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Structural transition and motion of domain walls in liquid crystals
under a rotating magnetic field
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A sharp transition from static to propagating domain walls is observed in a homeotropic nematic
layer driven by a rotating magnetic 6eld. We show experimentally that this transition is a mani-
festation of the transition of wall structure from Ising type to Bloch type. We Gnd that the initial
curvature of the wall plays an important role in this transition.

PACS number(s): 61.30.Jf, 47.20.Ky, 61.30.Gd

Domain walls are common objects in both equilibrium
and nonequilibrium systems where discrete symmetries
are spontaneously broken. However, it has been empha-
sized recently that there may be crucial difFerences in
their dynamics depending on whether the system is in
equilibrium (variational) or in nonequilibrium (nonvari
ational) [1,2]. In the case of equilibrium systems, the
motion of walls is essentially described by the evolution
equations derived &om a &ee energy and hence the wall
motion is only transient until the system reaches the equi-
librium state. On the other hand, in the case of nonequi-
librium systems, there is no general variational principle.
This fact may bring new features, such as persistent mo-
tions of walls, which are not seen in equilibrium [1—3].

The walls appearing in a nematic liquid crystal layer
driven out of equilibrium by a rotating magnetic field
[4] provide good examples to investigate such new fea-
tures. Recent experiments [5,6] show that there is a
transition &om static walls to propagating walls which
can form rotating spirals. Theoretical studies based on
the Ginzburg-Landau-type equations [7] predict that this
transition should be accompanied by the structural tran-
sition of walls, which is analogous to the Ising-Bloch tran-
sition in ferromagnetic systems [8]. However, so far there
are few convincing experimental results of this structural
transition. Only a little is known about the dynamics of
such moving walls.

In this Brief Report we present quantitative measure-
ments showing that the structural transition of walls in-
deed takes place at the transition point &om static to
moving walls. Our data reveal that this transition is of
second order at least for weak magnetic fields, in good
agreement with theoretical predictions [7]. To evalu-
ate the curvature eKect we investigate both straight and
looped walls and find that the finite curvature suppresses
the degeneracy of the propagating direction of walls and
plays an important role in the formation of spiral pat-
terns.

The experiments were done in a thin layer of
the nematic liquid crystal, 4-methoxybenzylidene-4'-
n-butylaniline (MBBA), confined between two par-

allel glass plates. The glass plates are separated
by Mylar spacer to a gap of 50 pm. The hor-
izontal dimensions of the nematic layer are 8 x 8
mm . The inner glass surfaces of the sample were
coated with silane surfactant, n, n-dimethyl-n-octadecyl-
3-aminopropyl-trimethoxysilyl chloride (DMOAP), to
achieve homeotropic alignment, where the nematic
molecules orient perpendicular to the glass plates. The
temperature of the sample was regulated to 28.00 +
0.02 C.

Figure 1 shows a schematic diagram of our experimen-
tal setup (for more details see Ref. [9]). A static and
uniform magnetic field H created. by an electromagnet
was applied parallel to the glass plates of the sample.
In order to realize a rotating magnetic field against the
sample, the sample was rotated at a controlled angular
velocity cu about the z axis that is perpendicular to the
glass surface. The angular velocities used in the present
experiment are low enough that no flow occurs in a sam-
ple by rotation. The distortion of the director field is
visualized by placing the sample between crossed polar-
izers and illuminating it &om below with a white-light
beam. The intensity I(x, y) of a visualized image is then
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FIG. 1. Schematic diagram of the experimental setup for a ro-
tating magnetic 6eld. The pole piece of the electromagnet has a
diameter of 80 mm.

1063-651X/95/51(2)/1598(4)/$06. 00 1598 1995 The American Physical Society



51 BRIEF REPORTS 1599

201

N 10

15—

10—

~N'

oe ~ ~ I ~ t T
1.1 1.2 1.3 1.4

I

1.5
I

1.6
I—

1.7

2
HGO g

'0
a ( rad/s )

FIG. 2. Phase diagram for a thin layer of nematic liquid crys-
tal under a rotating magnetic field. The solid square and solid
circles denote the threshold for the Freedericksz transition and
the threshold for the synchronous-asynchronous transition, respec-
tively. Open circles represent the threshold for dynamic walls.
The broken and solid lines are theoretical predictions for the
Freedericksz transition and the synchronous-asynchronous transi-
tion, respectively. The dotted line is the theoretical prediction for
Ising-Bloch transition.

measured with a charge-coupled-device camera, which is
mounted on the microscope and rotated with the sam-
ple and analyzed with a digital image processor system
(512 x 480 x 8 bits). In our sample, the critical field for
the Freedericksz transition H 0 was 1140+10G at u = 0.

In Fig. 2 we show the state diagram of our sam-
ple. As discussed in Refs. [4,10,7], above the thresh-
old H, (u) of the Freedericksz transition, the homeotropic
state loses stability through either a pitchfork or a Hopf
bifurcation and new states called synchronous or asyn-
chronous appear. The synchronous state appears when
cu ( tu = g H /2pi, where y is the anisotropy of the
magnetic susceptibility and pi the efI'ective rotational vis-
cosity. In this regime the molecules (director n) rotate
about the z axis with a constant phase lag n against H,
where o. is the stable-equilibrium solution of the following
equation:

m (rad/s)
FIG. 3. Pro agation speed v of isolated straight walls as a func-

tion of &u for H = 19.0 kG . The synchronous-asynchronous tran-
sition occurs at &u = 1.73 + 0.03 rad/s.

rection, which occurs with equal possibility, indicating
the degeneracy of this transition. To characterize this
transition more quantitatively, we measure the propaga-
tion speed v as a function of u for various magnitudes of
magnetic field. Typical results obtained for H~ = 19.0
kG are shown in Fig. 3. The steep increase of v near
ud --1.44 rad/s implies a transition &om static to dy-
namic walls. The precise value of ~g, however, is difIicult
to determine due to the slight rounding of the bifurca-
tion. This rounding near up may be attributable to slight
imperfections such as a small deviation of the rotation
axis from the z axis. We note that the experiments per-
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FIG. 4. Typical snapshots of (a) a static wall and (b) a prop-
agating wall, observed under a polarized incident light (see the
text). Isolated straight walls locate at the center of these pictures,
although it is invisible in (a). The bar corresponds to 50 pm.
(c) Average optical contrast (I ) of walls as a function of cu for
H = 19.0 kGz. Note that (I~) increases steeply at the transition
threshold from static to dynamic walls (see also Fig. 3).

n = u —ur, sin(2n). (1)
This equation has two stable solutions o.o and o,o + vr

for u ( ~, and therefore the two difI'erent corresponding
states exist [ll]. The walls appear as narrow transition
regions between them. In the present paper we focus on
these walls.

The wall motion in a rotating magnetic field was stud-
ied by the following procedure. First walls were created
at u = 0 by applying a magnetic field H ) H, o in incre-
ments. After some time of relaxation motion of the walls,
only one or a few isolated walls could be left, which were
either slowly shrinking elliptical walls or stable straight
walls with their ends at the lateral boundaries of the
cell [12]. Then the magnetic field was set to the desired
strength and rotated at a constant angular velocity ~.

First of all, the results starting &om a straight-line wall
will be described. The isolated straight walls are station-
ary when ur is below a critical value ud(H) When ~.
exceeds ~g, the wall starts to propagate with a constant
velocity v. The direction of propagation is normal to the
walls in either the forward (v) or the backward (—v) di-
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FIG. 5. Schematic illustration of two possible structures of
walls: (a) static (Ising) wall and (b) propagating (Bloch) wall.
The directors (indicated by arrows) rotate synchronously on the
surfaces of the cones following the magnetic field. In the Ising wall
the director points along the z axis at the center, while it does not
in the Bloch wall. Note that two symmetric structures of opposite
chirality (indicated by solid and dotted lines) are possible in the
case of the Bloch wall.

formed by both continuously increasing and decreasing ~
yield the same results as Fig. 3 and there was no measur-
able hysteresis within our experimental resolution. It is
in clear contrast to previous experiments performed for
higher field strengths [5] and in good qualitative agree-
ment with recent theoretical predictions assuming weak
Beld strengths [7].

A significant distinction between the stationary walls
and the propagating walls can be made optically if the
analyzer is removed and if the polarizer is set so that the
incident light beam is polarized normal to the plane Z
spanned by the z axis and the director n in the homoge-
neous domains, as mentioned in Ref. [5]. Under such an
optical configuration, the static wall becomes diKcult to
observe optically [Fig. 4(a)], although the dynamic wall
is still visible as a dark line [Fig. 4(b)]. To characterize
this optical difFerence quantitatively, we measured the
optical contrast I of the straight walls as a function of
u for several values of H. The contrast I, was defined
by the difIerence between the maximum and the mini-
mum intensity of the optical profile measured along a line
across the wall. We found that the contrast I was not
constant in time, but slightly oscillated around a mean
value during one period T of the field rotation. Hence
we computed the mean contrast (I,), averaged over one
period. The typical results obtained for H = 19.0 kG
are shown in Fig. 4(c). The increase of (I,) near w 1.4
rad/s is quite drastic. This sharp change in (I,) coincides
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FIG. 6. Formation process of spirals. (a) At
Hs = 16.0 kGs. (b), (c), and (d) correspond to t
are observed under crossed polarizers.
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with the transition &om stationary to propagating walls
(see Fig. 3).

According to the optical properties of nematic liquid
crystals [13], the change in (I,) implies the transition of
the director configuration within the walls: In the static
wall the director should be parallel to the Z plane ev-
erywhere to make the wall invisible. On the other hand,
in the propagating wall the director should make a finite
angle with respect to the Z plane to make the wall visi-
ble. Figure 5 shows the possible structures of such walls.
Across the static wall shown in Fig. 5(a), the director
points along the z axis at the center and the phase lag
n suffers a jump of vr there, while across the propagating
wall shown in Fig. 5(b) n changes smoothly by +m. These
structures are the theoretically predicted ones [1,7]; the
former structure is referred to as the Ising wall and the
latter as the Bloch wall, in analogy with ferromagnetic
systems. As shown in Fig. 5(b), two diferent rotations
of the director are possible in the Bloch wall. These two
possibilities for the wall structure lead the degeneracy of
the propagating direction, as discussed in Refs. [1,6,7].
More precisely speaking, the propagating direction of the
Bloch wall is determined by their chirality defined with
respect to the rotational direction of the magnetic field
[9]. As a result, if the rotation of the magnetic field is
reversed suddenly, then the wall starts to propagate in
the opposite direction with the same speed.

In a first approximation, the transmitted light intensity
is proportional to the square of the spatial variation of
the effective reHection index for the incident light. Then
the contrast I of propagating walls should increase as
the tilt angle of the director with the z axis at the center
of the wall increases and as the wall width decreases.
The width of the wall remains almost of the same order
for co near ar~. Therefore, (I,) provides a measure for
the amount of deviation of the director from the z axis
at the center of the walls at least near ~d. On these
grounds our result shown in Figs. 3 and 4 indicates that
the propagation speed increases as the director deviates
from the z axis at the center of walls.

Second, in order to evaluate the curvature effect, we
investigated also the dynamics of looped walls with var-
ious diameters. The experiments were done mainly at
H = 19.0 kG by pIepaiing an isolated looped wall at
w = 0 and then jumping ~ in a steplike manner above ~p.
When we started from the looped wall with suKciently
large diameters, the looped wall propagated either out-
ward or inward with almost equal possibility in different
runs. However, when we started with small diameters,

only outward motion was observed. The above observa-
tions indicate that the curvature suppresses the degen-
eracy of the wall structure and the walls tend to start
propagating in the convex direction rather than the con-
cave direction. For a suKciently large diameter limit, the
curvature effect is negligible and one recovers the degen-
eracy of forward and backward propagation. We found
also that the curvature effect played an important role in
the dynamics of walls [9]. When a loop expands, for ex-
ample, the wall propagates outward, always in the form
of symmetric circle. On the other hand, when a loop
shrinks, the wall often has nonperiodic distortion.

It sometimes happened that one static wall was si-
multaneously transformed into segments of counter-
propagating walls upon increasing w beyond up. In such
a case the walls started to rotate around the singular
points connecting them and evolved into steadily rotat-
ing spirals (Fig. 6). As is obvious from this formation
process, the resulting spirals always had two arms. Spiral
pattern formation was more frequently observed when we
started from the walls initially wavy rather than straight.
In such a case the singular points appeared at the inflec-
tion points of the wall and the spiral wall pattern formed
by propagation in each local convex direction (see Fig.
6). This is consistent with the results of the curvature
efFect mentioned above.

The transition of the wall structure from Ising to Bloch
type has been observed also under a nonrotating mag-
netic field if an electric field is simultaneously applied
across the nematic layer [14,7]. In this case, however,
the system is completely variational, i.e. , one can define
a free energy of the system, and the straight Bloch-type
walls remain stationary, in clear contrast to the present
experiments.

In conclusion, we have shown experimentally that
the transition from static to propagating walls in a
homeotropic nematic layer under a rotating magnetic
field is a manifestation of the Ising-Bloch structural tran-
sition of walls. We have further shown that the local cur-
vature of walls breaks the degeneracy of this transition
and plays an important role in the formation of spirals.
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