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Control in multidimensional chaotic systems by small perturbations
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An algorithm is given by which the number of visits to the c neighborhood of an arbitrary point of a
chaotic attractor is increased. When the perturbation is sufficiently large, the trajectory becomes period-
ic.

PACS number(s): 05.45.+b

In recent years we have witnessed the results of work
by many scientists directed toward the use of chaotic
phenomena by way of control by some form of small
external perturbations. The dynamical system under con-
sideration is described by

x=F(x,p),
where x=(x„x2, . . . , x„) defines the state of the system
and p is the vector of the control parameters. With slight
changes of p the chaotic system can be controlled, ob-
taining periodic motion [1], targeting trajectories [2], or
achieving synchronization [3]. Although these methods
are applicable in principle to systems with arbitrary di-
mension, due to technicalities their use is practical only
for systems with low fractal dimensions.

In another approach [4], instead of changes of the con-
trol parameter, small perturbations g(x) are added to the
system, with the aim of achieving control and some desir-
able effects. The dynamical system to be considered is
then given by

x=F(x,p)+g(x) .

The main difficulty is how to make the appropriate
choice of perturbation with the restriction that it is
sufficiently small. Most papers dealing with the subject
of control of the behavior of nonlinear systems are devot-
ed to methods of stabilizing some periodic state. Howev-
er, one can think of situations where a periodic outcome
is neither desirable nor, strictly speaking, possible, as is
the case in weather comportment, population dynamics,
and functioning of markets. On the other hand, some
particular states in the evolution of a system may have a
property which is considered beneficial and therefore a
valuable aim in the control of the system. With this
motivation in mind, in this paper we address the follow-
ing question: How to control the trajectory in order to in-
crease the number of visits in the neighborhood of a
specified point on the chaotic attractor? We provide an
algorithm which gives a desired control. Although the
algorithm was developed in order to obtain an answer to
the above question, it can be applied to causing the
motion to become periodic when large enough perturba-
tions are used, but still much smaller than the size of the

and

Vt E [t;",t +) ], Vt E [O, tI ], Vt E [tk', 0],
f(xo, t ) E O(x, E),

where O(x, E) is the open ball with its center at x and a
iadius E.

We will call the natural E frequency (or, briefiy, the E

frequency) of the trajectory of the dynamical system at x
the limit

p(x, E)= lim
k(8)

Q~ oo 0~
(3)

In fact the c frequency measures how often the trajectory
of the dynamical system visits the open ball O(X, s).
Note that when c,~0 the value of the c frequency tends
to the value of the natural measure of the attractor of the
dynamical system at point x [5,6].

Now we will measure the c. frequency, at some point x,
and then try to increase it using small perturbations. We
will test the algorithm on several chaotic dynamical sys-
tems: the three dimensional (3D) Lorenz system, the four
dimensional hyperchaotic Rossler system [7], and the
nonautonomous hyperchaotic system of two coupled
Duffing oscillators [8] which are described, respectively,
by the following equations:

attractor. Moreover, the dimension of the chaotic
dynamical system is not essential for the application of
the algorithm, i.e., it can be applied to such systems of ar-
bitrary dimension.

First we define the natural c frequency at a point x
which belongs to the attractor A of the dynamical sys-
tem (1). Let T( f, xo) denote the trajectory obtained from
(1), with an initial point xo at t =0 [here f is a solution of
(1), with an initial point xo]. Consequently x H T( f, xo)
means that 3t&(0, ~) such that x=f(xo, t). For a
given XEA and 0&A, 0)0 and E)0, let k=k(0)
be the number with the property that
30 t', & t", & tz & t2 & . . tk & tk 8, such that, if

xone

O(x, c.),

V t E ( t,
' ( t,

"
), f(x„t ) e0 (x, e )
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dx
dt

=cr(y —x),

= rx —y —xz,
dt

(4)

dt
=x+ay+ w,

dz =b +xz,
dt

dw =cw —ez,
dt

where a=0.25, 6=3.0, c=0.05 and e=0.5:

x) dx)+a +x, =b cos(ct),
dt

(5)

dz
dt

=xy —bz,

where the values of the parameters are o. =16, 6 =4.0,
and r =45.92:

dx = —(y +z),
dt

denote that part of the trajectory by T and the points on
&by P.

The next step is to control the trajectory of the chaotic
dynamical system, using the knowledge of T. We adopt
the following strategy. The system is left to evolve ac-
cording to the unperturbed equations (1), and if the tra-
jectory overlaps with f' there is not need to intervene
with the external perturbative term g(x). In the case
when the trajectory differs from f', a perturbation is ap-
plied by which the actual trajectory is pushed toward the
nearest point on T. This is made by a small amount g(x)
with a modulus that does not exceed 6.

Figure 1 depicts schematically the idea of the algo-
rithm. The algorithm can be precisely described as fol-
lows.

Preparatory phase

Step 2. Take a random point xEA, , for which one
wants to increase the number of visits to its c neighbor-
hood.

Step. 2. Calculate the c. frequency, and at the same
time find the point y.

Step 3. D.etermine the trajectory f'.

x2 dxp+e +x2'=x
dt2 dt

(6)

where a =0. 1, b = 10.0, c = 1.0, and e =0. 12.
We can illustrate this by taking some examples.

Different points of the chaotic attractors have different c,

frequencies. The point x, =( —9.909750544297916,
—15.079781 802800559, 30.394713 806945 177) of
the Lorenz system, with e=l 0, has p,(x„l)=0.097,
and for the point xz = (9.425 870 275 350 913,
16.811 983 540 820 339, 22.095 203 328 432 007, of the
same system, with c= 1.0, the E. frequency is
p(xz, 1)=0.058.

The value v=1.0 is chosen to be of the order of 1% of
the size of the attractor (the attractor of the Lorenz sys-
tem is contained within a 3D box with approximate size
64X87X75, and a diagonal approximately equal to 131).

Now we describe the algorithm which will increase p.
We replace system (1) with one given by Eq. (2), where
g(x) is a real n-component function of x, which takes
small values, i.e., ~g(x) ~

~ 5, and 5 is relatively small (less
than 0.01% of the size of the attractor) fixed value.

The main question now is how to choose g, in order to
increase p. We offer the following solution.

First we take a random point xEM, and we look for a
point y&O(x, e)RA, such that the trajectory which
starts at y has a property that will return back in O(x, c, )

for the shortest time. It is not possible to find such a
point exactly in the general case, since we have to in-
tegrate the system for t H(0, ~ ). However, in practice
we will examine the trajectory of the system for a reason-
ably long time interval t H (0, 100000), looking for such a
point. When we finally decide upon the choice of the
point y, we will determine a part of the trajectory T( f, y),
starting in y and returning back again in O(x, e). We

Free uncontrolled phase

Step 4. Integrate the system without any perturbation.

Controlling phase

Step 5. Start with control at a random@oint xH T.
Step 6. If the distance between x and I is greater than

5 (which implies than x 6T), then find a point y H T
which is nearest to x, and push x to a position in a direc-
tion toward g, with the restriction that the perturbation
does not exceed 5.

If the distance between x and f' is less than 5, select a
perturbation g(x) which will bring the system onto T.

Step 7. Continu. e to integrate system (1) starting from
its later position for a small time step 4~, reaching some
point x. Go to step 6.

A remark is necessary concerning step 6, where a

FIG. 1. Schematic presentation of the algorithm presented in
this paper.
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search of the closest point y&T for a given x is made.
The number of calculated points of T can be relatively
large, and so the time consumption for searching the
nearest point on T is too large if in each step it is to be
done by a linear search along T. Instead, in searching the
nearest point on T we proceed in the following manner.
When we start the process of control, the initial yET
closest to x is found with a linear search through T.
Then in subsequent searches the last closest point y is
used to look in both directions of T for the point nearest
to the later position of x (see Fig. 1).

Here we give some results obtained by the above algo-
rithm. It is interesting to note that we found a threshold
value 6 for the amount of the maximal perturbation 5,
whereby a periodicity is reached, and the c frequency p
no longer increases. In that case the maximal p for the
threshold value is near the inverse of the time length of
the shortest trajectory f'.

Figure 2(a) gives the calculated e frequency as a func-
tion of the perturbation 6 around the point x1 of the
Lorenz system. The threshold value, as we can see, is
reached for 5=0.0085, which is 0.006%%uo of the size of the
attractor. The shortest trajectory takes 1.39 times units,
so the maximal frequency is p = 1/1. 39=0.719. The in-
tegration of the Lorenz system was made by the Runge-
Kutta method of order 4, with a time step 5~=0.01.
The c, frequency for the same point calculated with a
smaller time step 6&=0.005 is represented in Fig. 2(b).
In this case the necessary perturbation required to make
the trajectory periodic becomes respectively smaller, i.e.,
5 =0.0054.

Figure 3(a) shows the shortest trajectory running
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FICx. 2. (a) p as a function of the perturbation 6
for 6&=0.01 calculated in x, = ( —9.909 750 544 297 916,
—15.079 781 802 800 559, 30.394 713 806 945 177) of the Lorenz
system. (b) p as a function of the perturbation 5 for 5~=0.005
calculated in x&.

FIG. 3. (a) The points x, and y, and the shortest trajectory f'.
(b) Periodic trajectory obtained with 5=0.0085 for the point xl.

through O(x„1). The periodic trajectory resulting from
the application of the algorithm, using perturbations with
maximal amount of 5 =0.0085, is shown in Fig. 3(b).

When the value of 5 is less than the threshold value 6,
the c frequency p is more frequently increased than not,
although the system behaves similarly to the chaotic sys-
tem. For example, for the value 5=0.0061 we obtained
that @=0.59, which is more than six times greater than
the value of p when the system is not controlled. Figure
4 shows the resulting chaotic trajectory in the Lorenz
system obtained for 6=0.0061.

Figure 5 gives the calculated c frequency as a func-
tion of the perturbation 6 around the point
X = ( —39.942503140840444, 12.569036805 223 906,
0.075 739 698 850500, 19.504748 651 452275) of the
Rossler system. Over that point we took v=1.0, and the
Runge-Kutta integration step 5~=0.005. When the sys-
tem was not controlled, we found that p(x, 1)=0.00205.
The shortest trajectory we found for this point was 20.39
time units long, and so the maximal p we expected and
numerically confirmed was 0.049. The threshold value,
as we can see, was reached for 6 =0.001 07.

In Fig. 6 we give the calculated c frequency as a func-
tion of the perturbation 6 around the point
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FIG. 6. The c, frequency as a function of the perturba-
tion 5 for the time step b 7 =0.01 calculated at the
point x=( —1.835005 385 613494, 0.665 126023 934 870,
0.452 066 898 799 946, 0.915 365 307 670 325 ) of two coupled
Duffing oscillators.

FIG. 4. Chaotic trajectory of the Lorenz system obtained
with 6=0.0061, with increased c frequency at the point x1.

X = (
—1.835005385613494, 0.665 126 023 934 870,

0.452066 898 799946, 0.915 365 307670 325) of the sys-
tem of two coupled Du%ng oscillators. Over that point
we took c.=0.2, and the Runge-Kutta integration step
h~ =0.01. When the system was not controlled, we
found that p(x, 0.2)=0.00053. The shortest trajectory
we found for this point was 81.74 time units long, and so
the maximal p we expected and experimentally confirmed
was 0.0122. The threshold value, as we can see, is hard
to determine more precisely, and lies between
5=0.000 69 and 0.000 71.

We have made more than 1000 numerical experiments
with the Lorenz system, and over 300 numerical experi-
ments with the other two dynamical system, randomly
choosing various starting points from the attractor, and
then applying the algorithm. We did not find a point for
which the E frequency cannot be increased. However
there were many cases when the maximal P for the
threshold value 5 was not near the inverse of the time
length needed for the shortest trajectory T. Also we
found many cases when the resulting controlled trajecto-
ry gave an c, frequency which was sometimes much larger
than expected. The following examples will illustrate
these phenomena.

For point x2 in the Lorenz system, as we mentioned for
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c.=1.0, the c, frequency is p=0.058. The threshold value
for this point is reached for 5=0.0097, which is 0.007%%uo

of the size of the attractor. The shortest trajectory takes
1.85 units of time, so the maximal frequency we could
reach was p=1/1. 85=0.54. However, this is not the
case here. The maximal frequency we reached was 0.437,
which is more than seven times greater than the value of
p when the system was not controlled, but still lower
than 0.54. The reason behind this difference is that T and
the imposed periodic trajectory differ considerably, and
the motion along the latter takes more time.

More interesting situations were found in the hyper-
chaotic dynamic system of two coupled Dufting oscilla-
tors. The behavioral pattern for reaching the periodicity
while increasing the maximal amount of 6 was also found
here, but we investigated what happened when applying
greater 5 in controlling (but still much smaller
than O. l%%uo of the size of the hyperchaotic attrac-
tor). In Fig. 7(a) we give the calculated E frequency
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FIG. 5. p as a function of the perturbation 6 for
=0.005 calculated at the point x=( —39.942503 140840444,
12.569 036 805 223 906, 0.075 739 698 850 500,
19.504 748 651 452 275) of the Rossler system.

FIG. 7. (a) p as a function of the perturba-
tion 6 for A~ =0.005 calculated at the
point x = ( —0.984 624 500 154097, —1.190400032 890 617,
0.020945314102096, —3.697367069430180) of two coupled
Duffing oscillators. (b) p as a function of the perturbation 5 for
6~=0.005 calculated at the same point but for a larger interval
of 6.
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as a function of 5, for the point
x=( —0.984624 500 154097, —1.190400032 890617,
0.020 945 3 14 102 096, —3.697 367 069 430 180), 8 = 0.2,
and 5~=0.005. The shortest trajectory we found was
56.49 time units long, so the expected c frequency was
0.0177. Indeed, for some value of 5 between 0.0001 and
0.0002 that c frequency was reached. But when we ap-
plied control with larger 5, we obtained a very interesting
graphic, shown in Fig. 7(b).

Figure 8 shows the calculated c frequency as a
function of the perturbation 5 around the point
X= ( 3.296 867 550 146 056, 4.448 041 459 252 043,—1.129 934 661 608 241, 1.909 228 284 447 795 ) of the
system of two coupled Duffing oscillators. Over that
point we took c, =0.2, and the Runge-Kutta integration
step 6~=0.01. When the system was not controlled, we
found that p(x, 0.2)=0.00015. The shortest trajectory
we found for this point was 113.21 time units long, and so
the maximal p we expected and numerically confirmed
was 0.0088. The threshold value, as we can see (the ar-
row shows the area where we found 5), is 8=0.0077.
However, when we continued to increase 5, the c frequen-
cy continued to grow, and for 6=0.0175 p increased to
the value of 0.157, which is more than 1000 times greater
than the c frequency of the noncontrolled system.

In conclusion, we have implemented an algorithm for
control of chaotic dynamical systems using small external
perturbations. The numerical evidence demonstrates that
by applying the algorithm the frequency of visits to the
neighborhood of a randomly selected point on the strange
attractor, starting from an arbitrary point on the attrac-
tor, is increased in most cases. When the perturbations
are sufficiently strong, although still much smaller than
the size of the attractor, the motion can be caused to be-
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0 I I I

0 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02

FIG. 8. p as a function of the perturba-
tion 6 for A~ =0.01 calculated at the
point I= (3.296 867 550 146 056, 4.448 041 459 252 043,—1.129934661608241, 1.909228284447795) of two coupled
Dufting oscillators.
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come periodic. How large the perturbation necessary to
make the system periodic should be depends on the time
step Aw of the integration process. For smaller values of
h~ the perturbations are more frequent and therefore can
be more gentle. By providing several examples, we have
explicitly shown that our algorithm is applicable to con-
trolling the comportment of multidimensional chaotic
systems.

Interested readers can contact the first author to obtain
the program code written in C.
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