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Emittance growth of bunched beams in bends
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Talman [Phys. Rev. Lett. 56, 1429 (1986)] has proposed a novel relativistic effect that occurs when a
charged particle beam is bent in the magnetic field from an external dipole. The consequence of this
effect is that the space-charge forces from the particles do not exhibit the usual inverse-square energy
dependence and some part of them are, in fact, independent of energy. This led to speculation that this
effect could introduce significant emittance growth for a bending electron beam. Subsequently, it was
shown that this effect's influence on the beam's transverse motion is canceled for a dc beam by a poten-
tial depression within the beam (to first order in the beam radius divided by the bend radius). In this pa-
per, we extend the analysis to include short bunch lengths (as compared to the beam pipe dimensions)
and find that there is no longer the cancellation for forces both transverse to and in the direction of
motion. We provide an estimate for the emittance growth as a function of bend angle, beam radius, and
current, and for magnetic compression of an electron bunch.

PACS number(s): 29.27.Bd, 41.75.Ht, 03.50.De

I. INTRODUCTION

There is a trend in electron accelerators towards higher
peak currents and lower transverse emittances. For ex-
ample, designs for future linear colliders [1,2] and drivers
for future short-wavelength free-electron lasers (FELs)
[3,4] typically require beams with transverse emittances
of a few pm and peak currents in excess of 1 kA. Because
the transverse space-charge forces are expected to scale
inversely with the square of the relativistic mass factor,
these designs attain the high peak currents with magnetic
bunch compression at relatively high energies.

Talman [5] and later Piwinski [6] described a space-
charge force, known as the centrifugal-space-charge
force, that does not exhibit the relativistic cancellation if
the beam path is circular; however, others [7,8] pointed
out that the effect is canceled by the variation in beam en-
ergy introduced by the potential depression of the beam
to first order in the beam radius divided by the bend ra-
dius. The force that Talman discussed originated from
the dependence of the radiation terms on the charged
particles acceleration, and is a dc phenomenon. Piwinski
examined the force for a harmonic current variation in a
rectangular beam pipe but only in the limit where the
periodicity is long in comparison to the beam pipe dimen-
sions.

In this paper, we discuss additional force terms for a
bunch in a bend which are not canceled by the effect of
the beam's depression. These terms are related to
Talman's and Piwinski's effects but arise when the beam
current periodicity (or overall bunch length) is short in
comparison to the beam pipe aperture. In particular, we
examine space-charge forces both in the transverse direc-
tion and in the direction of motion that do not exhibit the
usual relativistic cancellation. We assume that the bend

radius is very large and in general only keep the lowest
order term in factors of the beam radius divided by the
bend radius.

We find that if the beam radius is large (on the order of
1 mm) an appreciable emittance growth can occur from
both the transverse force and the energy spread induced
from the electric field in the direction of motion. This
emittance growth can easily exceed 10 pm for beams of 1

kA or more with bunch lengths on the order of 1 ps.
We calculate this effect by finding the space-charge

forces of a bunch while in a bend. The current of a
nominal-shape bunch will be harmonically decomposed
and broken into separate lines of charge. The space-
charge fields for each harmonic are calculated by a per-
turbation analysis of the scalar and vector potentials us-
ing the wave equation and the Lorentz gauge condition.
The forces transverse to and along the direction of
motion are calculated by explicit expansion of the
Lorentz force in terms of the potentials. The harmonics
are summed up and the fields are numerically integrated
over a uniform beam cross section.

The space-charge force along the direction of motion
changes the rms energy spread of the beam. Because of
the form of the space-charge forces, the emittance growth
can be estimated from this energy spread. We show that
the transverse space-charge force also leads to an effective
energy spread and estimate the emittance growth from it.
These calculations provide an estimate for the magnitude
of the potential emittance growth and show how this em-
ittance growth scales with different beam parameters.
The actual emittance growth is dependent on the precise
beam distribution function and correlations within the
beam. Certain correlations can lead to partial or even to-
tal cancellation of the emittance growth. However, the
beam distribution will vary within a bend and such can-
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cellation cannot be expected. Thus the goals of these cal-
culations are to provide guidelines for when the potential
emittance growth becomes significant and scaling laws
which indicate how to reduce it.

This paper is divided into six sections which will ad-
dress different aspects of the problem. In the first section,
we review the "classical" emittance growth of a bunched
beam in both a drift and in a bend, using the usual space-
charge forces which are inversely proportional to the
square of the beam energy. In the second section, we cal-
culate the centrifugal-space-charge force of a dc beam in
a bend and show, as expected, that the effect of the
space-charge potential depression cancels the effect from
the centrifugal-space-charge force. This is an important
result because it shows that the part of the vector poten-
tial that can be written as A=(0, (P/c)$, 0), where P is
the scalar potential, has no effect on the beam dynamics;
we use this fact later as the basis for our perturbation
analysis.

In the third section we do an explicit derivation of the
space-charge fields around an infinite rotating cylinder of
charge. Some details of this tedious calculation are pro-
vided in the Appendix. Although this geometry is not of
practical interest, the results show that (1) the space-
charge fields (to first order in the inverse bend radius) are
the same as the ones found in the straight-line motion for
bunch lengths greater than a certain value (depending on
the bend radius and the beam radius) and (2) the space-
charge fields are higher order and thus much smaller for
shorter bunch lengths. In current accelerator technology
and in projected future machines, all bunch lengths that
are feasible fall under case (1). Thus we will use straight-
line fields as the initial estimate in the perturbation
analysis. In the fourth section we do the perturbation
analysis. We start with the wave equations and the
Lorentz gauge condition and assume the vector potential
is of the form A„=(5A„„,(P/c)P„+530„,0) for each
harmonic n and a thin ring of current. We get equations
for 5A„„and 52 s „ in terms of P„, and then find explicit
expressions using the linear motion expressions for P„.

In the fifth section, we write the transverse Lorentz
force equation in terms of the perturbed potentials. Now
the advantage of this approach becomes clear —all terms
first order in P„cancel, leaving only the smaller per-
turbed fields. Thus even if the error in the field assump-
tion is large compared to the perturbed potentials, the re-
sult is accurate as long as the error is small compared to

In the transverse equation of motion, two types of
terms arise that are energy independent and were not
present in the dc case. To relate this result to previous
work, we then look at Piwinski's results in both the long
beam and the short beam limits and show that his results
are consistent with the appearance of these terms as the
bunch length becomes small.

In the sixth section, we estimate the emittance growth
from these two new terms. Each term is treated separate-
ly because they arise from fundamentally different effects.
First, there is a term corresponding to the net
centrifugal-space-charge force, which is summed over all
harmonic contributions. An effective energy spread is
found for this force and the emittance growth is estimat-

ed from this energy spread. The emittance growth is in-
dependent of beam energy and linear with bend angle,
but scales inversely with the bunch length and the square
root of the bend radius and roughly to the —,

' power of the
beam radius. This emittance growth is typically small
((1 pm) but can become large for large-radius short
(subpicosecond) bunches in relatively small-radius bends
(on the order of 1 m). The second term leads to an energy
spread increase from the azimuthal electric field as the
beam drifts, and also can be expressed as an emittance
growth. The emittance growth from this effect is quad-
ratic with bend angle and beam radius and inversely pro-
portional to the bunch length. For short bunches with
large radius this emittance growth can be extremely large
(greater than 100 pm) for bends of 1 rad or more.

II. EMITTANCE GROWTH FROM THE USUAL
LINEAR-MOTION SPACE-CHARGE FIELDS

hc„= IS
4g p2 2 (2)

where I is the beam current,
3

IA = =17 kA,
e

(3)

S is the path length, and g is a geometric factor typically
between 0.2 and 0.5. This emittance growth, like all oth-
ers considered in this paper, adds in quadrature to the in-
itial emittance:

c =c;+he,„,f i (4)

where c& is the final normalized emittance and c,; is the
initial normalized emittance. The actual increase in the
emittance is given by

In this section we discuss the emittance growth from
the "classical" space-charge forces which depend inverse-
ly on the square of the beam energy. The purpose of this
section is to introduce some of the concepts of emittance
growth and to provide a formalism to describe how an
energy spread in the beam results in an emittance growth.
The rms transverse normalized emittance (in the x direc-
tion) is defined by

E„=Py&&
x'

& &
x'

&
—

& xx' &',

where P and y are the usual relativistic factors, the
brackets imply ensemble averages, and the prime indi-
cates an axial derivative. The normalized rms emittance
growth of a drifting slug beam has been studied in [9].
The emittance growth is linear with distance as long as
the beam radius does not significantly deform; thereafter
the emittance growth is less than linear with distance. In
the linear emittance growth regime the beam has not ap-
preciably deformed radially and the emittance growth
can be thought of as the rms change in the beam diver-
gence from the space-charge forces times the beam rms
radius. In this case the normalized rms emittance growth
is given by [9]
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if the initial emittance is much larger than the emittance
growth and given by

cf E; =DE,~, E; ((Ac„
if the emittance growth is much larger than the initial
emittance. Note that the linear increase in the emittance
is smaller than 4c„ if the initial ernittance is not negligi-
ble. Defining the emittance growth as the in-quadrature
component allows us to talk about an "emittance
growth" which does not depend on the initial emittance.

It is easy to show that the radial beam expansion is ap-
proximately the normalized rms emittance growth [Eq.
(2)] times the drift distance divided by the beam radius
and y. Since we are considering emittance growths on
the order of a pm for ultrarelativistic energies, the beam's
radial expansion is not significant until the beam has
drifted several hundred meters or even kilometers. Thus
we can in general assume that the emittance growth
within bend systems (typically with path lengths of only a
few meters) is dominated by the change in the rms beam
divergence without deforming the charge distribution
within the bunch. This is an important observation and
we will use this fact to estimate emittance growths later
in this paper.

In addition to the drifting-beam emittance growth,
there are additional ernittance growth mechanisms if the
beam is bent in a dipole magnetic field. Bend systems in
low-emittance accelerators are usually designed to be
achromatic; that is, there is no emittance growth if the
beam is not monoenergetic. However, these designs do
not compensate for energy changes within the bend sys-
tem itself. Consider a two-dipole bend, which is made
achromatic by including a quadrupole between the di-
poles. If a particle's energy changes when it is between
the dipoles (for example, from the space-charge force
along the direction of motion), the final bend angle will be
modified by

AE
Ao.'= n,E

where hE is the energy change, E is its initial energy, and
a is the nominal bend angle from the final dipole. Using
Eq. (1) and the fact that the bend is otherwise achromatic
the emittance growth for an ensemble of particles can be
shown to be

be„=y/3 —[(x )((bE bE,„,) ) —(xbE) —
j

1/2
+2—[(x')(x'bE) —(xx')(xbE & j

where AE,„, is the average energy change. Since we are
concerned with the energy changes due to space-charge
forces, AE„, is zero. The energy change is often either
an even function of x (for example, if the energy change is

It is clear that the actual emittance growth is strongly
dependent on the exact axial distribution function and
the correlations of the energy spread with position within
the bunch. We can write the emittance change as

=~~~ (a~b,E —(xb,E) )2E rms

=a (a bE —&xbE& )' '
2 2mc

rms (10)

where a is twice the rms transverse beam size (and equal
to the beam radius if the beam cross section is a uniform-
ly filled circle) and bE, , is the rms energy change. Note
that the emittance growth from an energy spread is in-
dependent of the beam's energy. The second term under
the radical sign in Eq. (10) never increases the emittance
growth. Thus the maximum emittance growth resulting
from a rms energy spread is given by

a ~Erms
n, max

mc

which equals the actual emittance growth if (xbE )
equals zero. We can use these equations to estimate the
ernittance growth by calculating the growth in the rrns
energy spread as the beam is transported in a bend. Note
that Eqs. (8)—(11) are consistent with the observation that
the ernittance growth is dominated by the change in the
beam s radial velocities and independent of any radial de-
formation. If there are particle energy changes within an
individual dipole, Eq. (10) written in differential form can
be integrated along the dipole with respect to the bend
angle to find the emittance growth.

We can estimate the ernittance growth as the beam is
bent by approximating the actual space-charge fields by
the fields resulting from straight-line motion. It must be
emphasized that this is incorrect (as we will see later), but
this is a standard approximation and is used in all ac-
celerator transport codes. Consider a bunch of length 5
in a bend of radius R (Fig. 1). We can define a local
frame of reference with coordinates (x,z, RO), pictured
in Fig. 2. If the bunch length is negligible in comparison
to the bend radius, this local frame is an approximate

from the longitudinal space-charge force for straight-line
motion) or linear with x [we will see that this is the case
with the energy independent space-charge forces de-
scribed later in this paper —see, for example, Eqs. (104)
and (117)] times a function g that just depends on the lon-
gitudinal position within the bunch. Additionally, the
particle distribution is usually separable into a radial
function and an axial function.

If the energy change is an even function of x the
second and fourth terms vanish. Assuming that the ini-
tial emittance is small, x is either small or nearly linear
with x, and the third term is also very small, leaving just
the first term which we can identify with the rms energy
change. If the energy change is linear with x the third
and fourth terms cancel, and the emittance growth is
given by

(9)
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and the energy change of a particle at (x,z, RO) after the
beam drifts a distance S is given by

dI eS
dz 2nEpy ca

a — b+a ln—
2 a

(16)

FIG. 1. Bunch of length 5 and radius a in bend of radius R.

inertial frame for the bunch at that instant because the
beam appears to be going in a straight line. For a
sufficiently relativistic, uniform radial-density beam in
straight-line motion, the radial electric field in its own in-
stantaneous inertial frame is given by

pI
2mEa Pyc

inside the beam (p =x +z ) and

I
2mEPycp

(12)

(13)

outside the beam, where I is the local current, typically a
function of the azimuthal (along the direction of motion)
position within the beam RO. The radially integrated
electric field from a position r within the beam to the wall
at radius b is given by

b
E„dr =

r
"

2~g yea

2 —2
+a'ln—

2 a
(14)

We can use Stokes' law and the curl equation for the elec-
tric field in the beam's own inertial frame to find the axial
electric field, which is given by the derivative of this ex-
pression with respect to the axial distance. Recall,
though, that the axial distance in the beam frame is given
by zy and that the longitudinal electric field is the same
in the laboratory and beam frames. This gives in the lab-
oratory frame

3a IJ S 1
5c~ =0! —+2 ln—165I py2 2 a

(19)

This emittance growth can be relatively quite large [com-
pared to the straight-line growth (Eq. (2)] for short bunch
lengths. For example, a 170-A peak-current bunch 1 mm
in radius and 1-ps long in a 180' bend at 10 MeV wi11 lead
to 100 pm of emittance growth per meter of bend if the
beam pipe radius is 3 mm.

The strong scaling in Eqs. (2) and (19) of the emittance
growth with beam energy leads to the common myth that
no emittance growth results from bending an ultrarela-
tivistic beam.

As a final exercise in this section, let us estimate the
ernittance growth in a nonachromatic bend for a beam
that has an energy spread of the size of its space-charge
potential depression. Alternatively, this is the emittance
growth in a two-dipole achromatic bend in which there is
some mechanism (for example, longitudinal wake fields)
generating this type of additional uncorrelated energy
spread while the bunch is drifting between the dipoles.
The space-charge potential

The rms energy change for a bunch with a parabolic
current profile and peak current I and length 5 is

eI S
hE, , = —+2 ln—

4& 4m.Ep'y'c

Note that b,E is linear with z for this case and (xhE )
vanishes. Thus, as the beam bends an angle dn, the rms
:&ormalized emittance grows an amount

a bE,m.de„=yP — du .
2 E

Assuming either a distributed bending of the beam or just
two individual dipoles leads to the same ernittance
growth:

dI 1

dz 2n.Epy ca

2 2a —P 21 h

2 a
(15)

2
P

4mcca

leads to a rms energy spread of

eI
~Erms =

4 3~ac

(20)

(21)

Using Eq. (11) (because (xb,E) equals zero), this will
lead to an emittance growth

a bE, ,
h, c,„=yp— a

2 E

beam with circular cross section

FICx. 2. geometry used for the beam's local coordinate sys-
tem. The beam is moving out of the plane of the page.

a eI=p— a
2 4v'3vremc

I an
I~ 2v'3 ' (22)
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III. dc BEAM IN BEND

There are two important points we will make in this
section. First, we show that if the vector potential is
equal to A=(0, (P/c)$, 0}, then the centrifugal-space-
charge force cancels the effect of the potential depression
of the beam (almost exactly). The next thing we show is
that any noncancellation of the centrifugal-space-charge
force and the potential depression looks like an energy
spread, and the emittance calculation technique from the
preceding section can be used to find the emittance
growth.

We begin by first reviewing the case of a dc beam
within a beam pipe, following [7]. The vector potential
A and scalar potential P are given by

and

V A= —RJ (23)

V2 (24)

where J and p are the usual current and charge densities.
If we define x =r —R we can write, to first order in x /R
(using the cylindrical coordinates in Fig. 1},

which, as before, is independent of the beam energy.
We will use this technique in estimating the emittance

growth from different effects. It must be emphasized that
this is not the emittance growth due to the potential
depression of the beam for two reasons. First, if the bend
is achromatic, only changes in the particle's energy
would lead to an emittance growth, and second, there are
centrifugal-space-charge forces which tend to cancel this
effect. However, this technique can be applied to estimat-
ing the emittance growth from other forces leading to a
rms energy spread.

yoU
yx = y)x+ R

X X+ + ~ ~ ~

R

2
y&U X X+ + + ~ ~ ~

R R 2R~

UBO P P e dP—e +e
m mR y~m dr

(28)

If we assume an equilibrium orbit for a particle at the
center of the bunch (where the radial derivative of the
scalar potential vanishes) with relativistic mass factor yo,
then

ypU
2

0= —e
R

"Bo P $(0,0)+e
m mR

(29)

where the scalar potential is written as a function of the
local coordinates (x,z ). Equation (28) reduces to

~ ~X= y1 . U

y R

2
X X y)v+ + ~ ~ ~ +2R' yR

P (P(x,z) —$(0,0)}
ymR

(t (x,z )
—$(0,0)

y&= —e
mc

(31)

The y, v /yR term cancels the curvature term exactly,
leaving

(30)
m dr

None of the terms depending on v x "/R "+' will lead to
an emittance growth in an achromatic bend (they are just
the usual higher-order bend optics terms) and we can ig-
nore them. Now y, depends on the position of the parti-
cle within the bunch because of energy conservation. If
the variation in particle energy only depends on the
space-charge forces,

A
c

(25)

In the dc case, the time derivatives vanish and the radial
force equation gives

2

R
X X——+ 2R'

x e dP 2 1

6R3 my dr '
y

(32)

F„=e — ~ +P'+r y2 dr R
(26)

d yv UBO p p e
(yr )= —e '+e

dt r m mR y2m dr
(27)

where v is the particles' velocity (close to c ) and Bo is the
applied external magnetic field. We can rewrite Eq. (27)
by introducing y& =y —yo as

In a later section we will calculate the higher-order
correction terms for the vector potential which will in
turn lead to an additional term of order 1/R in the force
equation. The second term on the right-hand side of Eq.
(26) is the curvature term attributed to Talman. We ap-

ply Newton's second law, which results in

where P, (((1) is the transverse normalized velocity.
Note that y& now only occurs in the "normal" space-
charge term. In other words, the effect of the potential
depression of the beam has nearly vanished. Physically,
as the beam is bent, the potential energy in the Coulomb
fields around the beam must also be bent. By the conser-
vation of energy and the equivalence of mass and energy,
the inertia of the potential depression is the same as the
inertia of the potential fields. We would expect the po-
tential energy that an individual particle drags around
with it should be related to the particle's potential
depression, but it is not obvious that they should be equal
to lowest order in 1/R.

The error in the assumed form of the vector potential
in the above analysis will lead to a noncanceling centrifu-
gal space-charge force of order 1/R (this will become
apparent in a later section). However, if the beam is
bunched, there are additional errors introduced into the
above analysis which will lead to terms inversely propor-
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X E2
IS
p2 2 2 (34)

This emittance growth vanishes at high energy. The
transverse velocities from a beam with an energy spread
of b,E/F. in a bend of angle a will lead to an emittance
growth of

2
ISy bE
16I~ E (35)

Because the beam energy spread is no more than 10
(even for compression}, this contribution is also typically
quite small (about 0.1 pm for a 1-kA beam in a 1-rad
bend that is 1 m long).

We can relate the terms in Eq. (33) to Lee's notation
[8],F and G, by identifying

PCSCF(~ }

R (36)

and

p(r ) (tcscF r mc Yl, long

R eR
(37}

After a path length S, the transverse velocity introduced
by G is (neglecting the other terms)

tional to R. There are two additional physical effects in-
troduced by a bunched beam. First, the radial com-
ponent of the vector potential becomes nonzero, primari-
ly arising from the time derivatives. Also, y, depends on
the azimuthal electric field, which also becomes nonzero.
As a result, a more complicated analysis is required to
find the particles' transverse motion.

For convenience we can rewrite the transverse ac-
celeration including the additional forces in the form [us-
ing Eq. (29) to define the equilibrium orbit]:

v x x + x e dP ~2 1

R R 2R2+ 6R3 my dr r2

2 2 2

p( i' ) + pcscF( 7' ) + ' (33)
ymR ymR yR

where we have defined the space-charge potential P to
vanish at (0,0), PcscF is an effective centrifugal-sPace-
charge and y, &,„ is the particle's energy variation from
any force integrated along the direction of motion. By
writing the transverse acceleration in this form, we can
easily see any cancellation with the space-charge poten-
tial (if any) and we are able to maintain the same form for
the centrifugal-space-charge force as we saw in Eq. (26).
Note again that the first two terms on the right-hand side
of Eq. (33) do not inherently lead to an emittance growth
for an ultrarelativistic beam if the bend is made
achromatic. If the transverse velocity is nonzero there
will be a relatively small contribution from the second
term. A transverse velocity can arise from the initial em-
ittance and also from bending a beam with an energy
spread. The emittance growth induced from bending a
beam with transverse velocities from an initial emittance
1s

x'= = = GS .dx x e

Pc ymc
(38)

The emittance growth (to be added in quadrature to the
initial emittance) is then

~E„= ', S&&x')&G'& —&xG&'.
mc

(39)

Note that this equation is similar in form to Eq. (10). If
there are no correlations, the emittance growth due to the
transverse forces is

e
~n p

S+rms Grms
mc

(40)

or

mc
(41)

g] g2 g3

R R' R'
the emittance growth is

(43)

Pe
~n 2

++ rmsg 1,rms +
mc R (g))

1 g2 g lg3(') ( )

2(g', & (g', &

+ 0 ~ ~ (44)

and only the contribution from the g &
term does not van-

ish if the bend radius is made extremely large (for a fixed
bend angle).

IV. BEAM UNIFORM IN AXIAL DIRECTION

In this section we will introduce a harmonic formula-
tion which will lead to an explicit expression for the cur-
vature term. Let us consider a ring of charge, as shown
in Fig. 3. We will assume that the charge density is har-
monic and that the entire ring is rotating around the ori-
gin with angular velocity m=U/R. We can sum many
harmonic components to create a single short bunch of
length 5 in the azimuthal direction. We will also assume
that we can construct the beam thickness 2a by superpo-
sition of various rings. This radial superposition will in-
troduce a bunch length expansion of 2a after a quarter
revolution, but this is not a problem because dipoles in
typical achromatic bends have angles much less than one
rad. For this calculation, we will assume that the ring is
actually a cylinder of charge, extending uniformly in the

where u is the bend angle. We see that this is exactly of
the form of the emittance induced by an uncorrelated en-
ergy spread [Eq. (11)]if we identify the energy spread as

~Erms =e ((4 PCSCF) & =e+Grms

Analogous to Eq. (11), Eq. (40) can be used to find the
maximum possible emittance growth for a given 6, ,
Note also if
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which gives

„ aS, „—i — ' (n&0) .
C

(4&)

If we let x denote the radial location relative to the bend
results, we can then write the radial Lorentz force equa-
tion for the nth harmonic as

(a) single ring (b) multiple rings forming beam of nonzero width

FIG. 3. (a) Single infinitesimally thin cylinder of charge (uni-
form in z direction) with radius R. We create an azimuthal
bunch by summing up rings with various charge-density har-
monics. (b) Bunch thickness is formed by superposition of
slightly offset rings.

axial direction. Although this case is nonphysical, it is
useful because we can explicitly solve for the electric field
around the bunch. As the bend radius becomes large, we
will see that the radial electric field becomes the same as
if the beam was not bending. We would expect that if
there is any deviation in the electric field from the usual
field seen from straight-line motion that it would be
demonstrated as an azimuthal modification of the radial
electric field, which would be explicitly seen in this
geometry. The fact that none exists will allow us to use
the straight-line electric field for the more complicated
geometries.

We assume that the nth current and charge density
harmonics are

Js „(r,O) =up„5(r —R )e'"'

p„(r, O)=p„5(r —R )e'"'
(45)

B„„(r,O, z ) =B„„(r,z )e'"'

Since Maxwell's equations are linear and time invariant,
and from symmetry we can write the field harmonic com-
ponents as

E„„(r, 8,z ) =P„„(r, z )e '"'

Ee „(r,O, z) =Pe „(r,z)e'"'

E, „(r,O, z)=E, „(r,z)e'"'
(46)

1
p2 x . eru en

y2 R n Bz
(49)

1 2xp ——
y2 R

(50)

By combining Eq. (47) with the Maxwell equation for the
curl of the electric field, we obtain Bessel's equation for
order n:

0= r rX„„=d d
dr d7'

2

nF. — 1 —P2 A.

r, n R
(51)

The general solution for the radial electric field is then

rE =CJ nP +DN —nP
7' r

r, n n R
(52)

The problem is simplified if we assume the absence of a
beam pipe. We can immediately discard the N„solutions
within the ring because the functions diverge at r=O.
We have only two independent boundary conditions at
r =R; the difference of the radial electric fields equals the
charge density divided by the permittivity, and the
tangential electric field is continuous. We know that ac-
celerated charges radiate, thus we can assume an
outward-going wave for the boundary condition at large
r. The Bessel functions' asymptotic limits for large argu-
ments are

This is the harmonic version of the centrifugal space-
charge force in terms of the fields. We will write this
later in terms of the potentials.

Now consider the case where the beam is infinitely long
and uniform in the axial direction, so we really have a ro-
tating cylinder which is modulated in the azimuthal
direction. By symmetry, the only nonzero components of
the field are E, „E&„,and 8, „.

Equation (49) reduces to

Be „(r,O, z)=Be „(r,z)e'"'

B, „(r,O, z ) =B,„(r,z )e'"'

We use the radial component of the Maxwell equation for
the curl of the magnetic field:

n~J„(z)=&2/m. z cos z ———
4 2

n~N„(z)=&2/mz sin z ———
4 2

(53)

pJ+ =PXB,1 BE
~2 Bt

(47) We can rewrite the fields in Eq. (52) using these boundary
conditions for ultarelativistic beams as

rE, n= '

pn 7Tn XR N„'(n )J„n 1+—
2c R

pn~n XR J„'(n )N„n 1+—
28 R

iJ„'(n )J„n—1+—

iJ„'(n )J„—n 1+—

r(R

r)R,
(54)
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where as before we have written r =R +x. Note that the
large-radius electric field is given by

2 . n5
p =p (57)

R p„mnP„„=—i — J„'(n )v'2R /vrnr
T 2E

i(nr/R —~/4 —n~/2) in(0 —cot )Xe e (55)

P = R J'(n)
nc p

(56)

which, as required, is independent of r. Next, we use the
harmonic charge density for a uniform slug of charge
centered at 0=~t, which is given by

which is indeed the form for an outgoing wave. By using
Eq. (53), we can find the azimuthally integrated Poynting
fiux (at a large radius r per unit axial length) to be

2

where p„ is the bunch-current density for the ring and 6
is the bunch length. Note that if the beam length is
sufficiently short, p„ is constant for quite a few n, and the
radial electric field of the infinitesimal-width bunch is
dominated by the contributions from large harmonic
number n W. e can expand the expressions in Eq. (54) in
terms of Airy functions (see the Appendix). The Airy
function arguments are small for a large bend radius R,
and the functions can be expanded as a cosinelike power
series. The summation is then trivial, and we find that
the radial electric field only exists within a cone around
the bunch (where the tip of the cone lies at the bunch
head). We find to first order for small bunch lengths

Pr ~—, xR

2E
' ' R

3/2
5

2R R

Rpr 5 t —, xrE„= +
4E

' 2R R ' R
3/2

) '+&,
2R R

3/2 &'+&,
2R R (58)

where the plus sign is used in the region r & R and the
minus sign for r & R, and g =R ( 8 cot ). W—e see for the
majority of the bunch the usual, nonbending contribution
p„/2s. Unlike in purely linear motion, however, this con-
tribution does not exist outside a cone with apex at the
center of the leading edge of the bunch [note the region
definitions in Eqs. (58)]. This results from the combina-
tion of causality and the lack of an inertial frame of refer-
ence. The higher-order contribution (not included) is
much smaller (it goes like 5/R ). It can be identified with
the noncancellation of the forces from the electric and
magnetic fields arising from the angular misalignment
due to the retarded times. The discontinuity arises be-
cause we are assuming that we have a uniform charge
density over the bunch and zero elsewhere. Note that for
a large bend radius ( x/R ~) is small compared to the
other terms, for all x within the bunch. Thus virtually
the entire bunch will see the same radial electric fields as
it would for purely linear motion, for typical bunch
lengths. This is an important result. It tells us if we
satisfy the top region limit in Eq. (58) that the straight-
line electric field is a good approximation to use for a
bunch in a bend.

Now consider the case where the bunch current varies
along the length of the bunch. If the variation is
sufficiently slow, we can construct the bunch out of a su-
perposition of successively shorter, constant current
bunches. As long as the current variation near the peak
of the actual current profile is not too abrupt, the actual
current profile can be represented by a summation of

V. PERTURBATION ANALYSIS
FOR THE SPACE-CHARGE FIELDS

In this section we will find explicit formulas for the po-
tentials using a perturbation analysis. These potentials
will then be used to derive the centrifugal-space-charge
force as a function of the bend radius and beam parame-
ters in the next section. We will do this by assuming that
the azimuthal component of the vector potential is very
close to P/c times the scalar potential and do a perturba-
tion analysis based on the wave equations for the scalar
and vector potentials. In particular, we will find an ex-
pression for the potentials for a ring of current. We can
then use this expression as a Green's function for a
uniform-density beam with circular cross section.

As before, we assume a ring of current at a radius R
with a time dependence of e'"' ' . Let us now also as-
sume that the vector potential for harmonic n is given by

A„=(5A„„,(P/c )P„+52s „,0) (59)

( A, must remain zero because we have no current fiow in
the z direction). The wave equations for the scalar and

bunches not violating the region limits in Eq. (58). From
superposition, the space-charge fields are the usual
straight-line motion fields (plus a higher-order contribu-
tion) for arbitrary current profiles.
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vector potentials away from the ring of current,

Pl CO
p 2$ &

in 8+
(II( 8 in 8—0

C
(60)

MV2A ein8+ A ein8 On lgc

lead to these expressions:

(61)

r dr Br " ()z2 c2

1a a pr —p„+5A8 „r Br Br c
n——()t„+5A8„+ —()t„+5A8 „, p a'

z'

2 2
—(I)„+5A8 „

and

i a a2 n cor 5A„„—n 5A, „+ 5A, „+ 5A„„—
r Br Br Bz C

—P„+5A8„+r

5A, „ =0.
r

These expressions reduce to

1 a2 a2 n 2x
5A, „+ + 5A, „+ 5A„„—r Br '" Br2 QZ2 '*" rR2

—P„+5A8 „r
5A„„ =0

r 2 (65)

and

—()I(„+5A8„c =0. (66)

For sufficiently low harmonic number n,

() ()
5

2in P~
fr Qz

' r c

a2 a2 1 P
Br Bz,+, 5A8n —,—0nr C

and for very large n,

iR5A„„=
nx c

(67)

(68)

I„
ln P,

2(rePc p()
(73)

where I„ is the harmonic current, p =x +z, and po is
the radius of the beam pipe. After keeping just the
lowest-order terms, the Lorentz gauge expression can be
integrated to yield in the low n regime

From the results in the preceding section, we can assume
that the scalar potential is very close to the scalar poten-
tial of the straight-line beam,

R5A8„= nxc (70) 5A8„= p 1n p+f(z)—
4Rr 2mcc p

(74)

B2p. ( A in(8 —~t)
) y

in(8 tot)—
c2 c)t2

(71)

which leads to this additional expression:

The other important relation is the Lorentz gauge equa-
tion:

Ina'+ a'
5A

ln 41P'
Bx' Bz' "'" 4«2~ac' p'

where the function f(z ) is unspecified. This function can
in turn be found by taking the transverse derivatives in
the wave equations, which leads to

p ~; 85 A„„—p„—+—r ' +—5A„„—5A8 „=0 .
c "R n Br n

(72)

2

+4 +f"(z) . ,
po

(75)
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or, from using Eq. (67),

Ln

4&r 2m'. c2 po2

(76)

In this limit (small n ), we also see

636) „=— 2

p ln —
p

—2z
8«2~me po

(77)

Now we have completely specified the fields and can cal-
culate the emittance growth due to di6'erent efFects. Note
that the expression for 630 „only depends on the har-
monic number through I„. For this component, the har-
monic summation is trivial, and gives

1 I6Aq=- p lnP —p
—2z . . (78)

8«2~me po

Equation (78) must hold for the dc case also; thus this
perturbation (with I now the dc current) is also the
correction to the vector potential we assumed in the dc
analysis [A=(0, (P/c)$, 0)]. This perturbation leads to
an error in the equation of motion that depends on 1/R .

The low n regime is defined by when

a'+ a'
5A 2n'xp'6A

r, n R 2 r, n (79)

[check the wave equation, Eq. (65)], or when

1/2
r ln(p/p, )

2p ln(p/po) —
p

—2z
(80)

E„„=— P„+in co5 A„„
a

(81)

r, n

1 n 2 P 2
2 2—+ p ln —p —z2

27TEPc x Q ~p p02

The modification to the straight-line radial electric field is
always small [check Eq. (80)] and thus Eq. (73) is a fine
approximation to use for the scalar potential.

Equations (73), (76), and (77) specify the lowest-order po-
tential components. Of course, the next-order correc-
tions in the scalar potential might very well be larger
than either 6A„„or 63& „', however, we will see in the
next section that an error in the scalar potential will not
contribute to the transverse equation of motion of the
particles.

From the preceding section, we know that the radial
electric field must be that for straight-line motion to
lowest order. In order to check the validity of using Eq.
(73) for the scalar potential we can explicitly calculate the
radial electric field from the potentials [Eqs. (73) and (76)]
and compare it to the radial field for straight-line motion.
Using

VI. LORENTZ FORCE EQUATION
AND THE TRANSVERSE EQUATION

OF MOTION

F„„=E„,+v8, „

1 4n 24n en=e +p +v
y2 Br r Br

(83)

The first term on the right-hand side of Eq. (83) is the
usual space-charge term that appears in straight-line
motion. The second term is the same as we saw in the
earlier derivation for the dc case, and will again cancel
another term in the dynamical equation. The third and
fourth terms lead to terms (after the summation over har-
monic number) that are on the order of 1/R (third term)
and 1/R (fourth term) and we will neglect these terms.
The fifth term will lead to a more interesting result (after
the required harmonic summation) and we will follow
this term in more detail.

The transverse equation of motion [using Lee's nota-
tion and Eq. (33)] is

~, v
2

X— X X X——+ + ~ ~ ~

2Z' 6Z'

+ e dp ~2 1 + e~ G
my dr ' y2 my

(84)

where

2mC sc

,p2
(85)

and the space-charge force F„consists of the last four
terms in the Lorentz force, summed over all harmonics.

The first term in Eq. (84) is not necessarily small, but
does not lead to an emittance growth if the bend is
achromatic. The second term on the right-hand side also
appears for straight-line motion and is small, and we will
ignore it. The G term is more complicated. If a particle's
energy is not the nominal energy, but does not change,
there will not be an emittance growth if the bend is
achromatic. However, a change in a particle's energy can
occur from work done on the particle in both the trans-
verse and azimuthal directions. Assuming that the bunch

In this section we will calculate the transverse motion
of the beam required for estimating the emittance growth
of' an electron bunch traveling in a circular path as it
would within a bending magnet. We will also show that
these fields are consistent with Piwinski's results. We will
start with the Lorentz force equation in terms of the vec-
tor and scalar potentials and the transverse equation of
motion in the beam's local frame of reference.

The Lorentz force equation for the nth harmonic can
be written in terms of the vector and scalar potentials (by
direct expansion of the field components in the potentials)
as
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y, = 2S+ 2 fEdl,
mc mc

(86)

does not deform appreciably along the bend, we can write
the change in a particle's energy within a bend as

space-charge force when n & n „.As in the dc case, the
second and fifth terms cancel exactly, and we are left with
the usual energy dependent term plus three noncanceling
energy-independent terms:

where the S is the distance along the bend that the bunch
has gone and the integral is from the center of the bunch
to the particle s position. In this case, the integral can be
rewritten for each harmonic as

e dP P eEeSfX=
2

+
my2 dp mR

n max

(89)

fE„„dl= —P„(x,z ) in c—of "'52„„dl . (87)
(0,0)

After dropping the achromatic terms, we can rewrite the
dynamical equation (doing the harmonic summation
where trivial) as

Because these terms will lead to fundamentally different
effects, we will solve for the emittance growths separate-
ly. Before that, though, let us look at Piwinski's results.

8 P ey(x, z, R8)
mR mR

(x,z)

(0,0)
"m- P einu

' 5A„„dl

mRn=1

e dP 2 eg(x, z, RO)
m@2 dr mr

Comparison to Piwinski's results

Piwinski showed that the electric field from the nth
harmonic of the current distribution in a beam pipe of
height h with inner radius r, and outer radius r2 can be
written as (for r (R; the case where r & R is similar)

E= 2 i(eiK„'(art ) e2I„'—(ari ))

n =1 mTR
(88) + A2(e3K„(ar, ) —e4I„(ar, ) ) (90)

There is no significant contribution to the centrifugal- where I„and%„are the modified Bessel functions,

in
e, = — I„(ar) coskz, I„'(ar) coskz, O e'"'

lne2= — K„(ar ) coskz, K„'(ar ) coskz, O e'"'

inke3= kI„'(ar ) coskz, I„(ar ) coskz, aI„(ar ) sinkz e'"'—' ar

(91)

inke4= kK„'(ar ) coskz, K„(ar ) coskz, —aK„(ar ) sinkz e'"~

k is the vertical wave number (k =~m /h, where m is an odd integer),

2 2

R
(92)

and the coefticients A, and A2 are given in terms of the harmonic charge distribution A,„k by

I„'(ar2)K„'(aR ) —K„'(arz)I„'(aR )
A, =ink, „kvpZO I„'(ar, )K„'(ar2) —K„'(ari )I„'(ar2)

kR I„'(arz)K„(aR ) K„(arz)I„(a—R )
A2 =A,„kcZ0 a I„(ar, )K„(ar2)—K„(ar, )I„(ar2)

Using these expressions and the curl equation for the electric field, we can use Eq. (49) to find the radial force:

(93)
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+r nk k coskz
A, (K„(ar )I„'(ar& ) I—„(ar )K„'(ar, ) ) + A2(K„(ar, )I„'(ar ) I—„(ar, )K„'(ar ) )

e

k R+k cos(kz) A &(K„(ar )I„'(ar
&

) I„—(ar )K„'(ar
&

) ) P —+ zkar R n2

+k cos(kz)P A2(K„(ar, )I„'(ar ) I„(a—r& )K„'(ar )) . (94)

Although this equation looks complicated, it simplifies if we consider the limits where the bunch length is either long or
short compared to h. In either limit, it is easy to show that

A, =A k. (95)

Thus, if the beam length is long compared to the beam pipe height (h l5 « l and n IkR « l ), only the Az terms and
the A, term involving kin are important. Conversely, if the beam length is short, only the terms with A, contribute.
In the long bunch limit, Eq. (94) reduces to the form of Eq. (26)—the centrifugal-space-charge potential is just the
space-charge potential

kR
PcscF = (5 =k cos( kz )A ~kZO c

I„'(ar2 )K„(aR ) K„(a—rz )I„(aR )

„ar( K„ar~ — „ar, I„ar~

I„'(ar2)K„'(aR )
—K„'(ar2)I„'(aR )

[I„(ar)K„'(ar
&

)
—K„(ar )I„'(ar, ) jI„'(ar, )K„'(ar2 ) —K„'(ar, )I„'(ar2 )

(96)

This is the limit Piwinski examined (he assumed ar is very
large and real) and in this limit the dc case is recovered
(as one would expect).

In the short bunch limit (keeping just the A, terms),
Eq. (94) no longer reduces to the form of Eq. (26). Thus,
as the bunch length becomes smaller than the beam pipe
height, the cancellation of the centrifugal-space-charge
force and the effect of the variation of the beam kinetic
energy vanish and an emittance growth will result. This
is an important result, and explains how the noncancella-
tion arises for short bunch lengths.

VII. EMI i 1'ANCE ESTIMATES

In this section we will estimate the emittance of a
bunch traveling in a bend. Just as in the first section, we
will calculate two contributions. The first contribution
will be from the net transverse space-charge forces and
the second will be from the effect of the electric field in
the direction of motion of the bunch. The first effect will
lead to a relatively small, but not necessarily negligible
emittance growth, that scales as the bend angle times the
beam radius to the —,

' power divided by the beam length
and the square root of the bend radius. Additionally, if
the beam is not being bunched and if the betatron motion
is symmetric (or negligible), an achromatic bend will
prevent any emittance growth from this effect. On the
other hand, there will always be an emittance growth
from the second effect. The emittance growth from this
other effect will scale as the bend angle squared times the
beam radius squared divided by the bunch length. It can

A. Harmonic summation of the 5 2, „ terms

First let us sum the radial vector potential terms over
all harmonics. We have to be somewhat careful, because
the vector potential solution, Eqs. (73), (76), and (77), is
only valid for a line of charge. We will first do the har-
monic summation and then the integration over the
beam's cross section. Using Eq. (33) we can define an
effective centrifugal-space-charge potential Pcsc„and a
net centrifugal-space-charge potential R6 by

4 cscF
R

max

R

inu f ' 5A„„dl

R

max

„=i PrR
(97)

We drop the energy-dependent force and the other terms
in the equation of motion that do not lead to an emit-
tance growth. The transverse equation of motion be-
comes

be relatively large for short bunches in large-angle
achromatic bends. In both cases, the emittance growth
can be made negligible by sufFiciently strong focusing of
the beam through the bend. On the other hand, in both
cases the emittance growth scales as the square of the
peak current for a constant-charge bunch. This will pro-
vide a peak current limit for bunch compression for a
given beam radius.
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P eEeS
yx =eP +

m mR
(98)

2

f(x,z)=xp ln —xp —2xz
po

If the line bunch of length 5 has uniform current II, the
current harmonics are p ln ——p —2z3 P 3 3

3 po 3
(101)

2 . n5I„=II sin
n~

Since P is very close to unity, G can be rewritten as

max ~ II
sin f(x,z )e'"'

r2R 2

(99)

(100}

where we have lumped the various transverse functions in

We will estimate the emittance growth from this effect by
(1) doing the harmonic summation, (2) making an esti-
mate for the function (z after examining typical numeri-
cal summations over cylindrical, uniform beams, (3) as-
suming a parabolic current profile along the bunch, and
(4) using Eqs. (39) and (40) to relate (z, to the emittance
growth.

The summation over harmonics can be approximated
well by an integral over n, which leads to

6= —
z 2 2 f(x z) f n sin n +II max

r R 8m. EPc

1 II f(x,z)
r R 8tr ePc

2R R

+ maxn

2R R

max (102)

where as before we have used g=R (8 cot ). W—ithin the
bunch itself,

~ g~ (5/2, and (z is close to

3/2

RV'R 5 a 4trec a
(104)

(103)

f(x,z)
R&rx 5 2m-zEc

ln(p /pt))
X

p ln(p /pt)} —p —2z

Recall that this (z is for a line source charge. We can nu-
merically integrate (z over a full uniform, circular cross
section (see Figs. 4—7) and we find that the effective po-
tential can be approximated by

I(g)=I 1— 5
2

' (105)

In this case, the rms value of G becomes

As before, we can add several uniform current bunches
together to generate arbitrary current profiles. From the
linearity of the fields this is equivalent to letting the
current I in Eq. (104) be a function of position within the
bunch. We will assume the bunch has a parabolic
current profile with peak current Iz.

2

Centrifugal-Space-Charge

Centrifugal-Space-Charge

Potential (volts)

r I ~ ~ r I r I T T

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Observation angle tp (radians)

FIG. 4. Normalized integrated centrifugal space-charge po-
tential

' 1/2

, , f(x,z)
2tr eca ~ x'~ '

p ln(p /pc) —
p

—2z

at a radius a versus observation angle y for a 1-A beam of ra-
dius a. Ratio of beam-pipe radius to beam radius is 10.

-100.0 I I I I I I I I

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Observation angle gt (radians)

FIG. 5. Normalized centrifugal space-charge potential
' 1/2

ln(p'yp, ')
2m sea x' p ln(p /p )—p —2z

f(x,z)

at a radius a /2 versus observation angle tp for a 1-A beam of ra-
dius a. Ratio of beam-pipe radius to beam radius is 10.
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ri fugal-Space-Charge

otential (volts)

Observation angle y (radians)

3/2
G, ,=1.08 — lnRV'R 5 4~sc a

(106)

From Eq. (39), this leads to an emittance growth in the
bend plane (to be added in quadrature to the initial emit-
tance) of

a Po
b,s„=0.14 ln aa .

a
(107)

The emittance growth in the direction normal to the bend
plane is higher order and negligible [the energy-
independent force is comparable to the third term in the
Lorentz force equation, Eq. (83), which we subsequently
dropped]. The emittance growth indicated in Eq. (107) is
similar to that for the "classical" case [where the space-
charge force is energy dependent, Eq. (19)], but with an
additional leading factor involving the beam radius, bend
radius, and bunch length and one involving the ratio of
the beam-pipe radius to the beam radius and missing any
depending on the beam energy. Please note the region
definitions in the preceding section where we explicitly
calculated the fields for the rotating cylinder of charge.
That result implies that if this leading factor is unity or
greater, the space-charge fields around the bunch are
higher order in 1/R and small, and the approximation we

FIG. 6. Normalized integrated centrifugal space-charge po-
tential

1/2

2' ECQ X2 32 t/2f ' 2 2 2 2 2
p ln(p /po) —

p
—2z

at a radius a versus observation angle y for a 1-A beam of ra-
dius a. Ratio of beam-pipe radius to beam radius is 100.

used for the scalar potential (being the same as for
straight-line motion) fails. Thus. Eq. (107) is only valid if
the leading term is less than unity, and there is no
significant emittance growth if that term is unity or
greater. Note that the emittance growth scales roughly
as the —,

' power of the beam radius and that for a constant
charge, the emittance growth increases as the square of
the peak current (since 5 also decreases).

Typical numbers for these parameters for short-
wavelength FELs and linear colliders are as follows:
beam radius of 1 mm, bend radius of 1 m, and bunch
length of 1 ps (0.3 mm). The leading factor for this case
is about 0.1. It can be made somewhat smaller by in-
creasing the bend radius, but not significantly because the
bend radius comes in as the square root. For a bunch
current of 1 kA in a beam pipe radius of 1 cm, this emit-
tance growth is about 3 pm per mm of beam radius per
radian of bend angle. On the other hand, if the beam ra-
dius is reduced to 100 pm, the emittance growth would
drop to less than 0.03 pm per kA of peak current. It
should be noted that this emittance growth has been re-
duced by the near cancellation of the ( x ) ( G ) and the
(xG) terms in Eq. (39). This cancellation primarily
occurs because we assumed a uniform radial charge den-
sity which leads to G being linear with x; this cancella-
tion would not occur for all possible radial charge distri-
butions, and a more conservative estimate for the emit-
tance growth would be made using Eq. (40) and G, ,
For this case, the maximum possible emittance growth
would be about three times higher than indicated in Eq.
(107).

As a last calculation for the net centrifugal-space-
charge force, we will find the emittance generated while
compressing a bunch of initial current Io to a final
current If. Typical compression schemes use multiple di-
poles [2], leading to nonzero dispersion. We assume that
there are enough dipoles that the bunch current within
the compressor can be expressed as

Io
(108)

cxo

where the normalized bend angle is given in terms of the
total bend angle O.f by

ifugal-Space-Charge

&tential (volts)

ao= Qf

Io1—
If

(109)

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Observation angle y (radians)

The emittance growth as the bunch is compressed can
be found by integrating Eq. (107). The emittance growth
from a compression stage is given by

FIG. 7. Normalized integrated centrifugal space-charge po-
tential

3/2 Po If
~~n, bunching =0.14,— boa ln~R &o a I~

(110)

I, ln(p /po)
2& ECQ X2 sn tnf(x~a) s z z s s

p ln(p /pp) —p —2z

' 1/2

at a radius a /2 versus observation angle y for a 1-A beam of ra-
dius a. Ratio of beam-pipe radius to beam radius is 100.

where the final current is the current after compression
and 5o is the bunch length before compression. The emit-
tance growth is larger, though comparable, if the trans-
verse distribution is not uniform. As an example, bunch-
ing a 1-mm beam from 250 A to 1 kA in a 1-rad bend
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with a beam-pipe radius to beam radius ratio of 10
creates about 3.4 pm of emittance growth. Again note
the strong dependence of the emittance growth on the
beam radius and that this assumes a uniform radial
charge density.

B. Energy gain in the direction of motion

The second emittance growth mechanism results from
the work done on the bunch by the electric field in the az-
imuthal direction, the direction of motion. As noted be-
fore, the energy change of a particle at (x,z, RO) within
the bunch due to this field after a path length S is given
by

Aymc2=eEoS .

in rtr„ in re„
Ee „=— +P x+inco5A& „., n «y2 rR

(113)

dI 1 x p
dg 2n.ePc R po

(114)

The first term is the same as we find for linear motion
(in /r would be replaced by inP for linear motion with an
e'"'~' ') dependence). It will vanish for a suKciently
relativistic beam. The third term is of order 1/R higher
than the second term (recall that ro=v/R ) and can be
neglected. Initially, the harmonic summation looks com-
plicated but since we know that for the straight-line
motion the first term sums up to the usual longitudinal
electric field we can write the energy-independent second
term (for a line of current I ) as

The total energy change, y &mc, is this term plus the con-
tribution from the transverse electric field. In order to
calculate the azimuthal field we start with the com-
ponents from the individual harmonics:

which leads to

4Ilg x p—ln
rrEPc5 R po

(115)

On gg
(112)

After substituting in the values for the vector potential
we find

for the parabolic current profile [Eq. (105)]. As before we
have to integrate over all source positions to find the
overall azimuthal field

EO= 4', (0)0 u &~ X —p COSy 3/(X —p COSy) +(Z —p Sin(p)ln pdpdy .2p$22 o o Po
(116)

This expression can also be conveniently numerically in-
tegrated for a beam with uniform, circular cross section
(Figs. 8 —11), and leads to

The emittance growth within the bend for an angle da
can be expressed as

I
Eo = 15.2 ln

4~cg a a R&2
(117)

po a
dc,„=0.76 a ln —a da

I~ a 6
(119)

eIJ po a
4~c c. a

(118)

Because the longitudinal force is linear with g, (xb,E ) is
zero and the emittance growth is given by Eq. (11). The
rms energy spread caused by this field is

, Ip po a
hc,„=0.38m ln a—.

a 5
(120)

This emittance growth is per achromatic section of the

and, after integrating along the beam path within the
bend, we find that the emittance growth in the bend plane
(to be added in quadrature to the initial emittance) is

Normalized Azimuthal

Electric Field (volts) Normalized Azimuthal

Electric Field (volts)

-1 500.0
0.0 1.0 2.0

Observation angle p (radians)

FIG. 8. Normalized integrated azimuthal electric field
(4I&/rrEPc)(x /a ) 1n(p/pc) at a radius a versus observation angle
y for a 1-A beam of radius a. Ratio of beam-pipe radius to
beam radius is 10.

-1000.0 1 & ~ ~ r r I T I "
1

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Observation angle t)r (radians)

FIG. 9. Normalized integrated azimuthal electric field
(4I, /rrePc)(x/a ) 1n(p/pc) at a radius a /2 versus observation
angle y for a 1-A beam of radius a. Ratio of beam-pipe radius
to beam radius is 10.
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Normalized Azimuthal

Electric Field (volts)

-3000.0 T ~ T T 'T 1 T T 1 T 1

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Observation angle y (radians)

FIG. 10. Normalized integrated azimuthal electric field
(4II /rrz13c )(x /a ) 1n(p/po) at a radius tt versus observation angle

q for a 1-A beam of radius a. Ratio of bean-pipe radius to
beam radius is 100.

bend. For example, if there are four separate 20
achromatic bends making up an 80' bend, 20 should be
used in Eq. (120) for the angle, and the result multiplied
by 4 to find the total emittance growth.

This emittance growth can be quite large if the bend
angle and the beam size are not small. For example, for a
1-ps-long, 1-mm-radius, I-kA bunch in a 1-rad bend with
a 1-cm beam pipe there is 200 pm times the bend angle
squared of emittance growth. For a 180' bend, there
would be nearly 2000 pm of emittance growth if the
beam-pipe radius is ten times the beam radius. Note that
the emittance growth scales as the beam radius squared
and, as before, as the square of the peak current for a
constant-charge bunch. In principle, the emittance
growth can be made negligible if the beam is tightly fo-
cused.

dominant emittance growth mechanism scales as the
square of the beam radius, the square of the bend angle,
and the square of the peak current (for a constant-charge
bunch). Thus the growth can be made small by focusing
the beam sufficiently tightly and by breaking the total
bend up into many separate, small-angle achromatic
bends. In a chicane magnetic compressor the difference
in path length for particles with different energies scales
as the path length through the compressor times the bend
angle squared. Thus by increasing the bend radius and
decreasing the bend angle these effects could be made
negligible while preserving the bunch compression. The
effects discussed in this paper, however, will lead to a
practical limit for the maximum peak current attainable
at a given energy from bunch compression.
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APPENDIX

Here we perform the summation of the radial electric
field from all harmonics, starting with Eq. (54). Let us
consider the region r (R. The summed radial field is
given by

VIII. CONCLUSION nnrE„= g sin
2R

X'(n )J n 1+—
n n R

We have analyzed the space-charge fields in a bend and
found that they lead to energy-independent transverse
and azimuthal forces and thus an energy independent
emittance growth in the plane of the bend. We also
found that the space-charge fields are very similar to the
ones for straight-line motion as long as the bunch length
is sufficiently short, defined by the region limits in Eq.
(58). An additional bonus to this calculation is that we
also derived the correction terms to the vector potential
in terms of the scalar potential.

The practical consequence of this effect is that magnet-
ic bunch compressors for future short-wavelength FELs
and linear colliders need to be carefully designed even if
the compression is done at extremely high energy. The

Xcos n
R

+J„'(n )J„n 1+—

X sjn n
R

(Al)

where as before g=R(B ott). The derivative —terms are
well known [10]:

Normalized Azimuthal

Electric Field (volts)

I I I I I I I

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Observation angle t)t (radians)

22/3
J„'(n )=, ,

=0.410 85n3'"r(-,' )n'"
22/33 1/6

N„'(n ) = =0.711 61np(t) 2/33"
(A2)

FIG. 11. Normalized integrated azimuthal electric field
(4I, /trzPc)(x/tt)1n(p/po) at a radius a/2 versus observation
angle y for a 1-A beam of radius a. Ratio of beam-pipe radius
to beam radius is 100.

and a suitable expansion for the Bessel functions near the
transition (x small) can be found in Ref. [11]. The Hank-
el functions can be written as
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H'" n l+ —"
n R

a~') n &+-
n R

24/3e —i m!3 —1/3

X Ai 2' —e ' n
R

=24 3 &m/3n —1/3

XAi 2' —ei" n
R

Airy functions can be well represented by

Ai(e*' z)=ci cos(3 z )

+e*' zc2 cos(6 ' z ) i

where the constants are

3
—2/3

c I =, =0.355 02,
3

3
—1/3c2=, =0.258 81 ."3

(A6)

(A7)

where Ai are the Airy functions. The Bessel functions
are given by

This expansion leads to this equation for the radial elec-
tric field:

H„'"(z)+H„' '(z)
J„(z)=

H„'"(z)—H„"'(z )
N„(z)=

2l

Rewriting Eq. (Al), we find that

Rp. 2' . n5rE„= g sin sin n +-nc3'~ 1, (,') 2R R 6

(A4)

Rp,
rE, =

ne 3' 1 (,')
n5

sin
2R R 6

sin n +—

X [c,cos[Q —', (~x/R i)'i'n]

+c 2' n—cos[+—'( ~x /R i ) n]] .
R 3

(A8)

—in/3 a ~1/3 + —im. /3 2/3X.e Ai 2 —e n
R

+ '""Ai 2'"—"
R

(A5)

in this region. Physically we only expect significant con-
tributions for n on the order of R /5 or less. Typically,
the beam radius is within an order of magnitude of the
bunch length (even for the bunching cases). Note that for
significant contributions the Airy function argument is
on the order of n ' or less. For small arguments, the

sinnx

n=1

7T X

2
0&x &2m,

(A9)
=

—,
' ln, 0&x &2',cosnx 1

n ' 2 1 —cosx

we find that the radial electric field for ~ & R to lowest or-
der is

The second term in the expansion for the Airy function
can be immediately discarded because its leading term is
higher order in x /R.

Using the summations [12]:

Rp," +'7 Q-'(~x/R ~)'"&

"+~,.„„„,——&~-,'(~x/R ~)'"&, + & (A10)

V,.„„„Q-,'(~x/R ~)'") + +

where the cosine term is given by

Rp,
cosll18 6p( $ )p( 2

)3 3

'2 3
5 g 2 x

2R R 3 R

The cosine term arises from the imaginary term in Eq.
(54), and vanishes if we retained only the Bessel function
instead of the outward going Hankel function. For typi-
cal bunches, the terms involving x can be ignored, and
the cosine term reduces to

X ln

2R R 3 R

(Al 1)
RPr 5+2/

2&3E~ 5 —2g
' (A12)
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This term is equal to or bigger than the leading term in
Eq. (A10) only for positions within 5/200 of the axial
bunch edges.

At the center of the bunch the cosine term vanishes.
At radii exceeding the region definitions [Eq. (A10)], the
electric field at the center of the bunch consists only of
the higher-order fields. For the case of a single electron

in a circular orbit, the fields directly transverse to the
motion of the electron are always of this form (because
the bunch length vanishes). Note from Eq .(A8) we
would expect that these fields, although small, would not
be symmetric around the electron. This physical effect
was observed in direct calculations of the fields of a single
electron going around in a bend [13,14].
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