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Thermodynamic pressure in noneqnilibrinm gases
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We analyze the nonequilibrium thermodynamic pressure which is obtained by differentiation of a gen-

eralized nonequilibrium entropy. It is proposed that this nonequilibrium thermodynamic pressure, n, is

related to the pressure tensor P in the presence of a homogeneous heat Aux q through P =mU+ aq q,
with n given by the condition trP=3p, p being the local-equilibrium pressure. A simple situation illus-

trating the physical difference between m and p is presented. The nonequilibrium entropy, pressure, and

pressure tensor are also analyzed from a microscopic point of view in several systems.

PACS number(s): 05.70.Ln, 05.20.Gg, 44. 10.+ i

I. INTRODUCTION

In classical irreversible thermodynamics, equations of
state in nonequilibrium states have (locally) the same
form as in equilibrium [1,2]. In recent versions of none-
quilibrium thermodynamics, which extend the domain of
validity of the classical theory towards the high-
frequency and short-wavelength regime [3—7], the entro-
py depends not only on the classical variables but also on
dissipative cruxes and, consequently, the equations of
state in nonequilibrium differ from the equations of state
in equilibrium in that some contributions depend on the
cruxes. Recently, the nonequilibrium equation of state for
temperature was investigated by Casas-Vazquez and Jou
in a series of papers [8—10], which provided an extensive
analysis of the concept and an explicit expression for ab-
solute temperature in nonequilibrium steady states.

The aim of this paper is to examine the meaning of
thermodynamic pressure in nonequilibrium steady states.
This analysis is not a trivial extension of the previous one,
but faces new problems, due to the fact that, whereas ab-
solute temperature is a purely thermodynamical quantity,
the pressure has both a thermodynamical and a mechani-
cal meaning.

The plan of the paper is as follows. In Sec. II we

briefly review the essentials of the thermodynamic basis
of our work and draw from it an explicit prediction. In
Sec. III we compare the thermodynamic results with the
microscopic results following from information theory
for ultrarelativistic ideal gases and for photon gases. In
Sec. IV, we compare the macroscopic prediction with the
results obtained from an information theoretical analysis
of a classical ideal gas. Finally, in the concluding re-
marks we consider the points to which more attention
should be paid in the future in order to get an internally
consi. stent extended thermodynamic theory including
generalized equations of state beyond the linear regime.
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II. THERMODYNAMIC PRESSURE
IN A NONEQUII. IBRIUM STEADY STATE

UNDER A HEAT FLUX

We consider here a system submitted to a steady state
heat Aux q, and study the modifications in the equations
of state due to its presence. When the heat Aux is intro-
duced in the set of independent variables of the entropy s,
the nonequilibrium entropy per unit mass takes the form
[3—10], up to second order in q,

s(u, v, q)=s, (u, v)— 'TU

2AT2

with k the Boltzmann constant, m the particles' mass,
n = 1/vm their numerical density, and T the local-
equilibrium temperature of the system, and (1) may also
be written as

1 1
s(u, v, q)=s, (u, v) ——

q q .
5 n'k'T'

This is the result obtained in Grad's expansion in kinetic
theory [11]. If one writes q = —

A,VT, (2) becomes

5 kr
s(u, v, q)=s, (u, v) —— (VT)4m T

(3)

which is the result obtained in the Chapman-Enskog ex-
pansion in kinetic theory of gases [12]. Therefore the
analysis of the consequences of (1) is not a specific topic
of a thermodynamic theory but a rather general topic in
nonequilibrium analyses aiming to deal with nonlinear
effects.

Starting from (1), it is natural to define a nonequilibri-
um absolute temperature and a nonequilibrium thermo-
dynamic pressure as

where ~ is the relaxation time of the heat Aux, A, the
thermal conductivity, U the specific volume, and s, the
specific local equilibrium entropy. For an ideal mona-
tomic gas,

5kTn
1 72 m
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Bs 1 8 vv

Bu ~ T Bu gT q q,
v, n, q

(4)

2 mO=T ——
5 n'O'T' (6)

4 mm=p ——
q q.

5 nk2T~
(7)

Up to now, the definitions (4) and (5) may be seen as
purely forrnal extensions of analogous definitions which
are known to be valid in equilibrium. Casas-Vazquez and
Jou [8—10] have analyzed the physical consequences of
(6) and have proposed a simple physical situation which
is illustrative and useful for considering the physical as-
pects of (4). Here, we will extend their gedanken experi-
ment to cope with the pressure.

We shall consider two systems (Fig. 1). System 2 is in
internal equilibrium and system 1 is in a nonequilibrium
steady state characterized by a vertical downwards heat
Aux q . Both systems are connected through a thin heat-
conducting and movable piston. Both sides of the piston
are assumed to have the same local-equilibrium tempera-
ture T and the same local-equilibrium pressure p. There-
fore, according to the classical theory, one should expect
that no heat will Aow along the piston and that the piston
will not be displaced. However, the generalized theory
predicts [8—10] that heat will flow from the equilibrium
system towards the nonequilibrium one (even though
they are at the same local-equilibrium temperature T) be-
cause heat Bows according to V'0 rather than according
to VT.

Here, we are interested in the study of pressure. The
net force to the right experienced by the piston will be

F=(~~—~, )A . (8)

7I

7,p
8.x

7I ~

FIG. 1. The system on the left is at equilibrium at tempera-
ture T, whereas the system on the right is in a nonequilibrium
steady state under a heat flux q~. A force is expected to occur
from the equilibrium gas towards the nonequilibrium one be-
cause the nonequilibrium pressure ~ is lower than the local

equilibrium pressure p, according to Eq. (7).

res g 1 3 7u

Bv T 2 Bv gT
q'q

v, n, q

For an ideal monatomic gas and up to the second order
in q one has

P =vrU+eqq, (10)

with U the unit tensor and with e determined by the re-
quirement (9), i.e. , by the relation

3m+ cxq =3p

Note that an expression of the form (10) is not surprising
from a purely algebraic point of view, since the most gen-
eral tensor that may be formed in the presence of the vec-
tor q has the form a (q )U+b(q )qq The ph. ysical idea
that we haue introduced in (10) is that the coefficient mul
tiplying U is directly related to the deriuatiues of a none
qui/ibrium entropy. That this idea has not been proposed
before is not strange, for the analysis of the entropy in
nonequilibrium systems has usually received little atten-
tion, due to the success of the local-equilibrium hy-
pothesis in most common situations. Note also that an
expression similar to (10) is usually found in the descrip-
tion of plasmas under an external magnetic 6eld 8, where
P=piU+(p~~ —pi)(BB/B ), pi being the pressure trans-
verse to B and p~~

the pressure in the direction parallel to
B. Of course, since B exerts a force on the particles, this
expression for P is not surprising in the presence of B,
but it is new for q. This does not mean, of course, that q
exerts a force on the particles: in this case, the effect is
more subtle, as it is related to the anisotropy of the distri-
bution function in the presence of a

Throughout this paper we consider q =qy j and so the
component of the pressure tensor responsible for the
force throughout the piston, P „, is simply m, in accor-
dance with (8).

III. NONEQUILIBRIUM PRESSURE
IN ULTRARELATIVISTIC GASES.

MICROSCOPIC INTERPRETATION

To have a microscopic understanding of the hypothesis
(10) we first consider ultrarelativistic gases, for which the

In the classical theory, the force would be zero, be-
cause one would consider F= (p2 —p i ) A. In contrast, in
the nonclassical theory one has mz=p2 =p (because this is
an equilibrium system) whereas m, &p, =p, according to
(7). In this way, the extended theory predicts that a net
force will act on the piston from the equilibrium system
towards the nonequilibrium one. In the next section we
will analyze the consistency of this prediction from a mi-
croscopic point of view.

First of all, though, we should remember, as we have
pointed out in the Introduction, that, whereas tempera-
ture is a purely thermodynamic quantity, pressure has
also a mechanical aspect. In equilibrium, both aspects
coincide, but it is not so obvious that this assumption
holds in nonequilibrium situations.

For a gas at rest, the pressure tensor must satisfy

trP =3p

as the kinetic theory of gases demands [13]. Therefore
the nonequilibrium pressure m must not be related to the
trace of the pressure tensor. Instead we proposed the fol-
lowing expression for the pressure tensor in a nonequili-
brium state characterized by a homogeneous heat Aux q:



RAQUEL DOMINGUEZ AND DAVID JOU

1f=—exp —Pg p;c Ig p—, cc;
I

(12)

In this expression g;p;c is the Hamiltonian of the system
(p, is the modulus of the momentum of particle i and c is
the speed of light), g;p;cc; is the microscopic expression
for the energy fiux, P and I are the corresponding
Lagrange multipliers related, respectively, to the restric-
tions on the energy and the energy Aux, and Z is the~ar-
tition function. The corresponding results for P and I are

extension of the pressure tensor to the nonequilibrium
case has been thoroughly studied. This is due to the fact
that heat cruxes can be extremely high in astrophysical
plasrnas, for instance, and a nonequilibrium pressure ten-
sor is necessarily used. However, the corresponding
nonequilibrium entropy has not received much attention,
so that the connection (10) between P and the entropy
has never been mentioned in the literature.

To obtain an explicit expression for the entropy, we
start from the distribution function for an ideal relativis-
tic gas with mean internal energy U and mean energy Aux

J, which can be found exactly in the framework of infor-
mation theory [14]. According to the methods of the
maximum entropy principle, the distribution function is
given by [15]

7r= [x —1] .
U

(19)

On the other side, the pressure tensor may be obtained
independently of the entropy as

P= Jpccf dI1

X!h
(20)

with f given by (12). It is straightforward, then, to see
that

P=mU+9
(x 1)(x+2) c~U~

(x —1)U+U 9 JJ
3V x+2 c2U

(x —1)U+3(2—x)U JJ
3V J2 (21)

because the nonequilibrium part does not depend on V
under fixed U, X, J. Here, 8=(BS/BV)z&&, = 1lkP,
which follows from (16) and which is a generalization of
the equilibrium expression T= 1/kP.

Now, according to (18) and (13) we have for the gen-
eralized thermodynamic pressure m.,

9XJ
2U2

3' x —2
x —1

2 U2

1/2 —1

3J
2 U2

(14)

2
- 1/2 -

1

3J
1

3X 1, (13)
U x —1

Thus the coefficient which is multiplying U is indeed the
nonequilibrium pressure ~ obtained by differentiation of
the nonequilibrium entropy.

We recall that the pressure tensor for radiation under
an energy Aux is usually written in radiation thermo-
dynamics as [16—22]

P U 1 —XU+3X—1 qq (22)
V 2 2 q

2

and the nonequilibrium entropy, defined by

y 3N~t jf lnf dI (15)

where y is the so-called Eddington factor. Hence, corn-
paring expressions (21) and (22), the Eddington factor
turns out to be given by

is found to be 5 2X=———4—
3 3

1/2
3J

c2U2
5 —2x

3
(23)

(x —1)(x +2)S S q+Nk ln
16

(16)

where
1 /2

3J
2 U2

BS p=—=—k
0 BV, T V

(18)

Note that, since the energy Aow J in a system cannot
be higher than the internal energy U in this system times
the speed of light c, because this is the maximum speed
that the particles in the system may achieve, it follows
that J ~ c U . According to (17) this implies that x ~ 1,
i.e., that P in (13) is positive.

Qn the other hand, expression (16), in contrast to (1), is
not limited to second order in q and it is immediately
seen that

This expression is usually found in the literature
[16,19—21].

We can note the following relation between the Ed-
dington factor and the generalized pressure:

U 1 —y7T'—
V 2

(24)

which means that we can choose any of both parameters
m or y to identify unequivocally the pressure tensor. The
advantage of the generalized pressure m is that it can be
easily calculated if the entropy of the system is known
and that it has a more precise meaning that the Ed-
dington factor, although this latter has been widely used.

Finally, we consider the case of a quantum photon gas,
in order to compare the results with those obtained previ-
ously for a classical ultrarelativistic gas.

For this system, the following distribution function is
employed:
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f =A exp —Pgp, c —I gp, cc, —1

instead of (12). This generalizes the usual Planck distri-
bution function to the case where there is a nonvanishing
energy ffux. Here, P and I are, as in (12), Lagrange multi-
pliers related to the restrictions on U and J. The corre-
sponding expression for the nonequilibrium entropy is
[19,21]

energy of the particle and —,'mc c is its contribution to the
heat Aux; P and y are the Lagrange multipliers corre-
sponding to the mean internal energy and the mean heat
ffux, respectively. The term (5/2P)y. c follows from the
requirement that the gas is at rest, that is (c}=0. Near
equilibrium, this last term, (5/2P)c=(5kT/2)c, which is
the convective flow of enthalpy.

Up to second order in y, we can write (29) as

2 a 1/4U3/4V1/4(2+x)1/2(x 1 )1/4
3 (26) f=A exp —P—mc 1 — —mc—1 2 1 2 5

2 2 2
y.c

2(x —1) /

(2+x)'" (27)

where a is the Stefan constant (i.e., it relates U with the
local-equilibrium temperature as U=aT V) and x has
the same meaning as in (17). By diff'erentiation of S with
respect to U and 8'we can obtain the nonequilibrium ab-
solute temperature and pressure of this system, which
are, respectively, given by

1 1+——mc—
2 2

2

(30)

The parameter 2 can be identified by normalization of
the distribution function, while P and y are obtained
from the conditions

sr= (x —1) .U
(28) Jf,' mc d c—=u = ,' n kT, — (31)

It may be found that for the photon gas the pressure ten-
sor is also given by (22) and (23). Thus, also in this case
the relation between m. and P proposed in (10) is satisfied.

It is important to insist that, although expression (22)
is well known in the literature, the identification of the
coeScient of the term proportional to U with the none-
quilibrium pressure obtained from the entropy had not
previously been considered.

—,'mc cd c=q .

It follows that, up to second order in q, one has

1 2 m
q q

2 m
q

(32)

(33)

(34)

IV. MICROSCOPIC INTERPRETATION
IN CLASSICAL IDEAL GASES

f=—exp —P—mc — —mc
1 1 2 1

Z 2 2
5

2 y c, (29)

where c is the velocity of the particle. Here, —,'mc is the

In this section we apply information theory to obtain
the entropy and the pressure tensor of the nonrelativistic
gas at rest up to second order in the heat flux.

The reason to have restricted ourselves up to second
order is that the full generalized partition function that
one should obtain by the maximization of the informa-
tion theory entropy function would diverge for the classi-
cal gas, because the operator related to the heat flux is
—,'mc c, which is dominant with respect to —,'mc and
which may be either positive or negative. We can cope
with this problem assuming that the heat flux is weak
enough to allow us to consider only the development of
the distribution function up to second order. Likewise,
the macroscopic theory we are considering is also re-
stricted up to second order, so, anyway, we should be
able to find a complete analogy between them.

In the concluding remarks we will comment on the
reason why we have preferred to use information theory
rather than kinetic theory for our analysis.

As in the previous situation we assume that the mean
values of the energy and the heat flux are fixed. Then, in-
stead of (12}we have

It may be noted that we have obtained for the general-
ized temperature 0 the value predicted by the macroscop-
ic theory.

Hence, after having identified the distribution function,
we can evaluate both the entropy and the pressure tensor,
according to their usual microscopic definitions [13,14].
Those are given, respectively, by

and

S=S, —X—1 m 2
q5nk T

(35)

6 m 2 18 m

25 2k/' 25 k Z
(36)

From the expression for the entropy, we can calculate
the thermodynamic pressure, which is given by

'lT p 2 m
q0 T 5 pkZ2

(37)

We can observe that we have obtained for the general-
ized thermodynamic pressure m the same value that was
predicted by the macroscopic extended theory of thermo-
dynamics in (7},up to second order in q.

Inspection of (36) shows that in the presence of a heat
flux along the y axis, the component P, i.e., the pressure
along the x axis, is reduced, as predicted in the macro-
scopic development in (7}. This may be attributed intui-
tively to the anisotropy of the system in the presence of
the heat flux: the microscopic motion should be more or-



162 RAQUEL DOMINGUEZ AND DAVID JOU

dered along the direction of the Aux. However, in this
case, the term in U in (36) does not coincide exactly with
the nonequilibrium pressure. We will comment on this
result in the next section.

and substituting in the expression for B, (6), in (41), we
obtain explicitly

V. CONCLUDING REMARKS

2 pl&=p 1
2 q q5 p kT

(42)

First of all, the reader should be warned that (10) is the
general form of the pressure tensor under a uniform heat
Aux and in a Quid at rest. If the heat Aux were not uni-
form or in the presence of a velocity field, one would have
instead of (10)

P= —2g(Vu ) g(V—u)+.P(Vq)+ [vrU+aqq] . (38)

P=pU ——', r(Vq) . (39)

Therefore one observes no modification in the pressure
tensor if the heat Aux is uniform. Perhaps this is due to
the ansatz that r does not depend on c, which, in fact, is
only the case of Maxwellian molecules.

To explore the origin of this discrepancy, as well as
those observed in the preceding section, we should con-
sider whether q or Vq (with V the volume of the system)
should be taken as independent variable in the entropy.
Under constant q, the variable Vq is extensive, but not q
itself. In fact, in our analysis of the ultrarelativistic gas
and of the photon gas, the variable J= Vq has arisen in a
natural way as independent variable of the entropy, rath-
er than q itself. In fact, if instead of keeping J constant
during the differentiation in (18) we had kept q constant,
we would have been led to

In the first two terms on the right hand side, g is the
shear viscosity and g is the bulk viscosity: they are the
usual hydrodynamic terms; the third term is relevant; for
instance, in the description of phonon hydrodynamics [3];
and the two latter terms are those considered in this pa-
per, for a Quid at rest and under a uniform heat Aux.

Expressions analogous to (38) have been obtained in
kinetic theory of gases. It turns out, however, that for
Maxwellian molecules the nonequilibrium contributions
to the pressure, quadratic in q, vanish. This is the reason
why, instead of kinetic theory, we have used information
theory in our analysis of the gas under a heat Aux. In
fact, if the Chapman-Enskog development is adopted
to solve the Bhatnaghar-Gross-Krook equation
Bf/dt+cBf /dr = —(1/r)(f —f ') with a relaxation
time r independent of the molecular velocity up to second
order, we obtain for the pressure tensor

This result is closer than (7) or (37) to the coefficient of
U in (36). Furthermore, since in the kinetic theory of
gases T is the only temperature considered, it is not com-
pletely surprising that since, according to (41), m=pB/. T,
there are not corrections to the pressure in the same way
as there are not corrections to the temperature in the
standard expansion of kinetic energy. Therefore our re-
sults seem to suggest that J=q V is a more suitable vari-
able than q in an extended thermodynamic formalism.
Since the same results are obtained for 0 if J or if q are
used as independent variables, it is logical that the prob-
lem of whether q or J is most suitable had not arisen be-
fore.

The last comment refers to the form we have assumed
for the pressure tensor. In expression (10) we can observe
that, according to the fact that ~ is always lower in the
value than p, the thermodynamic pressure corresponds to
the minimum eigenvalue of the pressure tensor. This is in
agreement with the conjecture proposed by Evans [23]
for a Quid submitted to a shear rate. Within the com-
pletely different context of numerical simulations based
on molecular dynamics in nonequilibrium steady states,
he also pointed out that the thermodynamic pressure
should be given by the minimum eigenvalue of the pres-
sure tensor. This assumption looks clearer if we
remember that the entropy is related to the minimum re-
versible work required to accomplish a virtual volume
change, so ~d Vis the minimum possible work.

In summary, we have seen that there are still many
open problems regarding the definition and the measure-
ment of very basic quantities, such as temperature and
pressure, in nonequilibrium states, when one goes beyond
the local equilibrium hypothesis. Such analysis has not
only a conceptual interest, but it may also have practical
interest for systems with high cruxes, where the values of
~ and 0 may differ considerably from their equilibrium
counterparts p and T. Therefore it may be useful and
stimulating to have a thermodynamic formalism which
allows a discussion of the points we have dealt with in
this paper, and which are completely ignored in the clas-
sical theory of nonequilibrium thermodynamics.

BS 1+ 3(x —2)
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