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Signature of chaos in nonlinear drift-wave-induced transport
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For a drift-type instability in low-temperature magnetized plasmas, the transition from collisional
to convective transport is investigated. First, regular coherent modes dominate, but with increasing
control parameter, spatially coherent but time-chaotic states appear. The signature of nonlinear
dynamics with subsequent chaos is a crossover in the magnetic-field dependencies of the particle
di8'usion coefIIicients.
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Anomalous transport is an outstanding problem of sta-
tistical physics with important consequences for many ar-
eas of physics. In plasma physics, many attempts, start-
ing &om quasilinear and weak-turbulence theories, have
been undertaken to model this important phenomenon.
Although some features could be explained through ef-
fective collision &equencies in a more or less ad hoc man-
ner, others are still not understood at all. The reason
may be that anomalous transport does not have one sin-
gle reason there are many aspects of this challenging
phenomenon [1—6]. To contribute to the theory of the
multiple-faced. anomalous transport with applications to
plasmas is the aim of the present paper.

The linear (classical and neoclassical) transport theory
is very well developed [7], although due to geometrical
complications quite sophisticated theories are needed. It
is well known that some of the linear transport coeffi-
cients do not reveal the experimental results. The most
prominent examples are the electron heat conductivity
and the perpendicular (to an external magnetic field B)
particle diffusion coeKcient. Even in simple collisional
plasmas, many transport results are anomalous, and on
the basis of the very detailed linear predictions we know
that nonlinearities must be responsible for the anoma-
lies. However, inclusion of nonlinearities is not straight-
forward. When, e.g. , using the weak-turbulence descrip-
tion for an unstable drift-wave situation, a dual cascade
process appears. We get a condensation at small wave
numbers k, and in general a more detailed description,
taking into account higher nonlinearities, may become
necessary. The appearance of large scale spatially co-
herent structures hints at another process which might
be dominant in the nonlinear state: convective transport
caused by nonlinear structures. And, indeed, during re-
cent years it became evident that new entities like vor-
tices, cavitons, and solitons can take part in the nonlinear
dynamics with severe consequences for transport beyond
the linear limit.

Convective cells can appear in the transcritical region
of drift-wave instabilities due to bifurcations in space,
and it is expected that the (e.g. , magnetic-field) parame-
ter dependence of the transport coeKcients changes dur-
ing these bifurcations. Such a scenario seems to be con-
sistent with, e.g. , the measured I-H transitions in toka-
maks. But &om the basic physics point of view at least
two problems remain open. (i) How can one explain the
observed &equency spectra'? Definitely, the expected spa-

tially coherent structures should not correspond to a qui-
escent plasma state. (ii) Wave-number spectra show a
broad range of variations which, at first glance, seems
to be inconsistent with the appearance of a spatially
coherent convective state. While the second problem
may find its explanation in the dual cascade behavior in
driftlike situations, the first; question is closely related to
low-dimensional chaos. The implications for transport
have not been considered in detail so far, and it is the
purpose of this paper to investigate them by examining
a simple model. The main idea is, and it will be proved
in this paper, that spatially coherent convective states
(which correspond to the small-k region of the dual cas-
cade wave-number spectrum) can become chaotic in time
without losing their spatial coherence. Another finding of
this paper is that such a behavior exhibits a pronounced
signature in the nonlinear drift-wave-induced transport.
The paper presents a clear example of a relation for plas-
mas that has been hypothesized about in various forms
for a long time, but rarely demonstrated concretely a
link between plasma dift'usion coeKcients and a transition
to, or between, difIerent regimes of chaotic behavior.

We start &om a reduced model for nonlinear drift
waves in weakly ionized plasmas. It originates, in a stan-
dard derivation, from the transport equations for den-
sities, momenta, and temperatures under the additional
assumptions of (i) quasineutrality, (ii) drift approxima-
tion in the plane perpendicular to the external magnetic
field, and (iii) isothermal electrons and cold ions:

(1+8, ) u+ (y, u) = —v'~~p .

Here, p:= bn /no, where bn is the electron density
fIuctuation and no is the background electron density.
The electrostatic potential y is normalized by k~T /e,
time by w+, the mean ion collision time with neutral
species, and the perpendicular lengths by p, = vugh /~&;~.
The density gradient is in the x direction (x, y are per-
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pendicular to the local B direction), r = dlnne/dx,
b = m 7+/m+w (ratio of ion to electron mobility), and
q = 2/B (curvature of the external magnetic field B)
The parallel (to B) ion velocity is normalized by the ion
sound speed (u = u+~~/c, ), and the parallel length by
c,7+. Note that (, ) is the Poisson bracket, and B en-
ters the equations only via the boundary conditions since
p, has been used as the unit length.

A further simple reduction, being used here, leads to
a classical model [8]. It consists of two equations for the
normalized density fluctuations (p) and the normalized
electrostatic field (y) and follows from Eqs. (1)—(3) in the
limit (a) hV'z (p —p) » 8 iV'2~~ (p —p) and (b) u—:0. In
the following we call that simplification of Eqs. (1)—(3)
the Simon model, since Simon and co-workers [8] have
used such equations extensively:

to be made to calculate the fluxes

I'+ = —(p», V + ~,v ~-*V + &*v ),
I - = (p-~.p —~o*(~ —p))

(7)

D = (h/1+b) - B 'T ~

besides the natural assumptions that in the ion flux (7)
we take into account the E x B velocity and the nonlinear
ion polarization drift, in addition to the usual collisional
transport, whereas for the electrons in Eq. (8) only the
E x B velocity dominates the nonlinear transport. The
collisional contributions [the last terms in (7) and (8),
respectively] lead in the usual way to the ambipolar dif-
fusion coefficient (in nondimensional units)

Otp —KB&rp + 8V ~ (p —p) + 98„(p —p) + (p, p) = 0,
(4)

(1 + Og ) V'~ p + b V'~ (p —p) —re„p + 1p, V~ rp) = 0 .

(5)

Equations (4) and (5) are valid for weakly ionized plas-
mas. Equations similar to (4) and (5) occur in iono-
spheric turbulence; for the latter case Huba et al. [9] in-
vestigated the transition to chaos by performing a three-
mode truncation in analogy to the Lorenz model for the
Rayleigh-Benard instability. Furthermore, it should be
noted that models with similar mathematical structures
were derived for fully ionized plasmas by several authors,
e.g. , by Hasegawa et al. [10], Hamaguchi [11], Carreras
et al. [12], and Diamond et al. [13].

The model (4) and (5) contains the instability mech-
anism (dissipative drift instability of an inhomogeneous
plasma due to collisions with neutral species [14]) self-
consistently. The onset of instability depends on the
magnetic field as a control parameter, and the model is
therefore appropriate to follow the unstable modes &om
their onset up to saturation. The main dissipation mech-
anisms, in a weakly ionized plasma, are collisions with
neutral species. The distribution of the latter is consid-
ered as fixed. From the usual quasilinear ansatz for the
electron current I'

no&aTI' = (bn v~) = ) ik„pk, 8n g + c.c. , (6)eBp,

it is obvious that a phase shift between density and po-
tential fluctuations is necessary for a net particle flux.
The average is over the y direction, and v~ is the E x B
velocity in the fluctuating electrostatic field. If the phase
shift is known, e.g. , &om gyrokinetic or collisional mod-
els, it remains to determine the spectrum I@i, l

which
is a very diKcult task. Even when one succeeds in cal-
culating the spectrum &om a wave-kinetic equation, the
whole procedure suffers &om the various approximations
inherent in weak-turbulence theories.

The procedure used here is to determine the first bi-
furcations in the transcritical region either numerically
or analytically. Then no further basic assumptions need

We use the latter as the reference value for the anomalous
transport coeFicients.

Close to the onset of instability (B ) B„where B,
is the critical value of B) the nonlinear behavior of Eqs.
(1)—(3) can be investigated by perturbation theory, lead-
ing to a complex Ginzburg-Landau equation [15,16] for
the amplitude A of the most unstable mode as the order
parameter,

~v & —~(B —B.)& —Vy~i. & —V.~z&+ &I&l'& = o.

Here T, Y, and Z are scaled time and space coordinates,
respectively; n, p„,p„and P are coefficients which have
been calculated explicitly. For not too small b values
(which typically occur in weakly ionized plasmas), the
coefficients are such that the solutions of Eq. (10) cor-
respond to convection rolls with no structure in the z
direction and stable against modulations in the z direc-
tion. The latter behavior supports the previous reduction
to the simplified model (4) and (5). In Eq. (10), the fac-
tor B —B indicates that the mode under consideration
is marginal at B = B . As we shall show below, the
analytical prediction of stable saturated convection cells
agrees very well with the direct simulation of the coupled
partial difFerential equations (4) and (5). Typical simu-
lation results are shown in Fig. 1 for two values of B, (a)
B = 1.5B, and (b) B = 2.4B„ i.e. , already well above
the critical value of the control parameter.

To interpret these drawings we have to mention first
that we use Dirichlet boundary conditions in the x direc-
tion and periodic boundary conditions in the y direction.
Furthermore, a snapshot at a certain time t would re-
veal 2d mode structures which show large convection cells
"short-circuiting" the density gradient in the ~ direction.
These convection cells are periodic in y, but have alterna-
tively humps (solid lines) and dips (broken lines). From
Fig. 1, which shows contour lines for p and p, we can
recognize that the y p relation is broken (i.e. , we have
no Boltzmann distribution), and the phase shift is re-
sponsible for anomalous transport. The dynamics of the
convection cells can be seen by the oscillations, which, for
the control parameter chosen in the &equency spectrum
of Fig. 2, are already quasiperiodic. We have to empha-
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FIG. 3. Effective diffusion coefficient (normalized by the ambipolar
diffusion coeffiicent D ) as a function of the magnetic-field strength B.
Depending on B, the system is single periodic (P), quasiperiodic with
two frequencies (QPII), quasiperiodic with three frequencies (QPIII),
and then chaotic, respectively. The dots mark results from numerical

ana y ica pre action erivedexperiments and the dashed line is the anal t' l d t
from the Ginzburg-Landau theory. The solid lines are inserted to char-
acterize the various B dependencies.
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FIG.G. 1. Contour lines for potential ~ (left) and density p (right) at
fixed position y for different times t. (a) The upper examples are for

= 1.5B, whereas (b) the lower graphs are for B = 2.4B, .

s1ze that a very interesting scenario of nonlinear dynamics
takes place which is accompanied by a crossover in the
B dependence of the Bux.

With increasing B, the convective rolls start oscillat-
ing with an additional kequency, and quite detailed di-
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FIG. 2. Power spectrum ]Py ~
of the (Fourier transformed) density

uctuation p versus frequency f = u/2m in a quasiperiodic state with
three frequencies fo, f1, and f2 for B = 2.4B

agnostic measurements show that a transition to chaos
in time occurs similar to the Ruelle-Takens-Newhouse
quasiperiodic route [17]. A typical frequency spectrum
for quasiperiodic motion is shown in Fig. 2. Note that
it corresponds to the space-time plot of Fig. 1(a). Mast
interesting now is the signature of this behavior in the
particle transport. In Fig. 3 we have plotted the ef-
fective difFusion coeKcient as a function of B. The
effective difFusion coeKcient is defined via the relation
r =I'+= —D, Vn.

The dots mark results &om numerical experiments,
and the dashed line is the analytical prediction derived
&om Ginzburg-Landau theory; see Eq. (10). In the
sli htls ig t y unstable region B ) B, we obtain (in contrast
to the ambipolar difFusion D~ B for B ( B,) an
anomalous dependence D ff B,where the efFective
difFusion coefficient D,g ~I'/K~ for I' I"+. Thus at)

B & B a crossover &om B dependence to B de-
pendence occurs. This result is understandable because
of the onset of convective motion in addition to the still
present collisional transport. The signature of chaos at
larger B values is a change back to D ff B . Because
of the chaotic jittering in time of the convective rolls,
parts of the convective contributions are avera d t
and a

~e ou,
an a collision-dominated regime appears again. How-
ever, the jittering convective motion still forms a plateau
on which the classical part is superimposed.

Next we should mention that the behavior reported
ere can be modeled [13,16] by some low-dimensional

system of ordinary differential equations (ODE's). The
reason for this, at first glance, surprising fact is that
the chaotic attractor of the partial difFerential equations
(4) and (5) has a low dimension (correlation dimension
D2 —5.5 6 0.5 for B = 2.6B,), and thus a reduced ODE
model works [18]. Similarly to hydrodynamic situations,
truncated Fourier modes are not appropriate, whereas
a Karhunen-Loeve approximation leads to an extremely
good conformity with the numerical results. More details
will be published elsewhere.

Let us now comment on another interesting aspect.
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FIG. 4. Wave-number spectra of potential g and density fluctua-
tion p for (a) B = 1.5B, (time-periodic case), and (b) B = 2.6B
(time-chaotic state). Note that k is the averaged transverse wave num-
ber.

We have used a two-field model [the Simon model (4)
and (5) for the two scalar fields p and p]. Very often,
such models are further reduced to one-field models for
the simple reasons of (i) easier handling and, more impor-
tant, (ii) universal behavior. However, the second aspect

is usually valid only in a very small parameter regime.
Leaving the latter, the more complicated multiple-Geld
models are obligatory. But from the one-Geld description
we can already learn a lot which, although not quanti-
tatively, qualitatively can be utilized in the algebraically
more complicated models. In our case the dual cascade
process (energy towards small I" and entropy towards
large A,') shown for a Hasegawa-Mima-type equation [10]
is helpful. Although convective rolls are generated, part
of the spectral transfer is also to large A:, and thus when
monitoring the wave-number spectra we find character-
istic occupations there. In Fig. 4 we show two typical
results for (a) B = 1.5B, and (b) B = 2.6B,.

The first case corresponds to a periodic oscillation
whereas the second one is the result for a time-chaotic sit-
uation. Very typical are the algebraic dependences close
to the dissipative region. This fact can be understood
from Pao's theory [19] and will be discussed at another
location. More important in this context is that again
a signature of chaos appears, here in form of different
algebraic k dependences for large A: in the wave-number
spectra.

In summary, in this paper we have chosen a simple but
classical model for a drift-type instability in weakly ion-
ized plasmas in order to study the problem of transport
at the onset of turbulence. Spatially coherent structures
do play a significant role for convective transport. At the
same time, chaos in time may set in; the significance of
the latter can be seen in the &equency and wave-number
spectra. However, and maybe most important, the sig-
nature of chaos also appears in the magnetic-field depen-
dence of the particle transport. More detailed diagnos-
tics and analytical models are in progress. Finally, when
using similar models for fully ionized plasmas the qualita-
tive conclusions are similar, showing that the phenomena
investigated here are universal.
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