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Existence of localized excitations in nonlinear Hamiltonian lattices
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(Received 28 September 1994)

We consider time-periodic nonlinear localized excitations (NLE s) on one-dimensional translation-
ally invariant Hamiltonian lattices with an arbitrary finite interaction range and an arbitrary finite
number of degrees of freedom per unit cell. We analyze a mapping of the Fourier coefBcients of the
NLE solution. NLE s correspond to homoclinic points in the phase space of this map. Using dimen-
sionality properties of separatrix manifolds of mapping we show the persistence of NLE solutions
under perturbations of the system, provided that the NLE's exist for the given system. For a class
of nonintegrable Fermi-Pasta-Ulam chains, we rigorously prove the existence of NLE solutions.

PACS number(s): 03.20.+i, 63.20.Pw, 63.20.Ry

I. INTRODUCTION

The existence, stability, and properties of nonlinear lo-
calized excitations (NLE's) in Hamiltonian lattices with
discrete translational symmetry have been subjects of
growing research interest (see, e.g. , [I—4] and references
therein). NLE's can be viewed as generalized discrete
analogs to the breather solution in a sine-Gordon equa-
tion [2]. They are characterized by a localized vibra-
tional state of the lattice. There are two basic reasons
for the generic NLE existence on Hamiltonian lattices:
(i) the lattice forces acting on a given particle are non-
linear (thus one can tune oscillation frequencies by vary-
ing the energy) and (ii) the discrete translational symme-
try of the lattice (in contrast to the continuous transla-
tional symmetry of Hamiltonian field equations) provides
a finite upper phonon band edge of the spectrum of ex-
tended small amplitude oscillations of the lattice around
its ground state [5,6].

There are a few known rigorous NLE existence
proofs. First NLE's are exact solutions of the integrable
Ablowitz-Ladik lattice [7]. In fact, they form a three-
parameter family of solutions. Second, NLE's are exact
solutions for the Fermi-Pasta-Ulam chain with a box-
like interaction potential [8]. In this case, the NLE s
are of compact support. Finally, and most importantly,
MacKay and Aubry have derived an existence proof for
NLE's in an array of weakly coupled anharmonic oscil-
lators [9]. Remarkably, this existence proof works inde-
pendent of the lattice dimension.

In this contribution, we will first deal with the exis-
tence of NLE s in nonintegrable generic one-dimensional
Hamiltonian lattices. In the second part, we will investi-
gate a class of Fermi-Pasta-Ulam chains and give rigorous
proofs for the NLE existence.

Let us brieQy outline the main steps in the approach
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presented below. We will assume the existence of a time-
periodic NLE on a one-dimensional lattice. We represent
the lattice displacements at each lattice site in the NLE
ansatz in a Fourier series with respect to time. When we
insert the NLE ansatz into the lattice equations of Ino-
tion, we obtain a set of coupled algebraic equations for
the Fourier components of the NLE ansatz, which form
an infinite-dimensional map. The NLE solution has to
correspond to a common point of two separatrix man-
ifolds in the phase space of the map, or a homoclinic
point. Analyzing the map in the (linearizable) tails of the
NLE, we can derive the dimension of the separatrix man-
ifolds. Consequently, we show that if a homoclinic point
exists for a given system, then generically the homoclinic
point will survive under perturbations of the system. We
then consider a subclass of Hamiltonian chains and rigor-
ously prove the existence of two difFerent (with respect to
symmetry) NLE solutions. For this particular example,
we show the emergence of horseshoe patterns —a conse-
quence of the existence of homoclinic points.

II. STABILITY' OF NLE SOLUTIONS
UNDER HAMILTONIAN PERTURBATIONS

We consider a classical one-dimensional Hamiltonian
lattice of interacting particles (perhaps feeling an ex-
ternal field periodic with the lattice) with lattice cite
a = 1. The displacements of the particles &om their
ground state (equilibrium) positions are given by a n
dimensional vector X~, where n is the number of compo-
nents per unit cell (n & no, no finite) and the integer l
marks the number of the unit cell. The range of the inter-
action r is considered to be finite: r & rp Tp finite. Here,
np and rp are positive integers. The potential energy of
the system is required to have anharmonic terms in the
displacements if expanded in a Taylor series around the
ground state (minimum of potential energy) of the sys-
tem. Furthermore, the potential energy should become a
positive definite quadratic form in the limit of infinitely
small displacements. The Hamilton function H is given
by the sum of the kinetic energy of all particles and the
potential energy.
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As it was shown in [5],[6], the only possible exact NLE
solution on an arbitrary lattice (by that we mean no ad-
ditional symmetries are present) has to have the form,

Then one can avoid resonance conditions of multiples
of the fundamental frequency ~i [as they appear in the
Fourier transformed functions in (1) with respect to time,
because of the nonlinearity of the system], with phonon
frequencies of the linearized (around the groundstate)
system. Since the motion of assumed existent NLE's re-
quires the excitation of at least a second fundamental
frequency in the ansatz (1) [10], we can exclude them
&om the consideration and search for stationary time-
periodic NLE's as given in (1). Note that in the case
of the Ablowitz-Ladik lattice, additional symmetries are
present (the lattice is integrable) and, thus, the above
statement does not hold —moving NLE's are exact solu-
tions in this nongeneric case.

Because of the assumed time periodicity of all displace-
ments in (1) we obtain, for the assumed NLE solution,

k=p, +i.,+2, ...

i~1kt
(i,k) ~

Now we can insert this ansatz (2) into the Newtonian
~ ~

equations of motion Xi = BH/OXi. The left and right
hand expressions of the equation of motion are repre-
sented again as a general Fourier series. Equaling the
prefactors at identical exponential terms to each other,
we finally obtain a coupled set of algebraic equations for
the unknown Fourier coefficients A~i I,l. Because of (1),
the Fourier coefBcients have to satisfy the boundary con-
dition A~~~~ ~~ ~ 0. In the following, we will study
properties of this algebraic set of equations.

First we can note that, because of the d = 1 dimen-
sionality of the considered lattice, the coupled set of al-
gebraic equations for the Fourier coeKcients A~~ ~~ can
be represented as a discrete map of a dM = (2rpnpk )-
dimensional phase space, where the integer k „repre-
sents the number of considered higher harmonics in (2)
and has to tend to infinity. In other words, given the
Fourier coeKcients at 2rp neighboring lattice sites com-
pletely determines the Fourier coeKcients to the left and
right of the specified chain segment. Second, because of
the required asymptotic vanishing of the Fourier coeK-
cients for l —+ +oo, we can linearize the dM-dimensional
map in the tails of the assumed NLE solution with respect
to the variables A~~ ~~. The linearized map will decouple
into a set of k „ independent d, = 2rpup-dimensional
linear submaps [6]. In each of these submaps, Fourier
components with only one Fourier integer k will ap-
pear. Each linear submap is equivalent to the prob-
lem of finding solutions of the linearized (around the
ground state) lattice equations of inotion using the ansatz
Xi(t) = Ai exp(iut). Here, for every subrnap, one has to
substitute ~ = km'. If u equals an arbitrary phonon fre-
quency of the linearized lattice equations, then it follows
that the corresponding linear submap is characterized by
a matrix Mg of dimension d, x d, with detMk ——1 and

A;A;+g ——1, where A;;+g are two of the 2d, eigenvalues
of Mg. Since these properties do not depend on the spe-
cific value of the considered phonon frequency, it follows
that they are independent of ~ and thus independent of k
and ~q. Consequently, we find tha' every linear submap
is volume preserving and symplectic.

Finally, we note that for every considered linear
submap (and thus, also, for the original dM-dimensional
map), the phase space point of zero Fourier components
is a fixed point on the map. If km~ equals a phonon
&equency, the fixed point is of elliptic character. If, how-
ever, k~i does not equal any phonon frequency, the fixed
point has to be a saddle point (because it can not be
an elliptic fixed point and the map is symplectic). That
means that rpnp eigenvalues of the matrix MI, are real
and of an absolute value lower than one. Consequently,
the separatrix manifold of all points in the space of the
submap attracted by the saddle point is of dimension
dsM rp~p ~

If we require that neither of the multiples of the funda-
mental frequency k~z resonates with the phonon band,
the corresponding original dM-dimensional map in the
phase space of the Fourier coeKcients has a separatrix
manifold of dimension dM/2. To get a NLE solution,
we have to find a point in the space of the original map
which belongs simultaneously to the separatrix manifold
S attracting the solution to zero for l —+ —oo and to the
separatrix manifold S+ attracting the solution to zero
for l ~ +oo (cf., e.g. , [11,12]). This point has to be
a homoclinic point then [13]. If a homoclinic point ex-
ists, there exist an infinite number of homoclinic points,
which can be obtained by subsequent mapping of a given
homoclinic point. As a result the horseshoe structure of
intersections between the stable and unstable manifolds
have to emerge [13].

Because of the assumed nonresonance condition (see
above), every manifold has dimension dM/2. Let us
choose one of the homoclinic points. Then we can de-
fine the tangent planes to each of the two manifolds in
this point. There are two possibilities for the topology
of these two planes. Either (i) these two planes span the
whole phase space of the map (of dimension dM) or (ii)
the two planes span a space of lower dimension than dM.
In case (i), any small perturbation of the original system
(consequently of the map, consequently of the two man-
ifolds, and consequently of the two tangent planes) will
only shift the homoclinic point smoothly. Also in this
case (i) all other homoclinic points will have the same
topology with respect to the tangent planes. In case
(ii) there exist perturbations of the system which will
lead to a vanishing of the homoclinic point (and thus of
all other homoclinic points too). Still, there will exist a
perturbation for case (ii) such that the hornoclinic point
is smoothly shifted and simultaneously the two tangent
maps will span the whole phase space of dimension dM.

Consequently we can conclude, that if we have a NLE
solution which corresponds to a set of homoclinic points
of type (i), then any small perturbation of the system
will smoothly transform the NLE solution into a NLE
solution. If we have a NLE solution, which corresponds
to a set of homoclinic points of type (ii), we can always
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find a perturbation such that we transform the NLE so-
lution into a NLE solution, which corresponds to a set
of homoclinic points of type (i) and is then stable under
subsequent small perturbations. From the above said it
follows that NLE solutions, if they appear, are generically
not isolated objects in the sense that small perturbations
of the system either do not destroy them at all, or that
a proper perturbation of the system will transform them
into nonisolated solutions.

We have operated with finite phase space dimensions
dM. Of course d~ was not bounded &om above, so that
the limit d~ ~ oo can be considered without altering
the arguments.

Let us summarize the results obtained so far. If we as-
sume that for a given Hamiltonian chain a NLE solution
exists, then it corresponds to an infinite number of homo-
clinic points in the map as introduced above. If neither of
the multiples of the &equency of the NLE solution res-
onate with the phonon band (nonresonance condition),
then the dimension of the stable and unstable manifolds
is exactly one half of the map's phase space. Prom topo-
logical arguments it follows then, that either the NLE
solution is structurally stable —i.e., it is smoothly trans-
formed under any perturbation of the Hamiltonian of the
system, or there exists at least one perturbation of the
Hamiltonian such, that the NLE solution is smoothly
transformed into a structural stable one. Of course a per-
turbation of the Hamiltonian has to preserve the general
structure of the map, i.e. , we are not allowed to consider
e.g. , a two-dimensional perturbation, which would lead
to the impossibility of defining the map.

A central point in the consideration so far has been the
nonresonance condition. If this condition is violated for n
values of k~i, then the dimension of the stable and unsta-
ble manifolds is lowered by (2n) to (dM —2n). If an NLE
solution exists for such a case, then the tangent planes
of the two manifolds in a given homoclinic point cannot
span the whole phase space of the map. Consequently,
there will always be perturbations of the Hamiltonian
such that the NLE solution will vanish. At this point
it also becomes clear that in the analogous problem of a
Hamiltonian field equation, where resonances can never
be avoided [12], systems which allow for NLE solutions
become isolated (see also [11]).

If a system is given with a NLE solution which fulfills
the nonresonance condition, it could be possible that a
given perturbation of the Hamiltonian would lead to a vi-
olation of the nonresonance condition. Consequently, one
has to check in a given case, whether the nonresonance
condition survives under a perturbation.

with m = 2, 3, 4, . . . . As it was shown in [6, 14], we can
consider a time-space separation ansatz X~(t) = A~G(t).
Inserting the separation ansatz into (3), we get a dif-

ferential equation for G(t): G(t) = —KG2 (t) and a
two-dimensional map for the amplitudes A~,

KA( = (A& —Ai i)' '+ (A~ —Ai+i)' (4)

Here, v ) 0 is required in order to get a bound oscillatory
solution for G(t). The phase space properties of map (4)
are shown in Fig. 1 for the case m = 2 and v = 1. Below
we will refer to particular patterns observed in Fig. 1.
We consider cases when Ai/Ai i ( 0 and introduce fi =
I

—Il'A, with

Kfi = (f& + fi i) — + (f& + fr+i) (5)

Equation (5) can be viewed as a two-dimensional map
M of a vector fi = (fi, fi i): fr+i ——Mf~. The task is
then to show the existence of at least one value of v & 0

( ) yield~ fltl + f
ft~+

First, we note that for any value of r the map (5)
has a fixed point fj„i —— (0, 0). Adding weak har-
monic nearest neighbor interactions to (3) and consid-
ering the limit of vanishing harmonic interactions yields
that the fixed point (0, 0) is a saddle point with eigen-
values A$ fpi 0 and A2 fpi oo. Consequently, we
find that there exist two one-dimensional separatrix man-
ifolds S+ and S of the map (5). All points in the two-
dimensional phase space of the map belonging to S~ are
attracted to the saddle point after an infinite number
of iterations for l ~ +oo. Second, it follows that for

Ky„2 ——2 f the point fy„2 ——(f, f) is also a fixed

point (see also Fig. 1). Linearizing the map around ft&2
yields the elliptic character of ffpQ The tw.o eigenvalues
of the linearized map Ai fp2 and A2 fp2 obey the relations
~Ai y„z~ = ~A2 y„2~ = 1 and are given by the expression

AiQ fag —k —1 6 3[1 —(1 —K) ] ~, with tc = 2/(2m —1).

III. PROOF OF EXISTENCE OF
NLE SOLUTIONS FOR FERMI-PASTA-ULAM

CHAINS

In the second part of this work, we will prove rigor-
ously the existence of NLE solutions for a class of Fermi-
Pasta-Ulam chains governed by the following equations
of motion:

Pl +l —i ) PI +i+i )

0
A

FIG. 1. Phase space of the map defined by (4) for K = 10
and m, = 2. The fixed points are At~i ——(0, 0) (solid circle),
A f„Q ——(+x, +x') (x = 1/v 1.6, periodicity 2), A fp3 = (0, +y),
and (+y, 0) (y = ~5, periodicity 4).
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Let us mention another useful property of the map (5),
which holds due to the discrete translational symmetry
of the considered system (3). If we generate a sequence
of f2, fs, ... starting with a vector fi ——(a, 6) and iterat-
ing (5) towards growing integers t, then we can generate
the same sequence of numbers by iterating (5) towards

decreasing integers I starting with the vector fi ——(b, a).
We consider an initial vector fl = (a, 6) with 0 & a & 5

and iterate towards increasing l. If we require 0 & fi+i &

a, the parameter K is confined to v& & v & K&+ with v
&

[(fl + fi i)2 i + fl ]/fl and lcl+ = lcl + (22

1)fl For. any of the obtained values of fl+i ——c, we
can consider the next step requiring 0 & fl+2 & c. By
itself, this requirement again yields a confinement of v to
K)~y & K & KI+y If we choose c = 0, then +&+&

——+oo.
If we choose c = a, it follows r&+z & ~&+. Because c is
a monotonic function of K, we can satisfy a & fl+i
fl+2 ) 0 only if Kl & r. & el+ for a = b and Ki

e ( r&+ for a ( b. Repeating this procedure for every
following lattice site, we get a sequence of monotonically
increasing lower bounds on v defined by the vanishing
of fl+ ——0 in the mth step. In the limit m —+ oo we
thus obtain exactly one value of r, which is the limit of
the mentioned sequence of lower bounds. This limiting
value is finite, because it is always smaller than K&+. It
cannot be equal to K&+ either, since we would then get
the infinitely weak perturbed elliptic point of the map.
Because of the elliptic character of this fixed point all
amplitudes fl have to stay infinitely close to their fixed
point values which are finite. Thus we have found that
for any initial vector fl = (a, 6) with a & 6, there exists
exactly one value of K, such that the initial vector belongs
to S+. The point f~ = (b, a) belongs then to S

In the case a = 6, it follows that it is always possible
to find exactly one value of r such that the initial vector

fl = (a, a) belongs to both S+ and S . Consequently
we proved rigorously the existence of one type of NLE's,
which are known as "even-parity mode" [3]. Their char-
acteristic feature is that the center of energy density of
the corresponding solution is located between two lattice
sites I and (t —1) at (I —0.5) [10].

Finally, let us consider the case 0 & fl 2 ——fl = a &
J'l i ——b. Solving Eq. (5) for t —+ (I —1), we get al-
lowed values of x in an interval defined by b. Appending
the above described procedure for the sequence of lower
bounds of v, we again find that for exactly one value of
K such that a & 6, the vectors (a, b) and (b, a) belong to
S+. By the symmetry of the assumed initial configura-
tion they also belong to S . Consequently, we proved
rigorously the existence of a second type of NLE's, which
are known as "odd-parity mode" [3]. Their characteristic
feature is that the center of energy density of the solution
is located on the lattice site (I —1) [10].

Due to the radius of interaction ro ——1, it follows that
there are no other allowed stationary time-periodic NLE
solutions with single-maximum amplitude distribution in
lattices of type (3). In the limit m ~ oo the two NLE
solutions become compact and can be calulated analyti-
cally [8].

It would now be very interesting to analyze the map

In this case, the modified map becomes lineariz able
around the fixed point fl = 0. We can then visualize
the manifolds, and hope that in the limit C ~ 0 the
structure of the manifolds does not change with respect
to their intersections. In Fig. 2, we show the stable and
unstable manifolds for I, = 2, C = 2, and K = 10, where
we used the variables gl = fl + fl i instead of the origi-
nal ones. We computed the unstable manifold using the
standard procedures [13] and indicated the position of
the stable manifold as it can be evaluated out of the lin-
earization around the fixed point. Clearly the horseshoe
patterns are visible together with the homoclinic points.
If one chooses one homoclinic point and iterates, then
the image is the next-to-next homoclinic point. Conse-
quently, if we would number all homoclinic points along
the separatrix with integers in the order of their appear-
ance (1,2,3,...), then a homoclinic point with an odd num-
ber will be mapped again into homoclinic points with odd.
numbers only (same for even numbers). Thus, we indeed
observe the two possible even- and odd-parity solutions.
The presence of additional NLE solutions would be indi-
cated by a different mapping pattern of the homoclinic
points. Moreover, from this result, it also follows that
additional exact NLE solutions with a (presumably) ir-
regular distribution of amplitude maxima do exist. The
reason is that (5) is invertible —consequently the stable
manifold in Fig. 2 will also show up with whiskers and
horseshoe patterns (not shown in Fig. 2). The intersec-
tions of the whiskers of the stable and unstable manifolds
are homoclinic points again and. thus yield by definition

0.1

0.0

-0.1
-0.2 -0.1 0.0

I

0.1 0.2

FIG. 2. Appearance of the homoclinic points and horse-
shoe structure for the perturbed map (5),(6) with variables
as given in the text.

(5) in order to observe the previously discussed stable
and unstable manifolds, and, consequently, the homo-
clinic points. However, this map (5) is not linearizable
around the fixed point J'l = 0; some matrix elements of
the Jacobian diverge. Consequently, it is impossible to
determine the structure of the manifolds near the fixed
point numerically. In order to proceed we add to the
right hand side of (5) the terms,

+(fl + fl i) —+ +(fl + fl+i)
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NLE solutions. In [9] analogous multisite NLE's were
obtained as a consequence of the anti-integrability limit
ideas of Aubry [16].

If we lower the value of t, then it becomes increasingly
harder to find the unstable manifold. Still the structure
of the unstable manifold can be seen partially, which in-
dicates the persistence of the horseshoe patterns in phase
space regions where the linear terms (6) are small per-
turbations. Then we can use the results of Sec. II and
conclude that NLE solutions will survive under pertur-
bations of the considered system. In particular, it follows
that NLE's are exact solutions for Fermi-Pasta-Ulam
chains with additional linear and cubic spring forces, as
often studied in the literature [1,4].

IV. CONCLUSION

In conclusion, we have shown that if a one-dimensional
system is known, where NLE solutions exist and obey
the nonresonance condition, then they are stable under
perturbations of the Hamiltonian of the system or they
can be perturbed in such a way that they become stable.
Consequently, we can use exact proofs of the existence
of NLE solutions, e.g. , the one given in this work for
(3) or the one in [9] and obtain NLE solutions for the
corresponding perturbed system. Remarkably we are not
restricted in the choice of the perturbation as long as the
map for the perturbed system has the same phase space

dimension.
Let us discuss the problems of the presented approach

which appear when we try to consider lattices of dimen-
sionality higher than d = 1. We can still make the ansatz
of an existing time-periodic NLE solution and will yield
again a coupled set of algebraic equations for the Fourier
coefficients. However this set cannot be viewed as a dis-
crete map of a certain phase space of the Fourier com-
ponents, if d ) 1. Consequently, we do not know how
to formulate the conditions of the decay of the solution
at infinity by imposing certain constraints on the set of
equations. Still it is well known from numerical simula-
tions that periodic NLE's exist [15].

Note added in proof We h. ave become aware recently of
publications where the separation ansatz X~(t) = A~G~ (t)
for (3) was also proposed [17,18]. However, no proofs of
the existence of NLE's were derived.
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