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Resonances of nonlinear oscillators
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We show that nonlinear oscillators have a large response to special aperiodic driving forces. If
these forces are selected to minimize the driving effort for a given terminal energy, these forces are
given by the time-refiected transient of the unperturbed dynamics (the "principle of the dynamical
key"). We provide a proof of this principle. We find that these optimal forcing functions have very
similar dynamics for several different norms. We present a quantitative comparison of the energy
transfer for sinusoidal and optimal driving forces. We find that aperiodic driving forces are most
effective for large nonlinearity and small friction. We show that this optimal control is stable for
several important systems.

PACS number(s): 03.20.+i, 46.10.+z

I. INTRODUCTION

Galileo Galilei was probably the first to discuss reso-
nances in "Discorsi a Dimostrazioni Matemache" (1638)
[1]. He used the term resonance ("risonanza") to de-
scribe the response of music instruments to sound waves
(lat. "resonare" = to echo). In the 18th century Huygens
[2] discovered that two mechanical clocks with a slightly
di8'erent speed tend to synchronize if they are mounted
on the same wall. In the synchronized state the energy
exchange is extremal [3] and the oscillators are said to
be at resonance [4—7]. Later it has been shown that for
a large class of weakly coupled self-sustained oscillators,
the period of the coupled system matches closely with
the period of the fastest oscillator [8]. This phenomena
seems to be the key paradigm for control in neural regu-
latory systems, such as the coupling of the sine node and
the atrio-ventricular node in the human heart [9].

Resonance is also a foundational paradigm in physi-
cal sciences and engineering. In quantum physics, Bohr
[10] introduced the term resonance frequency for the ra-
diation frequency of a decaying energy state. Breit and
Wigner [ll] used the concept of resonance to describe a
sharp peak in cross sections for certain scattering events
of particles in nuclear physics. In engineering and applied
physics, most textbooks and review papers [12—15] define
resonance by the largest response of a driven damped lin-
ear oscillator. At resonance, the driving frequency of an
external sinusoidal force matches the natural frequency of
the driven oscillator. This causes a large energy transfer
to the oscillator. Technical applications of this concept
are mostly in the area of electric engineering, e.g. , BLC
circuits in which the power consumption [15] of the cir-
cuit reaches its maximum at resonance. Spectroscopic
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instruments are based on resonant driving forces since
this yields a large signal to noise ratio for harmonic and
weakly nonlinear oscillators.

For highly nonlinear oscillators, the response to sinu-
soidal driving forces is typically small and complicated
[3,16]. It can be determined with the Lindstedt-Poincare
method, Guckenheimer and Holmes's averaging method-
ologies [6], Lichtenberg and Lieberman's secular pertur-
bation approach [4], or Nayfeh and Mooks's multiple
scales methodologies [5]. The resulting signal-to-noise
ratio for spectroscopic instruments is small for sinusoidal
driving forces. Recently, it has been conjectured that
a large energy transfer to nonlinear oscillators can be
achieved by a special class of aperiodic driving forces
[17]. This yields a high signal-to-noise ratio, which can
be used for system identification with general resonance
spectroscopy [18]. Other numerical studies of optimal
controls of nonlinear quantum systems confirm this ob-
servation [19].

In the present paper, we show analytically that opti-
mal driving forces have the same dynamics as the time-
re8ected transient dynamics of the unperturbed system.
This paradigm was conjectured earlier by Hiibler [17] and
is called the "principle of the dynamical key" [16]. In this
paper the smallest driving force, which makes it possible
to achieve a certain energy transfer, is called resonant.
In general, we use the Z2 norm [20] to measure the size
of the forcing function. In addition, we study the reso-
nance conditions such as minimum reaction power and
we compare the resulting forcing functions. In Sec. II,
we calculate optimal driving forces for nonlinear oscil-
lators. We introduce di8'erent types of resonances and
show how to prove the principle of the dynamical key. In
Sec. III, we compare the effectiveness of driving between
sinusoidal and optimal driving for a variety of nonlinear
oscillators. An analytical estimation and a numerical cal-
culation of the energy gain, which a linear oscillator can
achieve if it is optimally driven, is given in Sec. IV. In
Sec. V, we show that the control with optimal forcing
functions is stable for a big class of oscillators. In Sec.
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VI we take a look at optimal driving forces, which satisfy
difFerent norms than the quadratic norm.

ing Euler-Lagrange equations, Eqs. (A32) —(A35), for the
variational scheme (2.5) with free terminal time T are
calculated. This leads to the differential equation for the
forcing function F(t):

II. OPTIMAL DRIVING FORCES
OP OSCILLATORS,

PRINCIPLE OF THE DYNAMICAL KEY

We consider a one-dimensional damped oscillator
which is driven by the time-dependent driving force F(t),

F(t) —qF(t) +,F(t) = O,

and a set of boundary conditions,

F(T) = 2qz(T),

(2.6)

(2.7)

OVz+ i1z+ = F(t),
Ox

(2.1)

where q is the &iction coefficient and V{x) is a time-
independent potential. We assume that the potential V
has a minimum at x = x;„and V(x;„) = 0. The
energy of the oscillator is E{t)= 2x(t) +V(x(t)). In the
following, we introduce three different types of optimal
driving.

A. Strong resonance type A

L, = L+ AKbii(t —T), (2.2)

where A is a constant Lagrange multiplier and hLi(t —T)
is Dirac's b function. L is given by

First, we consider the situation where the terminal
energy E(T) = E and the initial conditions z(0)
xo, x(0) = zo are fixed but T is arbitrary. We search
for a forcing function which minimizes the "driving ef-
fort" F = f F2dt This p. roblem can be solved by a

variation of the functional S = j Lgdt The Lag. range
function L~ is given by

F(T) = 2q
i
gx(T)—(. BV

~z v)

For Eq. (2.6), we use the trial solution

F(t) = aqua(t).

(2.8)

(2.9)

2gx(t) for E(T) ) E(0)
0 otherwise . (2.1o)

If the desired terminal energy is smaller than the initial
energy, the optimal driving force is zero. This means that
the oscillator is cooling itself down through dissipation.

In the following, we assume that the terminal energy
E(T) is larger than the initial energy E(0), i.e. , F(t) =
2qx(t). If one substitutes this solution for the Lagrange
problem in Eq. (2.1), the difFerential equation for the
driven oscillator,

This trial solution satisfies the boundary conditions [Eqs.
(2.7), (2.8)] for o, = 2. Another solution for Eqs. (A32)—
(A35) is given by o. = 0 if E(T) ( E(0). Therefore, the
forcing function to solve the Lagrange problem [Eq. (2.5)]
is given by

BV
L(x, x, x, F, t) = iFi'+ p(t) i

x+ qx+ —F i,orz )
t9V

x —gx+ = 0,
Ox

(2.11)

(2.3)

where the Lagrange multiplier p(t) is time dependent
since the equation of motion [Eq. (2.1)] is a nonintegral
constraint. K ensures that the terminal energy hits the
required value E:

K(x(T), x(T)) = x(T) + V(x(T—)) —E = 0, (2.4)

where E is constant. The Lagrange problem then can be
taken to be

bS=b ~F~'+y(t)
~

x+qx+ —F(t)
~

OV

Bz )

BV
x„(t) + qx„(t) + = O,

Oz~
(2.12)

for the boundary conditions x (T) = zo, x (T)
xo, 2x„(0) + V(x„(0)) = E(T). Therefore, the time

d2derivatives of y(t) are y = —&", y' = "&,". If one sub-
stitutes x (t) in Eq. (2.12) through y(t), the equation
then reads

is obtained. We introduce the auxiliary variable y(t),
which is de6ned by the time-reflected dynamics of the
unperturbed system, i.e., y(t):= x„(T—t). x„(t) is a
transient solution of the unperturbed dynamics

+W
~

—*'+V(z) —E
~

S~(t —T)dt = O,
)

(2.5)
OV

y(t) —y(t) +
&ojy t (2.13)

where bS is the variation of S. The first term of the in-
tegral represents the minimization of the efI'ort E, the
second term contains the equation of motion (2.1), and
the third term is due to the boundary condition for the
terminal energy E(T). In the Appendix the correspond- F(t) = 2qy(t), (2.14)

Equation (2.13) has the same structural form as Eq.
(2.11). Therefore, a solution of the Lagrange problem
[Eq. (2.5)] is given by
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where y(0) = xo and y(0) = xo.
In conclusion, we find that the optimal forcing function

is proportional to the velocity of the time-reflected tran-
sient of the unperturbed dynamics [Eq. (2.14)]. This is
the "principle of the dynamical key, " i.e. , the system re-
acts most sensitively to a special forcing function which is
closely related to the dynamics of the unperturbed sys-
tem. The transient of the nonlinear damped oscillator
[Eq. (2.12)] is, in general, aperiodic. Therefore, optimal
forcing functions are, in general, aperiodic too. The re-
sponse of an optimally driven oscillator is given by Eq.
(2.11), which is equal to the time-reflected dynamics of
the unperturbed system [Eq. (2.13)].

With the optimal driving half of the energy, which
is supplied when the driving force is dissipated, i.e. ,

= 0.5, the input energy supplied by the optimal driv-

ing force is given by E, = f F(t)x(t)dt = f 2@x (t)dt
and the dissipated energy is given by E~ ——f~ gx (t)dt.
Therefore, the terminal energy E(T) is 50% of the energy
input E; for minimum effort forcing.

B. Medium resonance

For medium resonance, we fix the dissipated energy
E~, in addition to the terminal energy E(T) and the
initial conditions x(0) = xo, x(0) = xs, and minimize the
driving effort I" . The terminal time T is arbitrary. This
situation can be described by the Lagrange problem,

(.. . Bv
h ~F~'+~qx(t)'+ p(t)

~
x+gx+ —F(&)

~

o Bx )

A = —2o.g,
K= go. (n —1),

(2.23)
(2.24)

where o. is a real constant. The constant o. is fixed
through the constraint for the energy dissipation ED.

1 ( Ovi
ED = qx(t)'dt = x

~
x+

~

dt
o n —1 p ( Bxj

(2.25)

(2.26)

This yields to

E(T) —E(0)A= +1.
D

(2.27)

The driving effort E2 for a given energy dissipation then
read. s

. (.. avi„x x+ dt
1 o

(2.28)

Strong resonance is a special case of medium resonance.
For strong resonance, i.e., n = 2 the effort F [Eq. (2.28)]
has a minimum and the energy dissipation [Eq. (2.26)]
is 50% of the energy input E;. For a zero dissipationED,' 0, the constant o. becomes infinity, i.e. , o,

OO.

+ X
~

-*'+V(*) —E
~

Sr (t —T)dt = 0,
E2 )

(2.15)

where K is a constant Lagrange multiplier. The corre-
sponding Euler-Lagrange equations Eqs. (A24) —(A28),
for detailed calculation see Appendix read

C. Weak resonance

For weak resonance, we minimize the reflected energy

ER = j F(t)xe( —F(t)x)dt, where 0 is the Heavyside
step function. This condition is equal to a minimal reac-
tion power and a perfect impedance match. A solution
of the Lagrange problem is given by

(2.16) F(t) = sgn(x(t))p(t), (2.29)

2F(t) —p(t) = 0,

for 0 ( t ( T with the boundary conditions,

Ax(T) + p(T) = 0,

F(T) ~gx (T) —p(T)F—(T)
BV

+S(T)
ZBx z

(2.17)

(2.18)

(2.19)

where p(t) is an arbitrary function of time that has to be
positive for all times, i.e. , p(t) & 0 for 0 ( t ( T. The
reflected energy E~ and the reaction power are equal to
zero for all three types of resonance.

Medium resonance is a special case of weak resonance
if p(t) has the form p(t) = ng~x(t) ~. Strong resonance is
a special case of weak resonance for p(t) = 2g~x(t) ~.

D. Strong resonance type B
OV

A + 2vgx(T) + p(T)g —p, (T) = 0.
|9x (2.20)

F(t) = o.gx(t),
p, (t) = 2ngx(t),

(2.21)
(2.22)

A solution for these necessary conditions is given by

We introduce a second type (B) of strong resonance
and show that type A and type B are equivalent. For
strong resonance type B the driving effort E and the
initial conditions x(0) = xo, x(0) = xo are axed and the
terminal energy E(T) is to be maximized. The described
situation sets up the Lagrange problem,
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bS = h A~F~'+ p ~

z+ rim+ —E(t)
~

(.. . av
o Bz
(1.,+

~

—x'+ V(x) —E
~

b~(t —T)dt =0,
r(2

(2.30)

where the driving effort E is constant and the Gnal en-
ergy Ez is maximal. If one divides 8 through A the Eqs.
(2.5), (2.30) become equal and the optimal forcing is the
same as for strong resonance type A, i.e. , E(t) = 2rlx(t)
[Eq. (2.14)]. The Lagrange parameters now are given by
~= ) ~"= X.

~ 5.6
~~
(g 5.4-6$

~ 5.2-
I 5-

LLI

4.8-
I

2 3
Weight W

III. NUMERICAL COMPARISONS
FOR NONLINEAR OSCILLATORS

FIG. 1. Energy gain for increasing weight of the nonlinear-

ity. The oscillator potential is V =
~ + W'

8 . Here, the
friction coefBcient g is 0.1 and the driving effort I' = 100.0.

In this section, we study the effectiveness of sinusoidal
forcing, i.e. ,

F(t) = Focos(Ot —4), (3.1)

and optimal driving (strong resonance type H). 0 is
the driving &equency and 4 is the initial phase. In
order to determine the target energy for optimal forcing
functions, we numerically integrate the Eqs. (2.1), (2.13),
(2.14) for a fixed effort F2 and for the initial conditions
x(0) = 0, y(0) = 0, x = 0, and y(0) = 0.001. In order
to determine the maximum of the total energy Es (Ts)
that a sinusoidal driven oscillator can achieve for fixed
effort F, we optimize numerically the parameters of the
driving force 0, T. The optimal terminal time is T~ and
the optimal driving &equency is Og. The ratio of the
terminal energy for optimal driving E(T) over Es(Ts)
we call energy gain G,

E(T)
Es (Tg)

(3.2)

A. Varying order of nonlinearity

The goal of investigation in this subsection is to find a
relation between strength of nonlinearity and the energy
gain G. The nonlinearity of a potential is changed in two
different ways. One approach is to change the weight
coeKcient TV of the inharmonic term of the potential
V =

2 + W s . Then the equation of motion (2.1) reads

z+ re+ x+ Wx' = F(t), (3.3)

where F(t) is given either through the sinusoidal driving
force [Eq. (3.1)] or through Eq. (2.14). Figure 1 shows the
energy gain G for various weights W. The energy gain
increases for large weight R'. Figure 2 illustrates the
gain G for different friction coeKcients g for R' = 1.0.
For small &iction coefBcients, the energy of the optimal
driven oscillator sharply increases. For strong damping
(rj ) 0.3) the friction dominates over the nonlinearity.
Thus the driven oscillator behaves like a linear oscilla-
tor and has a similar energy gain. For small &iction

coefBcients (rl ( 0.3), the energy gain for the nonlinear
oscillators is much larger than for the linear oscillator.

Another way to vary the nonlinearity is to change the
exponent p of the nonlinear term in the oscillator poten-
tial V = —+ —.The equation of motion (2.1),2 p

x+rjx+x+x" ' = F(t), (3 4)

10- W=1.0
a '

~~
C5
CA

Q)IL 4
scillator ( G = 1.23 )

I

0 0.25 0.5 0.75 1 1.25 1.5 1.75
Friction Coefficient q

FIG. 2. Energy gain for nonlinear oscillator for weight
TV = 1.0 and driving effort I" = 100.0.

is integrated for each p and the energies are compared.
One 6nds again that the effectiveness of optimal driv-
ing becomes larger for strong nonlinearities (Fig. 3). For
large driving efforts, the gain grows faster with increas-
ing nonlinearity. This can be explained by the amplitude
frequency shift of a nonlinear oscillator. A large driving
effort E causes a large amplitude and, therefore, the fre-
quencies shift rapidly. Since the &equency of sinusoidal
driving is fixed, the driving force does not follow the nat-
ural &equency of the nonlinear oscillator and the gain for
optimal driving is enhanced. Strong and weak nonlinear
oscillators exhibit qualitatively the same relation between
energy gain and the &iction coefBcient but strong non-
linear oscillators can achieve larger energy gains G. In
summary, we find that the energy gain G is large for
strong nonlinearities and weak &iction.
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study the case where F(t) is sinusoidal [Eq. (3.1)]. An
exact solution of Eq. (4.1) is

4-

w3
cn
O 2-c

UJ

4 6 8
Potential Exponent p

10

x(t) = — Fo[(cu —A ) cos(At —4) + qA sin(At —4)]B

~t
+e ' Fo(A —cu +xoB)cos(~t)

2 2 sin(~t)+ —qFo(A +u) )+xoqB+2voB
2(d

(4.2)

FIG. 3. Energy gain for different potential exponents of the
nonlinear potential. The driving effort is I' = 100.0

B. Du8ing oscillator

IV. LINEAR OSCILLATOR

Finally, we consider the linear oscillator with the po-
tential V =

2 ~ and the equation of motion,

z+gx+(u x =F(t). (4.1)

A. Analytical estimation of the gain

In this section, we provide an analytical estimation for
the gain G for the linear oscillator [Eq. (4.1)]. First we

1.6

5a

'gg 1.4-

As a further example for the optimal driving of a non-
linear oscillator, we consider the DuKng oscillator with
a double-well potential V = —

2 + 4 + 4. The energy
gain for various friction coeKcients for this oscillator is
illustrated in Fig. 4. The initial values of the simulation
are x(0) = y(0) = 0, x(0) = 1.0, y(0) = 0.999. The
energy gain G is especially large if the terminal energy is
close to the local maximum of the potential. This occurs
for the given initial condition when the friction coefIicient
is g = 0.25.

2E2
E2 (4.3)

We determine x(t) with Eq. (4.2) and calculate the
te™~ale""~~ ~~~) = z(T) + V— (x(T)) analytically.
Then we write all products of trigonometric functions
as sums of trigonometric functions with multiple angles
[21] and make the following simplifications: sin(wt)
0, cos(wt); 0, sin[(su+A)t —@];0, cos[(w+
A)t —4];0, sin[(w —A)t+4]; sin(4'), cos[(w—
A)t + 4]; cos(4'), sin[(~ —A)t — @]
sin( —@), cos[(~ —A)t —@]:cos(—4), cos[2(At
@)];0, where 4 = arctan( "»). This procedure
corresponds to an averaging of one period of the forc-
ing function. Then we neglect all sum terms with &ic-
tion coefFicients g with higher than linear order, i.e. ,q': 0, +(4 —q ):k4 since the friction is as-
sumed to be small, i.e. , g ( 0.3. A numerical study shows
that we can assume 0 1 for small friction. Then the
terminal energy reads

Fo(—1+2e —e" )
S

2/g2+V7T
(4.4)

Then we eliminate T with Eq. (4.3). To compute the
maximal terminal energy E'(T') as a function of Fo, we

expand + in a Taylor series up to second order andBEg(T) ~

0
set it to zero,

where w = A@3 —"4 and B = g A +(A —cu)
In the following we assume the set of initial conditions
x(0) = xo ——0, x(0) = vo ——0, 4 = 0, and cu = 1.
The efI'ort to drive the linear oscillator is fixed and is ap-
proximately F = j F (t) dt = 0.5 Fo T, where F is an
arbitrary constant. Therefore, the terminal time T can
be substituted by

~ 1.3-
Ch

o~ 1.2-

LU 1.1-

&~'(&) F2„(F')'~'
0

(F2)3~3
E4 (4.5)

Prom Eq. (4.5), we obtain an approximative value for the
optimal Ep,

0.25 0.5 0.75 1 1.25 1.5 1.75
Friction CoeNcient q

1 ( 11'
Ep —— 1 + —E2g —0.85 gE2. (4.6)

FIG. 4. Energy gain for the Duffing oscillator with dou-
ble-well potential. With this value for Ep, Tg then reads
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1.3
1.25-

~— 1.2-
C5
Q) 1.15-

V)~ 1.05-

U" 0.95

F =100.0
F = 10.0-2------ F =1.0
analytical value

I I

0.4 0.8 1.2 1.6
Friction Coefficient q

FIG. 5. The energy gain G for the linear oscillator is close
to the analytical estimation for small friction coefBcients g.

fe,S = ln
/

—.
' (5.1)

where

(e(t) )max
0&t&~to (Ji(t) )

(5.2)

obtained by a variation principle [Eq. (2.5)]. The control
is considered to be stable if the diR'erence between the
goal dynamics y(t) and the dynamics of the driven oscil-
lator x(t) does not increase. We measure this difference
with the quantity S:

~'(t) ~max
T AtT &t—&T (y(t) )

(5.3)

/2
Ts

0.425 +ilE2
(4.7)

For Eq. (4.7), the maximal terminal energy for sinusoidal
driving is approximately Ez(Tz) = 0.203F2/rI. In the
case of strong resonance, E(T)—E(0) = E~ in Eq. (2.27),
then Eq. (2.28) gives I" = 4rI[E(T) —E(0)]. The maxi-
mal terminal energy of the optimally driven oscillator is

equal to E(T) 4, if we assume that the initial energy

E(0) is very small and can be neglected. The gain G for
linear oscillators is then

22.5

20-
CA& 17.5-
~~
CO

12.5-

etical
erical

where e = x —y. Ato(AtT ) is the period of time between
the first (last) two maxima of x(t). The control is stable
for S & 0. The stability parameter for some examples of
the investigated oscillators is shown in Fig. 6. The nu-

= 1.23+ O(q'),E(T)
S

(4 8)

for small 7l, i.e. , rl & 0.3. From Eq. (4.8), we conclude
that even for linear oscillators there is a 23%%uo gain for
aperiodic driving forces given by Eq. (2.14) for small il.

10-

12-

0
8

0-2 0-4 0.6 0.8
Friction Coefficient Ti

B. Numerical results

In the numerical simulation, we found that the energy
gain G is approximately constant over the investigated
range of &iction coeKcients g = 0.1, ..., 1.9. The peak
at g —0.7 coincides with a jump of the optimal driv-
ing &equency Og of the sinusoidal driving force from
Og = 1.0 for weak &iction to Og 0 for strong friction.
That means sinusoidal driving forces with frequency zero
(constant driving) become more efficient than oscillat-
ing forcing functions for large friction coeKcients. When
the friction coefFicient is close to the transition between
constant force and sinusoidal force, sinusoidal forcing is
comparatively inefFicient. Therefore, the gain has a lo-
cal maximum. The numerical value for G is close to the
analytical estimation (Fig. 5). The initial values of the
simulation are x(0) = x(0) = y(0) = 0, y(0) = 0.001, and
the driving efI'ort is E = 1.0.

V. STABILITY OF OPTIMAL CONTROL

Resonant forcing of nonlinear oscillators is an optimal
control problem where the goal dynamics [Eq. (2.13)] is

CA

~~
CO

CA

10

8-
6-
4

2

10-

0 0.2 0.4 0.6 0.8
Friction Caefflcient g

Q) 7.5-
~~e~ 5 a
JD
CO

2.5-

0 ~

0 0.2 0.4 0.6 0.8
Friction Coefficient g

FIG. 6. Stability of control of the optimal driven oscilla-
tors: (a) linear oscillator V = —,(b) nonlinear oscillator

V = 4, and (c) the Duffing oscillator V = ——+ —+ —.
The driving effort is I" = 100.0. The initial values of the
simulation are x(0) = x(0) = y(0) = 0, y(0) = 0.001 for (a)
and (b) and x(0) = 1.0, x(0) = 0.0, y(0) = 0.999, y(0) = 0.0
for (c).
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merical simulations show that in most cases, the control
is stable for all &iction coeKcients g and driving eB'orts
F . For linear oscillators, it is possible to estimate the
stability analytically. With (2.13) and (2.1), one obtains

This sets up the Lagrange problem

b ~F~~ + p, (t)
~

x + rjx + —E(t)
~

(9V

0 Ox )
~(t) + ice(t) + ur'e(t) = 0.

This differential equation can be solved by

(5.4) l1.2+A
~

—x'+ V(x) —E
I

b'D(t —T)dt = 0,(2 r
(6.2)

gt
e(t) = e;e 2 cos

4

where A and p are real I agrange multipliers, whereas
((f, (t) is time dependent. The associated Euler-I agrange
equations yield the conditions,

(
+ sin

g(d —'rI2/4
u2 ——t').

where we assume e; = e(0) and e(0) = 0. The stability
we now de6ne as

8 V
ji(t) —9js(t) + 2P(t) = 0,

&l~(t)l& ' '
sgn(V(t))

(6.3)

(6.4)

where

S* = ln i
—.',

max (e(t)
0&t&Dtp

(5.6)

(5.7)

~(T)2 I,, (T)qx(T) I ( )I'
0

+(T)(~ —g. —.')
Z(T) =

(( 2) ~y Pl~~ + 1)

(6.5)

(6.6)

max (e(t)') .
T—AtT &t&T

(5.8)

The control is stable since S* & 0. With

32i1E (0)
(4(u2 —q2)

and Eq. (2.28), we find that terminal time T approxi-
mately is

( (4~' —n') (—,„)T = —ln +1 I.
g E

8E0~2 (5.10)

VI. OTHER NORMS

Therefore, we find 8' = ln
~ s~, '" + 1

I
. This

( (4cu~ —q )( +~„)

)
estimation is close to numerical data for small friction
coefficients i1 (Fig. 6).

P(k) = A(k)'+ B(k)'
A „+B (6.7)

where the Fourier coefficients A(k), B(k) are given by

120

A(k) = — ) ) sin
~

nk
~
E(n) expI, )k=1

dt

—18(——ra)L 2
2
L2

Equation (6.3) is closely related to the time-reflected
unperturbed dynamics of the oscillator [Eq. (2.13)]. This
indicates that it might be possible to generalize the
paradigm of the dynamical key. The dynamics of the
driving force and oscillator that results from this solution
is shown for various norms in Fig. 7. For large norm ex-
ponents P ) 2, the driving force has the form of a square
wave function and is similar to bing-bang controls. The
corresponding power spectrum shows large higher har-
monics (Fig. 7). The Fourier power P in Fig. 7 is defined

by

We now generalize the measure for the driving force.
So far, the forcing function has been an element of
the normed l:2 —Banach space [20]. Now the forc-
ing function is allowed to be an element of the general
l:p —Banach spaces. Each function f (t) of these spaces
are I ebesgue measurable and have to satisfy the norm
condition,

I- " r'
B(k) = — ) ) cos

I
nk

~

E(n) exp
2 -; i I, )k=1 ~ dt

(6 8)

—16( ——ra)L 2
2

L2

(6.9)
T

llfll = f If(')I'(')«

where
~~ f~~ is a positive real number.

For strong resonance, the terminal energy E(T) again

is fixed, whereas the general driving eff'ort I"~ = (E ) s =
1

( f ~Q[f (t)dt) s is to be minimized. In addition, we as-
suine the initial conditions x(0) = xo, x(0) = xo are
fixed.

(6 j) and

A „=max(A(k)), B „=max(B(k)). (6.10)

The window length for the Fourier transformation was
I = 1200. The transformation was calculated for three
diferent initial times t, . For the numerical calculation
of P(t), the time step was dt = so. Therefore, the time
is defined by t = ndt and the frequency is ur(k) =
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40- VII. CONCLUSION
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FIG. 8. Energies a nonlinear oscillator can achieve for dif-

ferent norms. The potential of the oscillator is V = —+ —x .

For large norm exponents, P, large forces are penalized
by the norm. This leads to a pruning of the peaks. For
the small norm exponent P ( 2, large forces are empha-
sized and the driving forces have the shape of b pulses.
The power spectrum reaches a homogeneous frequency
distribution for decreasing P. Close to terminal time T,
the size of these peaks sharply increases. A comparison
of the terminal energies that a linear oscillator can reach
under the strong resonance condition for optimal driving
and sinusoidal driving for different norm exponents P is
given in Fig. 8. The initial values of the simulation are
x(0) = x(0) = y(0) = 0, y(0) = 0.001. The driving effort
is I" = 1.0. For small norm exponents P, the energies
of optimal and sinusoidal driven oscillator are close. For
increasing norm exponent the optimal driving force be-
comes more and more effective compared to sinusoidal
driving.

Figure 7 shows a comparison of the power spectrum of
the forcing functions for various P. For technical appli-
cations, the norm P = 2 may be advantageous if a small
content of higher harmonics of applied driving forces is
desirable. For all investigated norms, the shift of the
basic frequency oui ——w(1) of the driving force at a cer-
tain amplitude of the oscillation is the same (Fig. 9) and
is equal to the frequency of the unperturbed oscillation
at this amplitude. This ending may be considered as a
generalization of the principle of the dynamical key.

In general, there are two types of resonances: (i) reso-
nances of a driven oscillator, (ii) resonances of two cou-
pled oscillators. In this paper, resonances of the first type
have been considered. We show that for a special driving
force, which is determined through a time reHection of
the unperturbed natural dynamics of the oscillator, the
energy transfer is maximal, i.e. , the system reacts most
sensitively to its own transient dynamics. This is called
the "principle of the dynamical key. " The energy gain of
the optimal driving forces compared to sinusoidal forcing
is especially large for a large nonlinearity and weak damp-
ing. For other norms such as the quadratic norm or other
types of resonances, the optimal forcing function matches
with the period of the unperturbed dynamics. The re-
sulting Euler-Lagrange equation for a general norm [Eq.
(6.3)] is closely related to the time-reflected natural dy-
namics [Eq. (2.11)]. In particular, the frequency shift
appears to be a key quantity. The relation between shift
of the basic frequency of the forcing function and the am-
plitude of the oscillation is the same for all norms and is
equal to the frequency shift of the unperturbed dynamics
(Fig. 7).

This would suggest that resonances of coupled oscilla-
tors occur if the condition wi(Ho —AH) = w2(Ho + AH)
is satisfied. wq and w2 are the frequencies of the oscilla-
tors, Ho and Ho are the initial energies of the oscillators,
and AH is the energy exchange. This means the energy
exchange between two conservative oscillators should be
large if the frequencies of both oscillators match and the
amplitude frequency coupling is opposite, i.e. , uq ——~2

OCd 1 0422
BAH BAH '
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FIG. 9. Comparison of the power spectrum of various driv-
ing forces for different norm exponents. The potential of the
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are x(0) = x(0) = y(0) = 0, y(0) = 0.001. The driving effort
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We introduce an approach to calculate analytically La-
grange problems with free terminal time T and natural
boundary conditions. We seek to extremalize the func-
tional,

T

0

(A1)

where T is not fixed and where z*(T) and
x'(T) have to lie on a given manifold
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K(x', x', . . . , x', x', . . . , z~, x~, t) = O. The function I.
is assumed to be a function on N variables x 7z 7. . . , x
and their time derivatives up to second order.

This problem can be solved by a variation of the func-

tional S = f Lgdt, where Lg is the Lagrange function

Lg = L + AKb~(t —T), e.g. , for the case of strong reso-
nance L is given by Eq. (2.3) and K by Eq. (2.4), where
the variables are given by x (t) = z(t), x (t) = E(t)
and N = 2. To obtain a stationary solution for the
x'(t), i = 1, . . . , K the necessary condition 8S = 0 has
to be satisfied,

T

0

t = t(p) with t(0) = 0

and t(l) = T, (A3)

x'(t) = x*(t(p)) = x'(p),

p'(t) = —"
tp'

x'(t) =~ ~,

(A4)

(A5)

(A6)

where a subscripted p denotes the partial derivatives with
respect to the parameter p. With f KtphD[t(p) T]dp—=

fo Kh'D(p —l)dp the functional then assumes the form1

bD(t —T)dt = o. (A2)

1 2 2 2

p pp ptppS= L 0 ~ ~ 7X 7 7 7
~ ~ ~ 7t tp

0 t„ t„' ts

Since the terminal time T is variable, we choose a para-
metric representation of the problem I22—24] and replace
x', x', x', and t with the following substitution rules:

+.AK . . . , z', —", . . . , t bD(p —1)dp.

Then we execute the variations for each variable,

(A7)

(A8)

OI OK, . BL OK, BL BK
bS = ) dp t„+A .. hD(p —1) bz'+ . t„+A . b~(p —1) bz„'+ . t„+A . b~(p —1) hz„*„

Bz Bz

OL OK OL BK OL BK
t„+A bD(P —1) ht+ t„+A b~(p —1) ht„~ t„+A b~(p —1) bt„„=O.

Bt " Ot

Then we eliminate bz„', hz„'„, btp, btpp by partial integration and evaluate the h functions. We obtain from Eq. (As):

(+ L+
) p=~

tp btp
(BL

& BK,l '&BL l, f BK
hS = ) A . bx' + t„~b~zdp+ . A . hx„'

X y 0 X Xp

( BK, l &BL ~, dfBL

BK i 'fBL ) (BKt+i A bt + tp btdp+ A bt
p=l o p

BI ) ( BKI + tp btdp+ A btpp ~'" )
d (BL l

' 'd2 (BL
bt + tp btdp = 0.

dp (Btpp ) o dp (Btpp )

(BL
tp I

b~' — — . tp I

bx'dp
~ "p EB*' )

&d2 (BL
t~ idT'dpi

)
BI,
Btp ")

0

(A9)

This yields to the following Euler-Lagrange equations for
0&@(1:

OK
'atpp

=0 (A12)

BL d r' BLi d' f BI )
o, (Alo)

p pp

I
L+t. i+, It. I

=o, (A»)
d ( BLI d2 r' BL i
p t ) p q tpp j

for all i = 1, . . . , N. At the upper boundary, i.e., for
p=1, we have

OK OL+ -tp = 0,
0tp Otpp

"

BK BL d F BL l
Ot "BtJ, dp 4 Btpp)

OK
19x

(A13)

(A14)

(A15)
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OK BL

BK BL d ( BL l
A . +t„.—— t„,. =0,

Bx Bx dp ( xpp )

(A16)

(A17)

BL
19K

BL d (BI I
»' dt E»')

(A29)

(A30)

BL t„=0,Bx

BI B ( BI i
Bx„' Bp ( x„'„)

(A18)

(A19)

Now we transform the Euler-Lagrange equations, Eqs.
(Alo), (All) and the boundary conditions Eqs. (A13),
(A14), (A16), (A17), (A18), (A19), back to a parameter-
&ee representation with the following substitution rules:

for all i = 1, . . . , ¹ Since K is independent of x„'„
and t„„,Eqs. (A15), (A12) are always fulfilled and are
not considered in the further calculation. At the lower
boundary, i.e., for p = 0, we obtain, for these variables
where the initial conditions x'(0) and x'(0) are not fixed,
the conditions:

Then, we use the special Lagrange function [Eq. (2.2)]
for strong resonance and substitute the variables x' in
Eqs. (A23) —(A30) by x (t) = x(t), x (t) = F(t) and
N=2.

Since the initial conditions for x(0) and x(0) are fixed
the Eqs. (A29), (A30) apply only for the variable F. For
F, Eqs. (A29), (A30) as well as Eqs. (A27), (A28) are
always satisfied because L [Eq. (2.3)] does not contain
time derivatives of F(t). When Eq. (A27) is evaluated for
the variable x = x it is equal to Eq. (A25). Therefore,
we drop Eq. (A25). In the following, we consider only
Eq. (A26):

F'(T) + p(T) —~(T)F(T) + ~(T)*(T) = o
OV

Ox

(A31)

( ) =*(t( )) = (t)
x„' = x'(t(q))t„,

(A2o)

(A21)

(A22)
Ax(T) + p(T) = 0, (A32)

and evaluate Eqs. (A27), (A28) only for the variable xi =

for alii = 1, . . . , ¹ The equations of motion Eqs. (Alo),
(All) then read

+ p(T)rj —p(T) = 0.
BV
|9x (A33)

BL d (BL) d (BLI
EB

(A23)
The equations of motion Eqs. (A23), (A24) read

02V
P(t) —P'(t)9+ P(t) B

——0, (A34)
BL d (BL) d' (BL)I+ I

.
I

=o,Bx' dt gBx') dt2 gBx*) 2F(t) —p(t) = o. (A35)

, ( BK BLi
Bxx Bxa )i=1

(A25)

BK ~ . ;BL ..;BL .;d (BL t

1=1

(A26)

t9K M
. . +Bx Bx (A27)

(A24)

for all i = 1, . . . , ¹ At the upper boundary, i.e. , for
t = T, we obtain from the Eqs. (A13), (A14), (A16),
(A17),

F(t) = 2i1x(t),

p(t) = 4rIx(t),
A = —4g,

(A36)
(A37)
(A38)

The full set of equations of motion is given by Eqs.
(2.1), (A34), (A35). The initial conditions for Eq. (2.1)
are given by zo and xo. The initial conditions for Eq.
(A34) [p(0) and p, (0)] and the value of A and T can be de-
termined with Eqs. (2.4), (A31)—(A33). Since Eq. (A35)
contains no time derivatives, the time dependence of E
is given by Eq. (A34).

A trial solution for equations Eqs. (2.1), (A34), (A35)
is given in the form of F(t) = ai1x(t). For this trial
solution, the boundary conclitions [Eqs. (A31)—(A33)] are
only fulfilled if o. = 2 or o. = 0.

Therefore, a solution for the corresponding Euler-
Lagrange equations Eqs. (A34), (A35) is given by

BK BL d (BLi
z' Bx dt (»i' (A )

if E(T) ) E(0) and

for all i = 1, . . . , N. For these variables where the initial
conditions x'(0) and x'(0) are not fixed, we obtain from
the Eqs. (A18), (A19) at the lower boundary, i.e. , for
t=0 if E(T) ( E(0).

F(t) = o,

&(t) = 0

A=0,

(A39)
(A40)
(A41)
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