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Envelope Hamiltonian of an intense charged-particle beam
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We introduce a Hamiltonian to describe the Kapchinskij-Vladimirskij envelope equation in the
envelope phase space. The envelope Hamiltonian, in the presence of periodic focusing fields, can
be decomposed into an unperturbed autonomous Hamiltonian and a time dependent perturbation
generated by the remnant focusing field. This periodic perturbation produces families of paramet-
ric resonances, which form a tree of bifurcation branches. Each branch follows the tune of the
unperturbed Hamiltonian. A prescription for selecting a proper unperturbed Hamiltonian will be
discussed.

PACS number(s): 07.77.—n, 29.27.Eg, 41.75.—i, 52.25.Wz

Studies of nonlinear dynamics relevant to the
Kapchinskij-Vladimirskij (KV) envelope equation for an
intense charged-particle beam are important in order to
achieve high current and high brightness beams. In par-
ticular, nonlinear properties of the KV equation in a pe-
riodic focusing solenoidal Beld were extensively studied
in Refs. [1,2]. There Chen and Davidson derived a KV
envelope equation for the equilibrium distribution of an
intense charged-particle beam propagating through a pe-
riodic solenoidal focusing field. For a mismatched beam,
the envelope function presumably obeys the KV equa-
tion with a periodic longitudinal modulation. Therefore,
solutions of such a KV equation, in the presence of self-
electromagnetic fields, can offer important insight toward
understanding high brightness beam transport problems.

To solve the nonlinear KV equation with time de-
pendent modulation, Chen and Davidson employed the
Poincare mapping technique to systematically determine
the dynamics of the envelope oscillations. While numeri-
cal simulations are very useful in obtaining a visual chaos
for a dynamical system, they often lead to confusion when
the number of parameters is large. Sometimes it is difFi-
cult to understand the underlying physics based on nu-
merical simulations alone. Furthermore, because correla-
tions between parameters are usually nonlinear, the task
of unraveling a key equation is hindered by numerical
chaos.

In this Brief Report, we propose a Hamiltonian formal-
ism to describe the KV equation and solve the Hamil-
tonian flow semianalytically using the parametric reso-
nance analysis method [3]. This paper is organized as
follows. The KV envelope equation is reformulated in the
envelope IIamiltonian and action-angle variables are in-
troduced. Parametric resonances appear naturally when
the envelope Hamiltonian is expressed in action-angle
variables. Some tracking examples [1],where global chaos
occurs, are used to demonstrate the advantage and the
applicability of this method.

Following Eq. (46) of Ref. [1], the normalized paraxial
KV envelope equation is given by

d R/ds +k(s)R —K/R —1/R =0,

linear focusing Beld, and s is the normalized longitudinal
distance along the accelerator. For a periodic focusing
field, one has k(s) = k(s+ 1).

To cast Fiq. (1) into a general framework of a periodic
dynamical system, such as circular synchrotrons, we use
0 = 2ms as the time variable. Let (R, P) be the envelope
phase Space coordinates, where P is conjugate to B. The
Hamiltonian for Eq. (1) is given by H =

4 P+ V—(R)
with the potential V(R) =

4 k(0)R —
2 KlnR+4-»,

with k(0) = k(0+ 2'). Now we decompose the Hamilto-
nian into H = Hp + LH with

Hp —(1/4m)P + Vp(R)
= (1/4m)P + (1/4vr) p R —(1/2vr)K inR

+(1/4~R'), (2)

AH = (1/47r) [k(0) —p']R'.

The unperturbed autonomous Hamiltonian Hp describes
amplitude oscillations of a mismatched beam and the per-
turbation arises &om the remnant of the periodic focus-
ing Geld. This dynamical system is equivalent to time
dependent perturbation on the Hamiltonian flow. We
will show later that the parameter p should be chosen as
the phase advance of the particle motion in the focusing
field.

The minimum of the potential well Vp(R) is located at
Rp ——[2/(QK2+ 4@2 —K)]i', which corresponds to the
average radius of a matched beam (see the Appendix).
Since the autonomous unperturbed Hamiltonian is inte-
grable, a mismatched beam radius will follow a torus of
the Hamiltonian flow. The action of the torus is given by

J = — PdR= [E —Vp(R)] i dR,2' 7r

where E is the "energy" of the unperturbed Hamiltonian
given by Hp ——E(J) = vJ+ znJ2+ . . The tune of
the unperturbed Hamiltonian, defined as the number of
oscillations in one period, is given by

where B is the normalized beam radius, K is the normal-
ized space charge perveance factor, k(s) is the normalized where the nonlinear detuning

Q(J) =dE/dJ= v+nJ+ (5)

parameter
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n = (3/64vrsR4pv2)(K + 10/Rp2) —5/384vrsRpv (K +
6/Rp) + . can easily be obtained by the canonical per-
turbation method and

v = (1/27r) [4p —K(QK2 + 4@2 —K)]'&2 (6)

is the tune at a zero oscillation amplitude of a matched
beam. At a zero space charge limit, the phase advance
of the unperturbed envelope function in one period is
2p. Since the envelope of a linear system oscillates at
twice the particle oscillation amplitude, the parameter
p should therefore be chosen as the phase advance ob-
tained from a proper Floquet transformation [4] (see also
the Appendix). At the infinite space charge limit, the
envelope tune becomes ~2@. The nonlinear detuning n
arises solely from the space charge force.

Using the generating function E2(R, J) = J& PdR,
where 8 is the maximum amplitude of a Hamiltonian
torus, the conjugate phase variable is given by vP

= 2m'&& J& "& . Although the Hamiltonian H with
a periodic time dependent modulation is not integrable,
the envelope dynamics can be studied by expanding
the perturbing potential in action-angle variables with
R = g G e' ~. Here the strength function G
is obtained Rom the inverse Fourier transformation as
G„= 2 I R e '"~dQ with G „=G„'. Without loss
of generality, we assume a symmetric periodic focusing
field so that

(H) = E(I) —(I/n) I + h„,g (I) cos nP,

where p = @—(E/n)0+p /n is conjugate to I. The fixed
points of the Hamiltonian are given by sinnPpp = 0 and

nQ(Ipp) —E + nh'„r(Ipp) = 0, (10)

where the prime represents the derivative with respect to
the action. Note here that the resonance condition di8'ers
&om the simple minded condition nQ(Ipp) = E by the
perturbation strength h' e. For the nth order resonance,
there are n stable fixed points (SFPs) and n unstable
fixed points (UFPs). Hamiltonian tori around SFPs are
distorted to form resonance islands. The resonance aris-
ing &om the first order perturbation of Eq. (10) is called

k(0) = ) kg cosN
e=o

The Hamiltonian becomes

H = E(J) + ) h„g cos(n@ —IO+ p„). (8)
n=o, e=—~

where p is the phase of G and h~ g = kr ~G ~/2m. We
neglect first the n = 0 terms, which are related to the
closed orbit solution (see Appendix). The parametric
resonances generated by the time dependent perturba-
tion are given by the stationary phase condition ng = I,
which can cause coherent perturbation to Hamiltonian
tori.

To understand the dynamics of the coherent perturba-
tion, we perform a canonical transformation to the res-
onance rotating &arne using E2 ——(g ——0+ ~")I. The-
time averaged Hamiltonian becomes

the primary n:E parametric resonance. The width of the
resonance is given by AI = 4(h g/Q') ~

~l ls~p, where
Q' is the derivative of the tune.

The occurrence of resonances depends sensitively on
the tune of a dynamical system. When the tune is varied
by changing system parameters p and K, the resonance
island will also move across the phase space. The bifur-
cation of resonance islands occurs when the parameters
p and K are varied such that the solution of Eq. (10)
disappears. Plotting the resonance tune vs the energy
(or the maximum amplitude of a torus), the dependence
of the tune on the amplitude can be obtained. The tree
of bifurcation branches for parametric resonances would
follow generally the tune of the Hamiltonian [3].

Now we apply the method to an example [1] with

k(0) = (ap + ai cos 0) = pp + 2apai cos 0 + —ai cos 20,2= 2 12
2

where pp ——gap + a2i/2. In this exainple, primary res-
onances exist only for f = 1 and 2. When ai &Q ao,
we can choose p = po for the average phase advance of
the periodic focusing Geld for transverse particle oscilla-
tions. However, when aq )) ao, the focusing function is
localized and therefore the Floquet transformation may
change p slightly from po. In the strong thin solenoidal
focusing system, the Floquet transformation becomes es-
sential [5].

For the KV equation, when the parameter po is varied,
resonances in the sequences of n =.. . , 6, 5, 4, . . . appear
at large amplitudes, move across the (R, P) phase space
toward (Rp, 0), and bifurcate or disappear. The condi-
tion for the nth order resonance bifurcation is v = —.For
example, the Gfth order resonance bifurcates at v 5 or
equivalently po = 5 for a beam without space charge or

po =
5 for an intense space charge dominated beam.

Similar bifurcation mechanism can be applied to other
resonances. In general, higher order resonances, such
as n = 5, 6, 7, . . ., are benign because their resonance
strengths are small.

Since a large focusing strength po, which needs large
ap and/or ai, is needed to minimize beam radius Rp foi'
beam transport, studies of low order resonances with
n = 4, 3, 2, 1, . . . can be important in optimizing the
beam transport. An example of a low order resonance
is shown in Fig. 2(b) of Ref. [1], which corresponds to
v = 0.297. Here the third order resonance is located at
3Q(I„) —1 + 2 apai~Gs(I„)] = 0, where I„= Ispp is
the resonance action. When the tune v is increased up-
ward, third order resonance islands, shown in Fig. 2(b)
of Ref. [1], move in toward the phase space point (Rp 0).
The third order island bifurcates at v = 3.

At v & 0.4, Hamiltonian tori are dominated by the 2:1
resonance. This is analogous to the half integer stopband
in orbital dynamics of circular synchrotrons, where the
stable region around Bo becomes smaller when the tune v
approaches 2. Near v 2, the stability of the envelope
equation is similar to that of Mathieu's equation (see
the Appendix). The Mathieu instability occurs when the
tune lies in the range v F (2 —(, 2 + (), where (—
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FIG. 1. Tune vs the maximum amplitudes of the unperturbed KV
Hamiltonian tori with parameters pp —2.2817 and K = 10. Horizontal
lines indicate locations of some resonances.

(USFP) Bp of the KV Hamiltonian [7]. Following the
Hamiltonian dynamics, the USFP would disappear when
the Mathieu instability occurs at J = 0 (see the Ap-
pendix). Since the Mathieu resonance strength is pro-
portional to 4',', Fig. 3 (to be compared with Fig. 5 of
Ref. [1])shows the band of the Mathieu instability for the
space charge perveance K = 0 and K = oo, respectively,
in the parametric space of (—', ~ ). Similar bands of in-

stabilities also exist at radii of 1, 1.5, 2, . . . . Along with
these first order instabilities, higher order resonances also
bifurcate at the USFP at v = —.Some concentric lines at
radii of — (n = 3, 4, . . .), shown in Fig. 3, represent the
bifurcation points at a zero space charge limit. When
K g 0, all these concentric bands will be shifted outward
&om the origin.

When the tune is increased further, global chaos be-
comes an important dynamical issue. A particularly
interesting example of near global chaos is shown in
Fig. 2(c) of Ref. [1]. In the following, we study the
KV Hamiltonian with parameters p0 ——2.2817, and
v = 0.5256, which correspond to a0 ——1.07, a1 ——2.85,
and K = 10 of Ref. [1]. The tune Q(J) vs the maximum
amplitudes R = B of the unperturbed Hamiltonian tori
is shown as circles in Fig. 1, where some parametric res-
onances are marked. Note that Q E [0.5256, 0.7263). For
example, the 3:2 primary resonance is expected to occur
at a maximum amplitude of R = 5 and the secondary
5:3 resonance will occur at B = 3.3, which is verified in
Fig. 2(e). Figure 2 summarizes the stroboscopic maps [6]
for a1 ——2.85, 2, 1.5, 1, and 0.5, respectively, while keep-
ing pp constant, where Fig. 2(a) reproduces Fig. 2(c) of
Ref. [1] with aq ——2.85.

Note first that many secondary resonances 7:4, 5:3,
and 8:5 appear along with the primary 3:2 resonance in
Fig. 2(d) with aq ——1. These secondary resonances arise
Rom higher order perturbation by combining neighbor-
ing harmonics. As the parameter a1 is increased to 1.5 in
Fig. 2(c), overlapping 3:2 and 8:5 resonances contribute
to the observed chaotic band. We also note interesting
tertiary islands around the 3:2 islands. As the parameter
a1 is increased to 2, the chaotic band covers most of the
envelope phase space. Inside the chaotic sea, only small
local islands survive. Here the 4:3 resonance, shown in
Figs. 2(a) and 2(b) becomes larger as the parameter aq
is increased. Using Floquet transformation for the case
with large a1, the unperturbed tune of Fig. 1 is shifted
upward by about 0.05. The inward drift of the 5:3 res-
onance, the disappearance of the 7:4 resonance, and the
existence of 4:3 resonance verify the upward shift of the
linear betatron phase advance. When the parameter a1
is reduced to 0.5, shown in Fig. 2(e), the widths of all sec-
ondary resonances are small. Because of the initial phase
space coordinates used in numerical simulations, the pri-
mary 3:2 resonance, which should appear at B —5, was
not shown on Fig. 2(e).

The physics of nonlinear resonances can be analyzed
as the parameter v is increased further. Here we would
like to study the stability of the unique stable fixed point

10.

P
.'C, ':

0

5
ai ——2.85

(b)

a1 ——2.0
I. . . , I. . . . I

I
' ' ' '

I
' ' ' '

I

' ' ' '
I

a1 ——1.5

10 . '

a1 = 1

10. '

p0—

I

0

a1 ——0.5

FIG. 2. Stroboscopic maps corresponding to the dynamical system
of p p = 2.2817~ K = 10 with di8'erent a~ parameters. From top to
the bottom, the a1 parameters are 2.85, 2.0, 1.5, 1.0, and 0.5, respec-
tively. The stochastic bands shown in plots (a), (b), and (c) arise from
overlapping higher order resonances.
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FIG. 3. The parameter space (ao j7r, a1/'~2') for the bifurcation of
2:1, 3:1, 4:1, . . . resonances. In particular, the instability of IUpg ——0
for the 2:1 resonance has a finite width in the parametric space. The
parameters corresponding to K = 0 and K = oo are shown for the
2:1 primary resonance. Higher order resonances are shown only for the
K = 0 scenario.
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In conclusion, we have reformulated the KV envelope
equation in Hamiltonian dynamics and applied the para-
metric resonance analysis method to determine the dy-
namic behavior of the system. Even with a relatively
large time dependent perturbation to the KV equation,
parametric resonances are well predicted by the Hamil-
tonian dynamics. Comprehension of the dependence of
beam envelope properties on the machine and the beam
parameters may lead to an understanding of the mech-
anism of halo formation, as well as finding methods of
pI'eve Ilt ioIl.

APPENDIX: MATHIEU'S INSTABILITIES
The linearized Hamiltonian around B0 is given by
II = (1/4ir)P2 + harv X2

+(1/47r) [k(0) —p ](2BpX + X ) +.. . , (Al)
where X = B —Bp and v is the linear tune of Eq. (5).
The linearized equation of motion becomes

X+ '+, [k(0)-~'] X=- ', [k(~)-~'] (A2)

For a periodic focusing function of Eq. (11), Eq. (A2)
is a driven Mathieu equation. Let the particular
(closed orbit) solution of this inhomogeneous equation
be Xc~ (0) = P„p A cos n8, where A 's are obtained
by solving a set of linear equations. The actual radius of'
the matched beam is given by Bi, = Bp + Xco(8) (see
Fig. 3 of Ref. [1)). If the parameter p is properly chosen,
we Gnd that Xco agrees well with the exact equilibrium
envelope function obtained by integrating the KV equa-
tion [5].

By subtracting the particular solution from Eq. (A2),
the stability of the unique stable fixed point of H0 can
be obtained from the Mathieu equation

X + [v2+ (1/4vr )(k(0) —p, )]X = 0, (A3)
where X = X —Xco. With the focusing function model
of Eq. (11), the condition for the first order Mathieu
instability is 4v E (1 —4(, 1 + 4(), where ( =
Higher order Mathieu's instabilities are located at v
1, 2, 2, 2, . . . . Mathieu's instabilities can cause the USFP
of H0 to bifurcate.

The first order Mathieu instability is equivalent to the
first order parametric resonance. The Hamiltonian near
the 2:1 resonance is given by

II = (v —1/2)I+ 1/2nI + (apai/Sar v)Icos 2$, (A4)
where G2 = 4 is used. The UFP is located at IUFp ——0
when v p ( ——(, —+ (), which, to the first order in (,
is equivalent to the Mathieu first order instability. The
Hamiltonian formalism, which includes the nonlinear de-
tuning term n, can be used to find ISFp.
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