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Relation between the super-transition-array method in opacity calculations
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We consider the photoabsorption cross section of dense plasmas in thermodynamic equilibrium. We
transform the exact expression of this cross section into a form suitable for the calculation of moments
with respect to frequency. We show that the super-transition-array (STA) method, which is successfully
applied in opacity calculations, is consistent with the thermal Hartree-Fock approximation. The
Hartree-Fock theory justifies the use of the noninteracting partition function inside each
superconfiguration, which is an important approximation in the STA method.

PACS number(s): 52.25.Kn, 52.25.Nr, 32.90.+a, 31.10.+z

I. INTRODUCTION

The super-transition-array (STA) method proposed in
Refs. [1-3] appears to be a very efficient approach to the
theoretical calculation of opacities of dense plasmas in lo-
cal thermodynamic equilibrium. (See, for instance, Ref.
[4].) The large number of configurations in case of
intermediate- and high-Z (atomic number) elements
remains one of the main problems in modeling the
bound-bound opacity. It has been shown [1] that the in-
clusion of transitions involving most probable
configurations with the neglect of many other low proba-
bility configurations may lead to large errors in opacities.
The important problems of term structures seem now to
be in large part resolved by the statistical approach
developed by Bauche, Bauche-Arnoult, and Klapisch [5].

In the STA method, the arrays of transitions between
two group of electronic configurations (called super
configurations) are replaced by Gaussian curves charac-
terized by the first two moments of these transitions. One
of the most important features of the STA method is the
possibility to take into account, within the framework of
super transition arrays, all electronic configurations by
summing them up analytically. This simplification relies
on the use of the noninteracting partition function inside
each super configuration. Recently [3], the authors of the
STA method have included configuration interaction (CI)
in their approach.

The objective of this brief paper is to show that the use
of the noninteracting partition function can be justified
within the framework of the thermal Hartree-Fock (HF)
approximation [6,7]. This approximation leads to the
noninteracting partition function with all or a part of
configuration interactions still preserved. The strategy of
the authors of the STA method is, therefore, consistent
with the HF theory.
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II. THE PHOTO ABSORPTION CROSS SECTION

The formula for the photo absorption cross section can
be obtained from the expression for the dynamic electron
polarizability. (See, for instance, Refs. [8-10].) At
nonzero temperature T=1/f, one gets in the dipole ap-
proximation
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where E, is the energy of the N-electron eigenstate |ny )
of the atomic Hamiltonian and P, denotes the eigenval-
ue of the statistical operator

P=exp[ —B(A —uN)]/Tr{expl —BH —uf)1} , @)

with B being the atomic Hamiltonian and N the electron
number operator. fiy(r,t) denotes the electron density
operator in the Heisenberg picture.

Since 8(fio—E,+E,)= [d(#iw')8(#iw—#w' +E,)
8(%iw'—E ), we can rewrite Eq. (1) as
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The expression of Eq. (3) being the trace of an opera-
tor, we can use an arbitrary basis |n ) of atomic states in
place of |ng ). Let us use the basis defined as
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where ﬁf are creation operators for a basis of one-
electron states. The cross section now reads
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where we inserted back the unit operator S, |m ){(m]|,
expressed in the new basis.

Although the operator standing in Eq. (5), which con-
tains the convolution with respect to #w’, is rather com-
plex, we can now work with the simple basis formed by
Slater determinants of one-electron eigenstates as in Eq.
(4). Besides, the moments with respect to @ of the ele-
ments of Eq. (5) have a simple form. Let us also note that
Eq. (5) is equivalent to Eq. (1) and that up to now no ap-
proximation has been introduced. Only the entire sum
over n, m in Eq. (5) has a physical sense. We can, howev-
er, consider different parts of Eq. (5)
corresponding to transitions between two definite
configurations or groups of configurations and apply a
statistical approach to them.

III. THE STATISTICAL OPERATOR
IN THE HARTREE-FOCK THEORY
AT NONZERO TEMPERATURE

Let us now use the one-electron basis, which diagonal-
izes the HF equilibrium density matrix. As shown by
Mermin [6] the HF theory at nonzero temperature is
equivalent to the minimization of the grand thermo-
dynamic potential Q=Tr[P(H —uN)+TP InP] over all
trial statistical operators of the form

_
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If one uses the HF approximation for the statistical operator Pin equilibrium, i.e., Eq. (6) with Eq. (
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where y is a Hermitian matrix.
the form

A=3Kala,+ 13 (jlv, |k)alalaa, , 7

The Hamiltonian has

where K corresponds to the kinetic energy an the exter-
nal (nuclear) potential, and v,, =e2/|r—r'| in the coordi-
nate representation.

In equilibrium, after choosing the basis in which y is
diagonal, one gets the self-consistent HF equations for
the one-electron states of this basis

e, =K;+3(inlvlin)p, , (8)

p;=lexp(e;—p)+1]7", 9)
where

(inlvlin )= (inlv,,lin ) —(inlv,|ni) . (10)
¥ can be expressed in terms of g; as follows:

vii=vid;=(&;—nd; . (11

IV. THE MOMENTS OF TRANSITION ARRAYS

AND SUPER TRANSITION ARRAYS
We can consider the ith moment uc€ of the transition

array between two configurations C and C’,

(12)
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), |n ) are eigen-

states of P, and their eigenvalues are identical for any state |n ) belonging to a definite conﬁguratxon C because of the
degeneracy of the HF energy eigenvalue €; with respect to the magnetic quantum number.

One obtains for i =0,

M§E =P, !<n1l5|m>|2 (13)
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where D is the electric dipole operator of the atom, i.e., D =—73, _r; in the coordinate representation. Similarly one
gets fori > 1,
M =P [ [drdr 3 [(nlAamxim)(m|a)rn)—(nlarm ) (m|Baen)], (16)
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and so on. Let us notice that although CI’s are neglected in the partition function (statistical operator), Eq. (16) (and
Eq. (13) for i = 1) still contains CI’s due to the presence of the products of the Hamiltonian and the electron density
operator. If CI’s are neglected, we obtain the expression of the moments used by Bauche, Bauche-Arnoult and Klap-
isch [5],

u€= 3 Kalblm)P(mlBlm)—alBIDY/ 3

Aec,mecC’ neC,mecC’

(m|Dlm)|?, (17)

where 7, m diagonalize Hin Cand C/, respectively.
Instead of two configurations, we can consider transitions between two super configurations = and =’ each containing
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a group of configurations, and average Eq. (12) (CI included) or Eq. (17) (CI neglected) over = and E’. This leads to the
expressions used by Bar-Shalom et al. [1]. The eigenvalue of the statistical operator in both cases equals to

Pe=exp[—B 3 qs<ss—m]/one_elecn [1+exp{—Ble,—w)]], (18)

shells€C tron state A
where g, is the occupation number of shell s. This leads to the partition function, Egs. (15) and (16) in Ref. [1].
Actually, the authors of the STA method calculate the self-consistent potential and one-electron states separately for
each of the super configurations. In order to understand this approach, let us rewrite the exact expression, Eq. (5),
grouping configurations into super configurations
_ 4rlwe?

aa(m)—derdr’fd(ﬁw’) DD >

5= CEECET yZecmE ec

(nE|P8(#w—#o' + H)A(r)r|mE )

X{mZ |8(#i0' — A ) (r')X'|nE) . (19)

We do not specify for the moment the basis of one-electron states. One can propose a HF-like procedure for each super
configuration. In order to do this, ¥ in the HF approximation for the statistical operator, Eq. (6), should be now mini-
mized according to the constraints that correspond to the structure of each super configuration. The minimization pro-
cedure can be performed separately for each super configuration, and the one-electron basis will be different for each
super configuration. The partition function will have the noninteracting form, Eq. (18), inside each super configuration.

For instance, the first moment corresponding to the super transition arrays has the form
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Equation (20) still preserves the CI.

In principle, the cross-section formulas that follow
from Eq. (1) contain also the free-free transitions. In the
present considerations we have disregarded all problems
connected with them. A method that treats these transi-
tions including their mixing with the bound-bound and
bound-free transitions has been proposed in Ref. [11].
We also have not discussed the relativistic character of
the STA method.

V. CONCLUSION

We have transformed the exact expression of the total
photoabsorption cross section of dense plasmas into a
form useful for the statistical description of transitions
between configurations or super configurations. We have

shown that the Hartree-Fock approximation to the sta-
tistical operator leads to the noninteracting partition
function in the cross-section formula with configuration
interactions still preserved. The approach of the super-
transition-array method [1-3], in which the use of
the noninteracting partition function inside each
superconfiguration is an important approximation, is
consistent with the Hartree-Fock theory at nonzero tem-
perature.
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