (2~t &) &riexp( PhsI3)ir&——I+gPu &(r) Pu &(r—)g(r)
gg

—fdr fdr'D'"'(r, r') —fdr fdr'R (r, r'), (A9)

where we have used the closure relation fdr'~r'&&r'i= 1. The nonabsolutely convergent integral with DI"' can be
evaluated by expanding [u &(r') —v &(r)] and v &[(I—s)r'+sr] in Taylor series with respect to (r' —r) and
(1—s)(r' —r), respectively. Taking into account the harmonicity of the Coulomb potential [bv, (r) = —4rr5(r)] and the
symmetries of the matrix elements of exp( —~h

& ), we find that only one term in these series contributes, i.e.,

fdr f dr'D,'"'(r, r)= f dr f dr'
,
g(r„' —r„—)(r'—r

2 3/2

0 3/2 3/2 P r (p ~)

=—' f dr Av &(r)
1 p

6 (2 g2 )3/2 0 3/2(p )3/2
O.P

p2t 2

2~(P —~)A, p

7T

3
Ije~epk p .

(A 10)

As it can be seen from the Feynman-Kac representation of the matrix elements of exp( —
rh s&),

&r'iexp( —~h p)ir&=

I3(r —r')
exp

27 A~p

(2~A, )
/

7T ~p
fXl(g)exp —~g f ds v &[(I—s)r+sr'+A, g(s)]

R (r, r') remains integrable for any spatial configuration. Consequently, the integral with R (r, r') is absolutely conver-
gent, and it vanishes because of the antisymmetry of Rs, i.e., R (r, r') = —R (r', r). Combining this result to (A10) a d
(A9), we infer the required identity

2

Pf dr u f3(r) (2m'. &) &riexp( —Phs&)ir& —I+gPu &(r) Pu &(r)g (r)—

a 2dr (2~A, ) / &rjexp( Phs&)ir& —I+ggv —&(r) u fi(r)+ P u &(r)g—(r) +—Pe e&A, p.
Bg

(A 1 1)
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A first difference between the identities (Al) and (All) is the presence of the substracted terms built with v & and g,
which ensure the convergence of the integrals over r in (Al 1). The additional term (m/3)Pe e&A, & is more subtle and,
to our knowledge, has always been omitted in the literature. It arises from the long-range nature of the Coulomb poten-
tial, which prevents the inversion of the integrals over r and r in (A4). It can then be interpreted as resulting from a
diffraction effect (as suggested by its structure). We have checked the identity (Al 1) when the charge e and eti have
the same sign, i.e., e ett=e . In this repulsive case, both integrals in (Al 1) remain finite in the classical limit and can be
expanded in powers of A' . The presence of the above diffraction term ensures that the Wigner-Kirkwood expansions of
both sides of (Al 1) are identical, as it should be.

Both convergent integrals in (Al 1) can be rewritten as finite integrals J ~dr over a sphere of radius R plus terms
that go to zero when R ~ ac uniformly with respect to g. The identity (Al 1) then becomes

Pf drv &(r) (2m', tt) (r~exp( Ph—s&) r) —I+gf3v ts(r) Pv —&(r)g(r)
r&R a a a

2 3

dr 2m' & rexp —h & r —I+g u&r — u &r+ u &rg r +—e e&A &Bg r&R 3

(A12)

disregarding uniformly decaying terms in the limit R ~ ao. Each integral f +dr reduces to a sum of similar integrals
associated to the terms appearing in the truncated quantities [(2m.i, &)

~ (r~exp( —phs&)~r) —. ] (all these integrals
do converge because the integration domain is finite). The corresponding integrals of the substracted terms obviously
cancel out side to side, and (A12) becomes

Pf dr v tt(r)(2m', &) (r~exp( Phs&)~r)—= — f dr(2m', &) (r~exp( —Phs&)~r)+ Pe eSA, —tt, (A13)
r&R Bg r&R

disregarding terms which go to zero when R ~ac uniformly with respect to g. The identity (A13) is, of course,
equivalent to (Al 1). This finite-domain version of the differentiation trace identity is the most convenient for the calcu-
lations of the graphs carried out in the main text.
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