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Soliton evolution and radiation loss for the nonlinear Schrodinger equation
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The transient evolution of general initial pulses into solitons for the nonlinear Schrodinger (NLS)
equation is considered. By employing a trial function which consists of a solitonlike pulse with variable
parameters plus a linear dispersive term in an averaged Lagrangian, ordinary differential equations
(ODE's) are derived which approximate this evolution. These approximate equations take into account
the effect of the generated dispersive radiation upon the pulse evolution. Specifically, in the approximate
ODE's the radiation acts as a damping which causes the pulse to decay to a steady soliton. The solutions
of the approximate ODE's are compared with numerical solutions of the NLS equation and are found to
be in very good agreement. In addition, the potential implications for obtaining improved approximate
ODE models for soliton propagation in optical fibers and other devices governed by NLS-type equations,
such as soliton logic gates, are discussed.

PACS number(s): 03.40.Kf, 42.50.Rh, 42.65.—k, 42.81.—i

I. INTRODUCTION

u =g sech'(x —xo —Vt)e" (2)

where rl, xo, V, and 8 are constants. (If the reference
frame has been chosen to be centered at the soliton, how-
ever, then x0=0 and V=O. ) There is currently substan-
tial interest in optical solitons due to the potentially large
increase in transmission speed, or bit rate, which is likely
to be obtained by their use. Solitons are ideal candidates
as optical bits since they are relatively robust to perturba-
tions.

In theory, Eq. (1) can be solved exactly using the in-
verse scattering transform [3],which shows that a general
initial condition evolves into a fixed number of solitons

The equation governing the propagation of a pulse in a
monomode, polarization-preserving, nonlinear optical
fiber in the anomalous group-velocity dispersion regime is
the nonlinear Schrodinger (NLS) equation, which can be
written in nondimensional form as [1,2]

i +— +~u~ u=O,. t)u 1 t)u 2

2 g~'

where u is the complex-valued envelope of the pulse.
Here t represents physically the normalized spatial vari-
able along the length of the fiber, and x is the normalized
reduced time (i.e., shifted to be in a frame of reference
which moves with the group velocity of a pulse). We
write x and t in the NLS equation (1) in the standard
mathematical, rather than optical, notational convention
[3,4], but we will discuss the implications of the results
for optical applications. The NLS equation has the well-
known soliton solution

plus decaying dispersive radiation. In practice, however,
while the final steady solitons can be determined fairly
easily, the evolution of the initial condition to these soli-
tons is very dificult to determine using the inverse
scattering transform. This is because this transient evolu-
tion is driven in large part by interactions between the
emerging solitons and the dispersive radiation, and the
dispersive radiation is very difficult to determine from the
integral equation which is part of inverse scattering.

As an alternative, here we derive approximate equa-
tions which describe this transient evolution via the La-
grangian formulation of the NLS equation. The idea is to
employ a trial function which consists of a solitonlike
pulse with variable parameters plus a term which
represents linear dispersive radiation. When used in the
NLS Lagrangian and combined with the solution of the
linear part of the NLS equation, this trial function yields
ordinary differential equations (ODE's) for the pulse pa-
rameters and the amount of dispersive radiation which
approximate the transient evolution. As expected, in the
approximate ODE's the radiation acts as a damping,
which causes the pulse to decay to a steady soliton. The
solutions of the approximate ODE's also agree very well
quantitatively when compared with numerical solutions
of the NLS equation.

Only the NLS equation is considered here, but a num-
ber of specific applications connected with the NLS equa-
tion are expected to benefit from an improved method for
determining the interaction between solitons and disper-
sive radiation, and these provide added motivation for
the present work. These applications involve problems
governed by perturbed or coupled NLS equations. The
behavior of solutions in such cases has typically been
determined in the past via soliton perturbation theory,
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II. APPROXIMATE EVOLUTION EQUATIONS

In what follows, the particular initial condition

Xu(x, O) =a sech —, —ao (x ( ~ (3)

which also yields equations for the evolution of the soli-
ton parameters. A straightforward application of soliton
perturbation theory [5], however, does not include in-
teraction effects between the soliton and the dispersive ra-
diation.

A variational trial function which partially includes
the effects of dispersive radiation has already been given
[6]. This variational method will be shown here to in-
clude a local interaction between the pulse and the
dispersive radiation, but it makes no provision for the
propagation of radiation away from the vicinity of the
pulse. Additional motivation for the present work is to
develop a better understanding as to why this variational
trial function works as well as it does, while at the same
time improving upon it. This approach has been used to
study a number of applications such as pulse propagation
in birefringent optical fibers [7—11], and has been shown
to provide a more accurate description of the solution
behavior than other methods. Recently it has been re-
ported that the method also leads to an efficient model of
soliton dragging logic gates (high-speed optical switches
which employ solitons) [12]; in particular, this variational
method proved to be the most accurate among the
several approximate methods tested.

While including this local interaction between a soliton
and dispersive radiation gives an improvement over stan-
dard soliton perturbation theory, there are still substan-
tial differences between such approximate solutions and
numerical solutions. These differences are clearly due to
the propagation of dispersive radiation away from the vi-
cinity of the soliton, which causes a permanent change in
it. For additional irnprovernents to the variational ap-
proximations, it seems necessary that this effect be in-
cluded in some manner similar to the way presented here.

iO+ibx /2wX

w
(6)

When substituted into the Lagrangian, and when varia-
tions are taken with respect to the variables g, w, 0, and
chirp b, one obtains the equations [6,7]

d
dt

(il w)=0,

dw

dt

(7a)

(7b)

db
dt , (1—gw ),

7T W
(7c)

dO, 2 1
6~ 3

(7d)

Interestingly enough, these equations can also be ob-
tained directly from the conservation laws for the NLS
equation (see the Appendix). A comparison of the solu-
tion of this system of equations (the exact solution is also
given in the Appendix) with the numerical solution of the
NLS equation is given in Fig. 1. These equations simu-
late much of the behavior present in the solution of the
NLS equation, but are "unable to account for the damp-
ing of the amplitude oscillations" [6].

In order to improve upon the trial function (6) used
above, it is necessary to understand the role played by the
chirp b. One can investigate the connection between the
chirp and the dispersive radiation by linearizing about
the soliton using u =uo+u&, where uo is the exact soli-

namely dg/dt=0. The soliton perturbation theory re-
sult follows since the conservation laws of the NLS equa-
tion are intimately connected to the Lagrangian [4], and
it is well known that the conservation laws can be used to
develop perturbation theory for solitons [5,15].

A somewhat better trial function is to allow the ampli-
tude and width in (5) to vary independently [7], but better
still is to also include a quadratic phase variation across
the pulse's profile (called a chirp since the local wave
number varies linearly across the profile) [6,7]:

L, =i(u *u, —uu, *)—
/ u, /'+ /u /', (4)

will be considered as a simple, specific example, since the
calculations are relatively straightforward and, further-
more, since for this initial condition the final soliton state
of the NLS equation is known [13]. In addition, it is pos-
sible to rescale x, t, and u in the NLS equation so that
P= 1 in the above, so that P= 1 can be assumed without
any loss of generality.

The Lagrangian density for the NLS equation (1) is

1.90

1.80 — I)
Il
I l

1.70—
l

1.60
[u(o, t) i

1.50

ll
Il

I

I

where e denotes complex conjugation, and where u and
u * are treated as separate variables when variations are
taken [6]. Key to what follows is the choice of trial func-
tion for u to substitute into this Lagrangian. For exam-
ple, if one bases the trial function upon the soliton solu-
tion (2) with x0=0 and V=O, i.e.,

u =g sechgxe' (5)

where g=rl(t) and 8'(t) =q l2, then one essentially ob-
tains the result of soliton perturbation theory [8,14],

1.40

1.20
0.0 5.0

I

1 0.0 15.0 20.0

FIG. 1. Comparison between solution of equations (7) with
the numerical solution of the NLS equation (1). The magnitude
of u at x =0 for the initial condition u(x, 0)= 1.25 sechx is plot-
ted as a function of time. Numerical solution of NLS equation:

; solution of approximate equations: ———.
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where 8=a. r/2, and f(x, t) is a solution of the linear
Schrodinger equation

df i d f
2 gx2 (9)

with an initial condition which depends in a complicated
way upon u(x, 0) [15]. A general characteristic of solu-
tions of the linear Schrodinger equation (9), however, is
that variations in the solution are rapidly smoothed out
by the dispersive derivative 8 /Bx . Thus, apart from a
short initial period, f(x, t ) is relatively fiat; in particular,
very quickly df/dx and r}f/dx ~0 in the vicinity of
the soliton. This shelf is clearly seen near the soliton in
the numerical solution of the NLS equation shown in Fig.
2. Note that when f is approximately constant, (8)
simplifies considerably, becoming

u, =h(1 —sech xx) —h'exp(2i8)sech ~x, (10)

where h = ~ f. Thus we see that the solution consists
of a soliton (which has a constantly increasing phase 8)
plus a relatively Aat and constant shelf. The oscillation in
t of the peak soliton magnitude is therefore merely due to
this shelf being alternately added in and out of phase with
the soliton (since the soliton s phase 8 is continuously in-
creasing).

With this approximation, the solution for u becomes

u =exp(i 8 )[a sech' +
~
h

~
( 1 —2 sech ~x )cosy'

i
~
h

~

sin—y ],
where y =0—argh. By comparing this approximate solu-
tion with the trial function (6), an interpretation of the
chirp b can be obtained. When the pulse is near a soliton,
we have that g=~+5g and I/w=a —x 5w. When 5g,
5m, and b are small, (6) becomes

ton a. sech' and
~ u, ~

((
~ uo ~. In this linear limit, the ex-

act solution for u I is given by

a' a —2u, = — +2m. tanhxx —~ tanh xxfax2 Bx

+a. sech ax exp(2i8)f ',

u =~ sechscx+5g sech'+~ 5w~x sech' tanh~x

+—b~ x sech' .
2

(12)

It has already been mentioned that Eqs. (7) can be ob-
tained by using either the Lagrangian (4) or the conserva-
tion laws listed in the Appendix. Therefore, we can use
the conservation laws to investigate the similarities be-
tween the two approximate expressions (11)and (12).

For example, if we examine the perturbation to the
mass conservation law (A3a), from (11) we obtain to first
order fp dx =2v. From (12), however, we obtain

fpdx=2~+25ri+~ 5w. Thus mass conservation im-

plies to first order that I~ 5u~= —25'. Note that in (11)
the shelf, represented by h, does not contribute to first or-
der to the mass perturbation. This is expected in general
[15]. Similarly, if we compare the perturbations to the
second moment of mass in each case, fx p dx, we obtain

5'= —(6/m. )~h ~cosy, and if we compare the perturba-
tions to the moment fxJ dx in each case we obtain
b = —(6/m )

~
h

~
sing.

From these results we see that the chirp b, as well as
the variations in the amplitude q and width w, can all be
interpreted as arising due to interactions between the sol-
iton and the shelf h. In particular, the variations in g and
w (which are linked in such a way as to keep the mass
constant to first order) come from the interaction with
the part of the soliton which is in phase with the shelf,
while the variations in b come from the interaction with
the part of the soliton which is out of phase with it. An
important difference between the two approximations,
however, is that the actual perturbations to the soliton
presented by (11) are not localized, even though this
might be expected from the trial function (6).

Another way to interpret the relationship between 5g
and h is to compare the two approximations at x =0.
Equations (11)and (12) then give

5g= —b ~cosy . (13)

Since we will be comparing the magnitude of the approxi-
mate and numerical solutions at x =0 as a function of t,
this is more appropriate. The appropriate alternative re-
lationship for the equivalent of b will be determined
shortly.

Based upon the above analysis, to determine approxi-
mate equations for the evolution of the initial condition
(3), we will assume a trial function that is a combination
of the above two approximate forms, namely

u

0.3

x
u = g sech —+ig expi0 .

w
(14)

-0. 1

-25.6 -12,8 12.8 25.6

FICx. 2. Numerical solution of the NLS equation (1) for ini-
tial condition u(x, 0)= 1.25 sechx, showing the formation of the
shelf in the vicinity of the soliton.

Here g, w, 0, and g are functions of t. The first term
represents a varying solitonlike pulse and allows the ini-
tial condition (3) to evolve smoothly to a soliton solution
of the NLS equation. It also includes the variations in g
and w due to the in-phase interaction with the shelf. The
second term g represents the out-of-phase interaction be-
tween the soliton and the shelf. This term is assumed not
to depend upon x in the vicinity of the soliton by reason
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of the approximation (10). It cannot be independent of x
over an infinite range, however, as them it would contain
an infinite amount of mass. We therefore assume that g
contributes to the Lagrangian only in a region of length l
centered about the pulse position. Since numerical solu-
tions show that the radiation has much smaller amplitude
than the pulse, it will also be assumed that ~g ~

((rl. The
form of the radiation away from the vicinity of the pulse
will be considered in Sec. III.

The approximate equations governing the evolution of
the pulse are obtained from variations of the Lagrangian

L, dx .

Substituting the form (14) for u into the Lagrangian (15),
we obtain

X =mg(weal'+7lw') mgw—g' —2g w8' —lg 8'

The mass conservation equation (17c} follows from the
first two of these equations, while the last equation can be
most easily obtained from the exact expression for energy
conservation for the NLS equation (A3c). The system of
equations (18) is not yet compl'ete for two reasons, howev-
er: the length l has not been specified, and no contribu-
tion from the radiation propagating away from the vicini-
ty of the pulse has been included. The lack of radiation
loss means that the solutions of these equations oscillate
and do not approach a steady state.

The system of equations (18) has a fixed point at
' —=k; which is a soliton solution of the NLS equa-

tion. The length parameter l is determined by the re-
quirement that the frequency of the oscillations of the
linearized solution about this critical point matches the
soliton oscillation frequency k /2, as shown in (11). This
requirement gives

21 g, 4

3 w
(16) (19)

plus higher order terms in g. Of the two quadratic terms
in g in the Lagrangian X, only the term proportional to l
is important; the results are essentially independent of the
presence or absence of the other term. The term propor-
tional to l arises from the integration of u*u, —uu, , and
gives the amount of mass in the radiation in the vicinity
of the pulse, as will be shown below. Only this quadratic
term will be kept in what follows.

With this modification, taking variations of the La-
grangian (16) gives the equations

1
5g: —~wg' —2gw8' —— +—'g w =0,

3 w

1 2

5w: —2m'' —2g 0'+ — +—2g =0,

(17a)

(17b)

58 (2g w+lg )=0,d
dt

(17c)

5g: ~(gw)' —lg8'=0 . (17d)

dg 2
dt 3m.

rl(q —w ),
dO =g ——'w
dt 2

(18b)

(18c)

Gj " —2g4w =0 .
dt

(18d}

Note that the variation with respect to 8, Eq. (17c), mere-
ly expresses conservation of mass, (A3a). The term pro-
portional to g represents the amount of mass in the radi-
ation near the pulse, and is important for driving the in-
teraction between the dispersive radiation and the pulse.
The quadratic term in g in (16) which was neglected does
not lead to any terms in the mass conservation equation,
and so is not needed.

After some manipulation, Eqs. (17) can be written in
the form

d l
(gw ) =—g(g —

—,w ),dt 7T

Other choices for l were tried, such as l =3m w/8, but as
long as the choice taken had the same value at the fixed
point there were no substantial differences in the dynam-
ics. The fixed point, of course, can be obtained from the
energy conservation equation (18d),

1/3

2g4w —"
w

(20)

In Sec. III, we shall show how Eqs. (18) can be extended
to include the radiation loss.

At this point some comparisons can be made between
the results from the Anderson equations (7), the present
approximate equations (18), and the inverse scattering
solution of the NLS equation. The final steady soliton
amplitude as given by the present approximate equations,
(20), is determined by energy conservation. For the An-
derson equations, however, mass conservation (17c)
determines the steady-state amplitude; the result is

K=a (21)

where a is the amplitude of an initial pulse of unit width
(P= 1 ). In addition, from the inverse scattering solution
of the NLS equation it was found [13] that the exact final
steady-state amplitude for the initial condition (3) (with
P= 1) is given by

K=2a —1 . (22)

Figure 3 shows a comparison between the three final am-
plitudes. It can be seen that the agreement between the
inverse scattering result (22) and the present result (20) is
very good for initial amplitudes above about 0.9, but, as
the initial amplitude decreases below 0.9, these two ex-
pressions start to diverge. Indeed, the amplitude given by
(20) becomes zero when a = 1/&2, while the final ampli-
tude given by inverse scattering (22) becomes zero when
a =0.5. This disagreement indicates that for initial am-
plitudes below about 0.9, the energy loss associated with
the dispersive radiation becomes significant. On the oth-
er hand, it can be seen that the amplitudes given by the
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2.0

1.5

The mass radiated into the two regions x ) l/2 and
x (—l/2 must be lost from the mass contained in the
solution in the vicinity of the soliton. Hence, combining
the mass conservation equation in the neighborhood of
the pulse (17c) and twice the result of expression (26), we
obtain a modified equation for total mass conservation,

1.0

d 2 3& 2=2g w+ g =2+21m e ' u *(l/2, t )
8&

d f t u(l/2, r) dd7
dt o V~(t —r)

0.5
0.80

I

1.00
I

1.20 1.40
(27)

FIG. 3. Final soliton amplitude as a function of initial ampli-
tude. Inverse scattering solution of NLS equation:; solu-
tion of approximate equations: ———;solution of chirp equa-
tions:

Anderson equations (7) are in good agreement with those
from inverse scattering only for initial amplitudes around
1. For a =1, of course, the initial condition corresponds
to an exact soliton and so no pulse evolution occurs.

III. RADIATION LOSS

While the comparison in Sec. II shows that the fixed
point of the approximate equations (18) is in good agree-
ment with the exact solution of the NLS equation, the
solution of these equations does not decay onto the fixed
point until the effect of dispersive radiation has been add-
ed. Since the amplitude of the radiation is small, away
from the pulse the nonlinear term in the NLS equation (1)
is negligible. Therefore the equation governing the radia-
tion propagating away from the pulse is

1'g=k+'g) and w = +w ) (28)

where g& and w& are small, then the mass conservation
equation (17c) becomes

d
dt 8

2'g w + g
8 d 2+ 9m

3g dt ' 64
(29)

In this equation, however, the solution at the edge of the
shelf, u(l/2, t), has not yet been identified. First of all,
since the shelf is small in magnitude and relatively Aat,
from (23) its phase is expected to be approximately con-
stant (i.e., slowly varying) after (possibly) an initial tran-
sient. The numerical solution of the NLS equation also
bears this out. [In addition, a more careful examination
of the solution of Eqs. (18) which compares the angle as-
sociated with the gw and g oscillation and the solution
for 8 also leads to this conclusion. ] When this phase is
constant, however, Eq. (27) is independent of the phase of
u and therefore u(1/2, t) and u (l/2, t) can both be re-
placed by ~

u ( l /2, t )
~

=
~
h = r.

In addition, if one examines the oscillation produced
by Eqs. (18) near the critical point using

. BQ 1 8 Q

2 gx2
(23)

From (13), q, can be identified as —
~h ~cosy =— rcosy, —

and by comparing the imaginary parts of Eqs. (14) and
(11) it is reasonable to identify g as —h ~sing. This is not
completely consistent with the oscillations described by
Eqs. (18), and also implicitly in (29) above. This is be-
cause the integrals arising in the variational formulation
produce slightly different constants than what one ob-
tains when one merely compares the approximate solu-
tions at x =0. This slight difference in the constants is
similar to what happens with other variational approxi-
mations [6]. Therefore, consistent with (29), we will in-
stead identify 3mg/8 as —

~h ~sing= —r sing. This allows
us to relate the height of the shelf, r, to the deviation of
mass from its value at the critical point. Equation (29)
therefore gives

The conservation of mass for this linearized equation is
the same as for the NLS equation (A2a). Integrating the
differential form of the mass conservation equation from
x =I/2 to x = ~ gives the mass radiated to the right
away from the vicinity of the pulse,

f u~ dx=Im(u u„)~
dt 1/2

(24)

which by symmetry is the same as the mass radiated to
the left. By Laplace transforming equation (23), it may
be shown that

(25)u (I/2 r)= &2e ' f — ' d
dt 0 Vm(t r)—.

Upon substitution into (24), this then gives 9m
(30)

~u ~
dx = —&21m e ' u*(l/2, t)

dt

d f t u(l/2, r)
dt o V7r(r —r)

near the critical point, since the height of the shelf, r,
drives the rate of mass loss from the pulse, (30) relates the
rate of mass loss to the total amount of mass present,
when the pulse is close to a soliton. It will be assumed
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that this relationship between rate of mass loss and
amount of mass present holds in general, so that we will
take 2 3 2

dt 8g
2'g w + g

2T

r(0)&n.t

including loss due to dispersive radiation is

(39)

T
2 2+2w —2g'+ g

22= 2 3~' 2

8 8
(31)

The conservation of mass equation (27) then becomes

3 2

2q w+ g = —2r I dr.
dt 8& « o m(t r—)

(32)

The next step is to couple the required rate of mass loss
from (32) to the equations for gw and g, (18). The mass
loss can be added to either equation, but adding it to the
equation for g is preferred. Recall that the mass loss is
driven by the shelf, which has an approximate height r.
Equation (31) gives a nonzero result for the initial height
of the shelf, however, which cannot be correct since in
reality the shelf takes a finite time to form. As a result,
using (31) and (32) as they stand overestimates the initial
mass loss rate somewhat. By moving the mass loss to the
equation for g, however, this discrepancy is automatically
corrected, since g is zero initially. Therefore, we merely
add a term proportional to —g in Eq. (18b) and adjust the
multiplying function so the average mass loss rate
matches that obtained from (32) near the critical point.
The result is

3'
dt 8g

(gw)= (g —
—,'w )g,

w = +2(gw ) —(gw )
=1

(40b)

(40c)

3g 1 d & r 3g 1 r
CX

= d7
8 r dt o v'm(t —r) 8 r r(0)&~t

2g'w+ g' —2@2= 2
~'

2

8a

(40d)

(40e)

dI9 =g' ——'w
dt 2 (40f)

on using (31) and (32). This particular approximation is
not appropriate for perturbed NLS problems, of course,
when dispersive radiation is likely to be shed continuous-
ly.

The full system of equations describing the evolution of
the initial pulse (3), including radiation loss, is then

dg 2 'g
(1 —g w )

—2ag, (40a)
dt 3m'

d =2 (1—g2w2) —2~g3' (33) IV. COMPARISON
WITH NUMERICAL SOLUTIONS

where

3&1 d ~ r
CX = d~.

8 r dt o v~(t —r)
(34)

77 r&

where the constant y is

(35)

The equation for r)w, (18a), remains the same.
Finally, an additional approximation can be made in

this particular case since it is an initial-value problem.
First of all, the integrodifferential equations (31) and (32)
(note that k is constant) for the total amount of mass loss
can be solved using Laplace transforms. The result is

The approximate evolution equations for the soliton
(40) were solved numerically using a fourth-order
Runge-Kutta method with the value of k (20) calculated
from the initial values of vl and w (a and p). To reduce
computation time by solving a third-, rather than a
fourth-order system, Eqs. (40a), (40b), and (40f) were
solved numerically for g, gw, and 0. The values for w,
and hence g, were obtained from (40c), which is a conse-
quence of the energy conservation equation (18d), and the
known value of gw. The full numerical solutions of the
NLS equation (1) were obtained by using a pseudospec-
tral method similar to that used for the Korteweg —de
Vries equation [16].

9k
64

(36)
1.70

Now, as t ~0, this solution has the same asymptotic ex-
pansion to second order as the solution of 1.55

dr — T
2= —V'y

dt r(0)&mt
(37)

IU(0, t)l

1.40

In addition, the solution of this equation has the same
asymptotic behavior in the limit t~ao as (35). Hence,
comparing (35) and (37), we can make the approximation 1.25

0.0
I

10.0
I

20.0 30.0
I

40.0 50.0
t r r

o &n(t r) r(0)&—mt. (38)

Using this expression to replace the loss in (27), we
have that the approximate mass conservation equation

FICs. 4. Soliton amplitude g as a function of t for a =1.25,
P= l. Numerical solution of NLS equation:; solution of
approximate equations:
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lJ=—(uu* —u*u ), (A lb)

E = lu„ I' —lu I', (A 1c)

Bp BJ
Bt Bx

(A2a)

OJ a+ [E+—,'p —
—,'p„]=0,

Bt Bx
(A2b)

BE 8 i+ —(u u„' —u„*u„„)—2pJ =0 .
Bt Bx 2

(A2c)

which are generally referred to as the mass density, mass
fiux (or momentum) density, and energy density [5].
(Note, however, that in the optical context mass should
really be photon number. ) Directly from the NLS equa-
tion, the following conservation laws can be derived:

reasonable choice for making the moment fxJ dx
nonzero. From the above equations it is clear that this
particular moment is intimately connected with varia-
tions in the width of the soliton through jx p dx.

One cannot obtain an equation for the phase 0 from
any of these conservation laws (including the higher-
order conservation laws [3]), as they are all independent
of the phase. There is a fifth invariance of the NLS equa-
tion, however: scale invariance. This is not an invari-
ance of the Lagrangian, though, since it must be rescaled
as well. Nevertheless, Noether's theorem [4] can be
modified to give something akin to a conservation law in
this case:

f xJ dx+f (u*—u, —uu, ')dx —', f —E dx =0.

(A5)

"f"pdx=o, (A3a)

f Jdx=0, (A3b)

By integrating with respect to x, the conservation laws
are obtained in their standard forms, namely

This modified conservation law can be used to derive the
equation for the time evolution of the NLS phase 0. As
such, it should perhaps be thought of as a replacement
for the last (sixth) moment equation.

The solution of Eqs. (7) for rl, w, and b can be found ex-
plicitly. First, g is eliminated in favor of m using conser-
vation of mass

f Edx=0 . (A3c) ri w=a p—:k', (A6)

These conservation laws are directly associated with in-
variances of the NLS Lagrangian (the first with invari-
ance with respect to phase changes, the second with
translations in x, and the third with translations in t) In.
addition, however, it is possible to obtain equations for
the various moments of these densities,

1—=@I—e cosr),
W

(A7)

where a and P are the initial values of g and w. Since
gw = 1 is the steady state of the system, 8 is an approxi-
mation to the steady-state soliton amplitude. The solu-
tion of the equations for w and b can then be written

„"f" xpdx= f" Jdx,

„"f" x'pdx=2f" xJdx,

f xJdx= f [E+ ,'p ]dx . —

(A4a)

(A4b)

(A4c)

2
b = ——ke sin~,

7T

2 2 1 2—k' t= tan
(1—e') V'I —e'

L

1+e
1 e

where ~ is given implicitly as a function of t by
' 1/2

tan—
2

(A8)

The first of these moment equations can be associated
with the Galilean invariance of the NLS Lagrangian, but
it is not clear which invariances might yield the other two
equations. These moment equations are obviously not
closed in their present form, but they do close if one as-
sumes a particular form for the solution, such as Eq. (6).
With this assumption, one immediately obtains the first
three of Eqs. (7). (Note that half of the six integrals van-
ish since the integrands are odd. ) The moment equations
also give a motivation for including the chirp b in the tri-
al function (6): a term in the phase proportional to x is a

e sin~
1 —e cos~

(A9)

and where e= 1 —1/a P . The approximate oscillation
period is then directly found to be

g 2( 1 2)3/2
(A 10)

For small amplitude oscillations, e «1, and we obtain
T=vr /lc . The correct answer, from (11), should be
4m/~, where ~ is the true steady-state soliton amplitude.
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