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Trivelpiece-Gould modes in a corrugated plasma slab
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It is shown that the spectrum of electrostatic oscillations in a periodically corrugated plasma slab
exhibits spatial mode locking, i.e. , for each spectral branch there is an infinity of subbands with
constant wave numbers. The widths of the largest subbands are evaluated. We also show that the
eigenmodes are represented by a set of double layers. Under certain conditions, the initial problem
for wave propagation is solved. The interaction of an electron beam with a plasma is studied and
the corresponding instability growth rate is obtained.

PACS number(s): 52.25.Wz

I. INTRODUCTION

A. Overview

Although many theoretical studies on the wave propa-
gation deal with unbounded media, both natural and lab-
oratory plasmas are confined by some external fields or
walls. There are usually no severe troubles with bound-
aries of relatively simple shape and properties. For exam-
ple, confining a magnetized homogeneous plasma by the
perfectly conducting cylindrical wall results in quantiza-
tion of the transverse wave number, i.e. , the appearance
of a set of the well-known Trivelpiece-Gould (TG) modes
[2]. However, in looking for the ways to improve various
plasma devices, the fancy of designers goes beyond this
simple example and the necessity of studying waves in
resonators of more complicated shapes is topical.

Recently, it has been shown that generators of co-
herent electromagnetic radiation employing plasma-filled
spatially periodic retarding structures have some bene-
ficial features (see, e.g. , [1] and references therein). Of
particular interest is the introduction of plasma into a
corrugated waveguide in order to get better conversion
of electron beam energy to electromagnetic radiation. In
studying the wave propagation in such a device, it was
unexpectedly observed that the wave spectrum exhibits
extremely odd behavior [1].

It turned out that instead of being a set of curves like
TG modes the spectral dependence looks like an infinites-
imally fine grid filling the entire frequency band between
zero and the plasma frequency. Since this grid consti-
tutes a dense set, the corresponding wave spectrum was
called a dense one. In other words, this means that any
frequency is either a solution to the dispersion relation
or is infinitesimally close to a solution.

In the present paper, we investigate various aspects of
this phenomenon in a magnetized plasma slab depicted
schematically in Fig. 1. In application to this case, the
reasoning of the paper [1] may be reproduced as follows.
The wave spectrum in a smooth plasma slab consists of
a set of TG modes [2]:

0„(k) =
gq„'+ k' '

where we assume that the slab is immersed in a strong
magnetic field (B, ~ oo). Here, k is the longitudinal
wave number, u„ is the plasma frequency and, with 2ao
being the slab thickness, q = 7r(n + 1/2)/ap for the
even eigenmodes or q = 7m/ap for the odd eigenmodes,
respectively.

Suppose now that the conducting surface surrounding
the plasma is periodically corrugated as shown in Fig. 1,
and the corrugation amplitude is suKciently small. Op-
erating according to standard perturbation theory pre-
scriptions, to obtain the spectrum of a spatially periodic
structure, one must draw in the (u, k) plane an infinity

ao

f(z, s)

FIG. 1. Schematic diagram of a corrugated plasma slab.
Perfectly conducting walls confining a magnetized plasma are
at z = +a(z). The wave fronts 1, 2 are constructed of
straight-line segments with Ax = +sAz. The curve 1 shows
the way the circle map f(z, s) is constructed. The curve
2 corresponds to the multiple reHections of the wave front
(s ( s; ) which cannot be described by a circle map.
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of unperturbed curves (1) shifted by k = 27r/L l
the ke axis, where L is the period of perturbation (see
Fi. 2 whereaf fig. , ew first iterations for even eigenmodes
are shown). All TG modes are confined to a finite fre-
quency band and each unperturbed curve intersects with
an infinity of shifted curves with some coupling at the
intersection points resulting in small fa requency gaps at
intersection points. For simplicity th ese gaps are not
shown in Fig. 2. It may be easily shown that the ob-
tai.ned grid fills densely a finite area in the (w, k) plane.

There are few problems springing about dense spec-
tra. First, drawing the pictures like Fig. 2, one should
use either the extended or the reduced Brillouin zones [3].
For example, unlike solid state physics where the similar
problem arises, it is not evident how the described grid
reduces to the unperturbed spectruin (1) as periodic cor-
rugation tends to zero. Formally, in this limit the dense
spectrum remains dense, while we would like to get usual
TG modes. Seemingly, this indicates that the graphic
representation of the spectrum (Fi 2) tig. j~con ains some
spurious information.

On the other hand, a similar problem was discussed by
Gusakov and Piliya [4]. They used the geometric-optics

ica y inhomogeneous waveguide and revealed that there
exists a single ray path attracting all other paths. This
means that the corresponding eigenmodes are singular
functions and, therefore, even for a small perturbation

igh-order spatial harmonics are relevant. Thus, another
problem is whether the straightforward perturbational
approach using a few harmonics is valid.

In the present paper, some exact analytical results con-
cerning the wave spectra in a corrugated plasma slab are

obtained. Our main finding is that one can extract sin-
gle wave branches analogous to the TG modes &om the
grid depicted in Fig. 2 or, in other words, the appropriate
spectral classification is found. It is shown that for any
wave branch the spectral dependence exhibits the spatial
mode lockin i.eg, .e. , the entire &equency range is split in
an infinite number of subbands and the wave number is
constant in each of these subbands. The spectrum of this
kind is represented by a &actal curve that was named
a devil's staircase [5]. We evaluate the width and the
position of the largest subband for an arbitrary waveg-
uide boundary, a(z), smaller subbands are studied by nu-
meric methods. The spatial structure of the eigenmodes
is shown to correspond to a quasiperiodic set of double
layers, i.e., a sequence of the electric field pulses. Finally,
we study the excitation of these waves by an electron
beam and evaluate the growth rate of the corresponding
instability.

This paper is organized as follows. Since we use the
mathematical theory of the so-called circle maps a brief
review of the formalism is given in the next subsection

the problem, demonstrate how it is reduced to investiga-
tion of circle maps and evaluate some characteristics of
the spectrum. Section III deals with the spatial struc-

a waveform is discussed. In Sec. V , we consi er t e in-
teraction of plasma waves with an electron beam. Some
concluding remarks are made in Sec. VI. Appendix A
contains general expressions for eigenfunctions. The nu-
meric methods we used are described in Appendix

B. Circle maps

The theory of circle maps has a number of l
tions in physics, particularly, in studying the transition
to chaos [5, 6]. Generally, a circle map is just a function
f (z) of a single variable z, such that

f(z + 1) = f (z) + 1 . (2)

Of importance for our purposes are the se 1 terations
o the circle map, which are characterized by the ' d'

a ions per i eration,num er, i.e., the mean number of rotat
efined through

TV = lim
n~oo

FIG. 2. Densense spectrum in a planar waveguide. The grid
is composed of the original TC mod ~~thes ~~ose coming through
the origin) shifted by 2nn along the k axis.

where z„= f~"l(z )ostands for the nth iteration of the
map. A number of solid theorexns hold for circle maps [7];
we will need the following statements, which are valid if
f (z) is smooth and invertible [i.e. , f'(z) & 0]. The limit
in Eq. (3) exists and is independent of the initial point )

zp. The asymptotic behavior of the series composed of
successive iterations z depends essentially on the wind-
ing number. If it is a rational &action, W = P/Q, where
P and & are some integers, then z converges to a peri-
odic cycle, i.e, asymptotically z~+g ——z~ + P. With ir-
rational W, the series is quasiperiodic, that is, (z ) fills
ergodically the whole interval (0,1), where (zj denotes
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the fraction part of a real number.
Of great interest is the dependence of the winding num-

ber on additional parameters. Suppose that the circle
map depends on some other variable s, i.e. , f = f(z, s).
Then the dependence W(s) exhibits a phenomenon called
the mode locking: if W(s) = P/Q is rational then it re-
mains constant with 8 varying in some interval. The last
property may be understood in a following way. Sup-
pose, there is a root of the equation f~~~ (zp, s) = zp + P,
then according to Eq. (3) the winding number is ra-
tional. Other cycle elements satisfy the same equation
and may be obtained by serial iterations of the map:z: f ~ l(zp, s), i = 1, . . . , Q —1. Obviously, if f (z, s) is
a continuous function, then small variations of 8 cannot
change the number of roots and, therefore, W(s) is con-
stant. W(s) is an example of the so-called devil's stair-
case, i.e. , a continuous function that remains constant in
some interval when its value is a rational number.

Thus the domain of definition of W(s) contains an in-
finite number of mode-locked intervals distinguished by
rational values of W(s). The question of importance is
how much room all mode-locked intervals take. There is
a general statement: if f (z, s) differs slightly from the lin-
ear function, f (z, s) = z + eA f(z, s), then the Lebesque
measure of the mode-locked intervals is small if c ~ 0,
i.e. , the probability of finding the rational wave number
for a randomly chosen value of s is nearly zero [7].

II. CIRCLE MAPS AND PLASMA
OSCILLATIONS

A. Basic equations

We start with the Poisson equation

8 P 02$—s = 0
Bz Bx

for the amplitude of electrostatic oscillations, P(x, z),
with frequency cu [i.e. , the time-dependent potential is
Re(ge ' )], where s = —1/e(cu) = w /(w„—w ). This
equation was derived in assumption that the magnetic
field is strong enough to neglect the transverse parti-
cle motion and the unperturbed plasma is uniform. In
the frequency range, we are interested in ~„)w, i.e.,
s2 & 0, the equation (4) is of hyperbolic type.

Since we consider a plasmaguide confined by symm. et-
ric perfectly conducting walls (Fig. 1), the first boundary
condition for Eq. (4) is

P(x, z) = A(z + x/s) —(—1)"A(z —x/s), (7)

where A is 0 or 1 for odd and even modes, respectively,
and A(z) is an arbitrary function. Substituting this so-
lution into the boundary condition (5) results in

(8)

Let us suppose that 8 is large enough, s ) 8
max ~a'(z) ~, therefore we restrict the discussion to a cer-
tain frequency range, u;„( ~ ( w„, where co

cu„s;„/gl + s,.„. Next, we introduce a function,
f(z, s), defined parametrically as

z = ( —a(()/s, f (z, s) = (+ a(()/s, —oo ( ( ( oo

(9)

(see Fig. 1, the line 1). The imposed constraint, s & s
means that a characteristic curve leaving the z axis is
reflected only once before it turns back, i.e., here we do
not consider the situation shown by the line 2 in Fig. 1.
Obviously, Bf(z, s)/Bz & 0 and if a(z) is periodic then
f(z+1, s) = f(z, s)+1, so f(z, s) is a circle map.

Rewriting Eq. (8) as A(f (z, s)) = (—1)"A(z), we seek
the solution in the form of

A(z) = exp [i~(2 n +A) @(z) ], (10)

where n is an arbitrary integer, A = 0, 1 and the phase,
g(z), obeys the relation

lation of the problem we are studying. Certainly, besides
plasma physics, Eq. (4) has a great number of other ap-
plications, and much work has already been done. Seem-
ingly, for the first time its exact solution for an arbitrary
boundary a(z) was found in application to the supersonic
Bows in the 1950's with the help of the 6-conformal map-
pings[8]. If we consider z in Eq. (4) as a time variable,
then it describes a wave field (e.g. , sound or light) in a
resonator with moving walls [9, 10]: an interesting prob-
lem under intensive investigation. However, there is one
feature distinguishing the problem of plasma wave prop-
agation: in most other applications s in Eq. (4) is some
constant, while here it is a spectral parameter and what
we are looking for is the dependence s(k) or vice versa.

The general solution of Eqs. (4) and (5) is constructed
in the following way [8]. Due to the mirror symmetry
of a plasmaguide, any eigenmode must be either odd or
even in x. Thus, generally, the potential looks like

P( + a(z), z) = 0, (5)
4(f(z s)) —&(z) =1

P(x, z+ 1) = e'"P(x, z). (6)

Here we use the extended Brillouin zones, so that k is
any real number.

Equations (4)—(6) represent the mathematical formu-

where a(z) is some periodic function. Henceforth, we
choose the spatial scale so that the period is unity, a(z+
1) = a(z). The wave number, k, is introduced by the
second boundary condition,

which may be resolved in the following way. Let us con-
sider an interval Ip ——(zp, zi), where zi ——f (zp, s) and zp
is an arbitrary number. Since f (z, s) is monotonic, each
point z may be linked with another point z' F Io by a
number of iterations, i.e. , z = f ~ ~ (z', s). Thus, accord-
ing to Eq. (11), the phase g(z) is determined by its value
in the interval Ip. g(z) = Qp(f ~ ~(z))+m, where gp(z)
is an arbitrary function such that @p(zi) = gp(zp)+1 and
its derivatives of up to the desired order are equivalent
at the points zo q.
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It should be noted that there is an infinite set of eigen-
modes distinguished by different n's in Eq. (10). There-
fore, even without implementing the periodicity condi-
tion (6), we conclude that the spectrum of oscillations
may be split quite naturally in difFerent spectral compo-
nents and, in fact, Fig. 2 or, rather, its limit image shows
the superposition of an infinity of difFerent graphs.

In terms of the phase, the periodicity boundary condi-
tion (6) is

g(z + 1) = g(z) + K, (12)

where k = K7r(2n+ A), i.e. , the spectra of all wave modes
are determined by a single function r(s). To obtain it,
one must find g(z) and corresponding K(s) satisfying
both relations (11) and (12), while the described above
solution generally does not obey Eq. (12): this is the
problem we focus on throughout the paper.

Let us consider the familiar example of a smooth plas-
maguide. In this case, a(z) is a constant and f(z, s) =
z + 2a/s, therefore

g(z) = Kz, K(s) = s/2a

which, as one can easily verify, corresponds to the usual
TG modes. These relations will be a checkpoint for any
solution of the set (11,12): there must be some transition
to expressions (13) as a(z) tends to a constant.

B. Winding number and wave number

Suppose that the winding number is rational and there
is the Q/P cycle, i.e., a sequence np, nq, . . . , ng i such
that n, = f(n, i, s) and f(ng i, s) = ng = np+ P.
We simplify the problem restricting the discussion to the
class of functions a(z), such that there is only one mini-
mum and one maximum over the period. Then, for each
s, there are two cycles, called stable and unstable ones
distinguished by the + superscript. The difFerence be-
tween them is in asymptotic behavior of the sequence
0„=(fl"&l(z)): 0„-+ ap as n -+ oo, and 0„—+ np as
n M —oo.

The relation between the winding number of the map
f(z, s) and the wave number r is fairly evident. Making
use of Eqs. (11) and (12), we get

g(zg, 8) = lP(zp, 8) + Q = g(zp) + PK, (14)

therefore,

1

W(s)

Since any irrational number may be approximated by a
rational number, we may conclude that the relation (15)
holds even for the irrational winding number.

As we have already mentioned, the dependence of the
winding number, and therefore, the wave number on s
performs the devil's staircase consisting of an infinite
number of plateaus. Let us denote the plateau corre-
sponding to a Q/P cycle as Agy~. Since 8 is nothing but
the renormalized frequency, we conclude that the spec-

tral curve u(v) looks extremely odd, at least for plasma
physics: it is nondifferentiable dependence consisting of
a set of vertical lines for each rational r. In other words,
what we face is the spatial mode locking: the entire fre-
quency band is split in a number of subbands with con-
stant wave numbers.

Suppose now that the waveguide is nearly smooth, i.e. ,
let the deviation of a(z) from the constant be of the order
of e (( 1. Then it may be easily shown that the depen-
dence r(s) = 8/2ap + Ar, where ap is the average width
of a waveguide, and for any Q/P cycle AK & e~ [7]. In
this sense, there is the limiting transition to the usual
TG modes: although r, (8) remains irregular for e g 0, it
tends to the first expression in Eqs. (13) as e —i 0.

C. Q = 1 plateaus

The width of a plateau with Q = 1 can be easily evalu-
ated. Taking into account Eq. (9), we rewrite the relation
f(z, s) = z+ P as

(
s = —a z+ — = o(z),P ( 2) (16)

which implicitly defines the cycle points of the map: there
are two roots of this equation, z = o.o, distinguished
by the sign of the derivative, 0'(np ) & 0, 0'(np+) ) 0.
Equation (16) also defines the interval of s in which the
cycle with Q = 1 exists, i.e. , we obtain the fundamental
set of plateaus corresponding to the lowest resonance,

2 2

++min ~ ++max

where a;„and a stand for minimum and maximum
values of a(z), respectively.

D. Numerical evaluation

We performed a series of computer runs to evaluate
the parameters of other plateaus using the cosine-shaped
boundary

1
a(z) = —+ cos(27rz).

2 27r
(18)

The implemented algorithm is described in Appendix
B. For the specific shape (18), one can easily check that
the plateaus with Q = 2 are of zero width. In comparison
to the previous studies of a devil's staircase, e.g. , [6], the
computations with the implicitly defined circle map (9)
are a much more computer-time consuming task, which
is why we were able to proceed up to Q = 100 only. How-
ever, this seems pretty enough for any physical applica-
tion because of the exponential reduction of the plateau
width.

In Fig. 3, which shows an example of the dependence
v. (s) evaluated for e = 0.1, only the largest plateau,
A~/z, is visible, while all high-order resonances results
in negligible plateaus. With increasing e, the width of
the plateaus grows but, on the other hand, the range of
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III. SPATIAL STRUCTURE OF A WAVE

A. Eigenfunctions

Our purpose, in this section, is to make out the spatial
structure of the TG waves. Let us consider what happens
to Eq. (11) under the successive iterations of the map
f (z, s). For simplicity, we focus on fundamental plateaus
with Q = 1; more bulky expressions concerning arbitrary
cycles may be found in Appendix A. Now there is only
one stable, o.o, and one unstable, o.o, cycle element per
unit interval. Since (fl ~(z)) ~ —i no, it follows from
Eq. (11) that

1
2

0.5 1.0 1.5

FIG. 3. Dependence of the wave number on s, e = 0.1.
The devil's staircase consists of a set of plateaus for each
rational K. Here, the only visible plateau corresponds to K =
1/1.
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FIG. 4. Dependence of the wave number on 8, e = 0.2.
With increasing wall corrugation, e, the widths of plateaus
grow. The magnified part of the curve shows its self-similar
structure.

validity of the present theory moves up the 8 axis. In
Fig. 4 depicted for t = 0.2, the left edge of the funda-
mental plateau, Lqyq, hits the forbidden area, 8 ( s
The self-similar structure of the devil's staircase is clearly
visible in the magnified part of this curve also shown in
Fig. 4. It is noteworthy that r(s) tends to the unper-
turbed dependence (13) at large s.

(19)

The only points for which this relation fails are the
unstable cycle points o,o + n, n = 0, +1, . . . . Therefore,
g(z) is a stepwise constant function with discontinuities
at unstable cycle points. Evidently, the periodicity con-
dition (12) is satisfied only if the height of each step is
1/P.

Replacing n —+ n, o—.o -+ oo in Eq. (19) results
in the second solution of the set (11),(12) in the form
of the same function with discontinuities at the sta-
ble cycle points, hence, there are two independent so-
lutions. Moreover, one can easily guess that the solu-
tion for an arbitrary Q g 1 is constructed in the same
way: the only diB'erence is that there are Q cycle ele-
ments, and, respectively, Q steps per unit interval, 1/P
height each. As it was already mentioned, with small
plasmaguide corrugation when f(z, s) is close to a lin-
ear function, the winding number is irrational for nearly
all values of s. The irrational winding number is a limit
Q + oo, P -+ oo, P/Q = const, thus there are more
and more steps of decreasing height per unit interval as
the waveguide corrugation goes to zero for most values
of s and the phase g(z) becomes a smooth function
in this sense, the transition to the unperturbed planar
plasmaguide (13) should be understood.

Coming back to the fundamental plateaus with Q = 1,
we can easily write down the expression for the derivative
of A(z) (10), i.e. , for the z component of the electric field
at the axis:

A',"(z, s) = ) e ~ b z —no(s) —m ~,

where to reduce the notation, we have chosen the lowest
even eigenmode in Eq. (10), i.e. , n = 0, A = 1. Since there
are two independent eigenfunctions for each 8, they are
distinguished by the superscript g = +1.

Thus, we see that the electric field of a TG wave in a
certain frequency range is nonzero along the polygonal
line 1 in Fig. 1, prolonged periodically to the whole slab.
The spatial Fourier transform of the highly singular dis-
tribution (20) corresponding to the infinite periodic set of
double layers is readily performed —obviously, all spatial
harmonics are of the same amplitude and no straightfor-
ward perturbational expansion can result in a solution of
this kind.
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B. Completeness of the set of eigenfunctions

I"(z) =
1/P

dsA'"(z, s)F'(s), (21)

perforined over the whole Q = 1 plateau, where F(s) is
an arbitrary function, results in

0,
(22)

and

I"(z+ 1) = e *~ I"(z). (23)

Combining Eqs. (21)—(23), we can write down the rep-
resentation for an arbitrary function, f(z), obeying the
condition (23) in the form of the Stieltjes integral

f(z) = ).n
1/P

dsA" (z, s) f'"(s), (24)

The next problem to study is whether we are able to
use the functions (20) as a basis for expansion. Let us
denote one of the intervals for which 0'(z) ) 0, say, clos-
est to zero, as M+ and let the adjacent interval where
o'(z) ( 0 be M . Evidently, the total length of both
intervals is unity. Evaluating the integral

where Ep is the initial electric field and B(z) = w(o (z)).
This solution is quite natural because we have imposed
the periodicity condition, i.e., all spectral components
of the wave form are in the single plateau of the devil' s
staircase with the same P and Q = 1. Consider now the
narrow spectral line of width Au with the maximum at
(d = (dp, then the electric Geld of the corresponding wave
form looks like a double layer of finite width Ace/0'(zp)
intersecting the axis near one of the points zp, such that
A(zp) = cup. Although the electric field of the form is
still governed by Eq. (26), the amplitude of the spatially
averaged field decays as exp( —Kw t ). This decay pro-
vided by the phase mixing between various modes is well
known in isotropic plasmas with continuous spectrum
(e.g. , [11]).The initial electric field may be smooth, but
very soon there appear large gradients yielding the Lan-
dau damping, that is, another phase mixing.

With the wave form overlapping at least two plateaus
of the devil's staircase, it contains an infinite number
of smaller plateaus and the corresponding expression for
the temporal evolution turns out to be extremely bulky
and a little informative. However, the behavior remains
qualitatively the same. The temporal scale of the phase
mixing is determined by the largest plateau width and by
the phase relations between various plateaus. With the
wall corrugation tending to zero, there should be uniform
motion of the wave form afnicted by dispersion spread,
but an attempt to trace this reduction failed.

where V. BEAM-PLASMA INTERACTION

&"(s) = &(~p(s)) (25) A. Basic equations

Thus, we see that eigenfunctions of the corrugated
plasmaguide in a certain frequency range form a com-
plete set in a class of periodic functions (23). Similar
expressions may be obtained for a cycle with Q g 1, but
besides periodicity some additional constraints on f(z)
must hold (Appendix A).

In this section, we consider the excitation of the de-
scribed plasma waves by an electron beam. Suppose that
the beam is of the form of an infinitesimally thin sheet
at the x = 0 plane and propagates along the external
magnetic field. Instead of the Poisson equation (4), we
now have

IV. TEMPORAL EVOLUTION OF A WAVE
FORM Bzp(z, z) 2 02$(z, z)—[s(~)] ' = 4~e[s((u)] A(z)h(z),

E, (z, t) = Ree *"~'l'Ep, (z), (26)

Until now, our main G.nding was the odd spectral de-
pendence, w(k), represented by a fractal curve consisting
of an infinity of vertical lines. However, of greater impor-
tance for physics is the evolution of a wave form consist-
ing of many temporal harmonics. Obviously, since the
spectral curve is nondifI'erentiable, we are no longer able
to use such concepts as group velocity and dispersion in
application to the spectrum of this kind.

Nevertheless, using the results of Sec. III, we can easily
solve the initial problem for the wave form. Suppose that
initially, say, at t = 0, the quasiperiodic perturbation
complying with Eq. (23) was excited. Then, making use
of the transform (24), (25) and taking into account that
each s component of the potential &P(s) oscillates with
its own frequency w(s), we easily obtain the expression
for the z component of the electric field at the axis,

(27)

where A(z) is the deviation of the surface beam density
from its equilibrium value, Ap, and the frequency, u, is
generally a complex quantity. It should be noted that
within the present approach, it; does not matter whether
the beam space charge is neutralized. Using the con-
tinuity equation and the equation of motion for beam
electrons, we get

( 8)' e O'P
~

—i(u+ u —
~

A(z) = Ap—
l Oz) m Oz2 (28)

where u is the initial beam velocity.
Due to the mirror symmetry of the slab, even plasma

modes only can interact with the beam, i.e, the solution
of Eq. (27) is
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F(z+ x/s(ur)) + G(z —x/s((u)), x ) 0
F(z —x/ s((u)) + G(z + x/s((u)), z ( 0 .

(29)

Finally, making use of the boundary conditions for the
potential at x = 0 and x = a(z) and taking into account
Eq. (28), we obtain the desired set of equations describing
beam-plasma interaction,

2
p(z) = —cr(z) —o'(z)P

is a positive periodic function. Thus, the plasma response
to the external perturbation generally results in the exci-
tation of a set of sharp electric Geld spikes situated near
the zeros of the denominator in Eq. (34).

C. Beam-plasma instability

E(z) —G(z) = v(z),

E(z + a(z)/s(u)) + G(z —a(z)/s(u)) = 0,

(30)
Since we expect that the beam-plasma interaction is

efficient only near the singularities, one can neglect the
difference between F(z) and G(z) in Eq. (31), which may
now be written as

B~'
I

-i~+u —
I

v(z) = -s(~)gp[F'(z)+G'(z)1
Ozp

(31)

where v'(z) = —2vres(~)A(z) and the acceleration gp ——

2m ezAp/m is a two-dimensional analog of the plasma fre-
quency.

The general solution of Eqs. (30) and (31) requires the
analysis of a circle map in a complex plane that seems too
complicated to be studied analytically. However, with a
rarefied beam, we expect the spatial distribution of the
electric field to be slightly altered by the beam and use
the expansion in powers of the beam density. Thus, the
problem is split into two parts: the first one is the approx-
imate solution of the functional equations (30) providing
the plasma response to the beam charge and the second
task is to solve Eq. (31) which eventually should result
in the growth rate of the beam-plasma instability.

B. Plasma response

Assuming that the beam line, u = ku, intersects one
of the fundamental plateaus, Lz/~ at the frequency Mo ——

vru/P = kpu, we look for the solution with the frequency
close to wp satisfying the relation (23). To solve the first
part of the problem let us apply the integral transform
(24), (25) to Eqs. (30), i.e. , represent, for example, F(z)
as a superposition of a set of double layers:

F(z) = ) g ds'A" (z, s') E'"(s'),
+1/P

i

—i(u+ u —
i v(z) =( 0 ) '

sgpp(z) v(z).
ojz ) s —o.(z)

v (n +0) —v (n —0) = —ivrsgp, v(n ),
~(~+)

l~'(~+)
I

where the choice of the sign in the right-hand side guar-
antees that the solution is analytic in the upper half of
the complex u plane.

Keeping the lowest order terms of expansion in pow-
ers of the beam density, i.e. , go, far away from singu-
lar points in Eq. (36), one can set gp

——0, resulting in
v(z) = exp(i —t)(Cq + Czz), where Cq z are constants.
Finally, taking into account that there are two singular
points over the period and making use of Eqs. (23) and
(37), we obtain the desired dispersion relation for the
beam-plasma instability,

p(n")
(cd —idp) = 1—spgp )2 io'(n )i' (38)

therefore, the growth rate, p, is

The latter should be supplemented with the periodicity
condition (23). Equation (36) looks like the Rayleigh
equation [12] for incompressible fluid and may be solved
in the same way.

First, we note that the zeros of the denominator at
Ims = 0 in Eq. (36) result in logarithmic singularities of
v(z) proportional to [z —o.+(s)] ln[z —n+(s)]. Following
the standard procedure [12] for the Rayleigh equation,
we conclude that v(z) is a continuous function, while its
derivative at the singular points is discontinuous:

where s' is an auxiliary real parameter, that results in
p = Mg ggpkp, (39)

F"(s') —gF (f(n (s'), s((u))) = v" (s'). (33)

Assuming that E"(a') is nonzero in the nearest vicinity
of sp ——s(wp), expanding Eq. (33) in powers of [s(w) —s']
and performing the transform (24), we obtain after some
algebra

where Mq is a dimensionless coefficient of the order of
unity.

Of interest is to compare this relation to the growth
rate of the beam-plasma instability in a smooth plas-
maguide. Solving Eqs. (27) and (28) with a(z) = const,
one can easily obtain that

1 v(z)F'(z) = ——p, (z)
2 s((u) —o.(z)

'

where

(34) p = M2+gpkp(up, (40)

where uo corresponds to the intersection of the beam line
and one of the TG modes (1), i.e. , wp ——kpu = 0 (kp)
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and M2 is another dimensionless coeKcient. Thus, the
main modification introduced by the wall corrugation is
the change in the instability regime instead of the cu-
bic root dependence of the growth rate (40) on the beam
density, which is typical for a single-particle instability,
we now have the square root (39), which is the token of a
collective-type instability with the growth rate compara-
ble to the frequency of beam oscillations. Evidently, the
reason for this is the reduction of the beam-plasma inter-
action due to the singular nature of plasma modes. The
obtained growth rate (39) corresponds to the beam cross-
ing the singular plasma wave only twice over the period,
while in a smooth plasmaguide it permanently interacts
with the plasma.

This evaluation is valid if the growth rate (39) is much
smaller than the plateau's width. In the opposite limit,
when the beam-plasma resonance overlaps many mode-
locked intervals and the growth rate (40) exceeds the
largest plateau's width, the wall corrugation is negligible.
As usual, the intermediate case causes many troubles and
can hardly be studied analytically.

VI. CONCLUSIQN

The main result of this paper is the splitting of the en-
tire spectrum of TG modes of a corrugated planar plas-
maguide into diferent wave branches consisting of an in-
finity of subbands with constant rational wave numbers.
This mode locking is usually thought of as an attribute
of nonlinear physics but, amazingly, here we run it across
in a linear problem.

Is the obtained spectrum dense7 The devil's staircase
does not form any dense set in the (r, s) plane. If we
rescale 8 to u in, say, Fig. 3, cut and fold it along the
w axis to reduce it to the first Brillouin zone, then the
resulting graph would not still constitute a dense set. To
obtain something really dense, we should add an infinity
of other graphs with rescaled K corresponding to all n g
1. Therefore, whether this spectrum is to be called dense
is a matter of definition and taste.

Nevertheless, the spectrum of TG modes in any closed
planar resonator must be dense because of the reduced
dimensionality of its geometric representation. For in-
stance, the problem may be easily solved for a rectangu-
lar cavity, where the spectrum is given by Eq. (1) with
k taking some discrete values. A less trivial example is
a circle x + z ( 1. Then, representing the solution of
Eq. (4) in polar coordinates, p, 0, as P = A(p cos(0—
P)) + B(pcos(0 + P)), where cot P = s, results in the
functional equation A( cos(0 —p)) + R( cos(0 + p)) = 0.
Expanding the latter in the Chebyshev polynomials, we
get either sin(nP) = 0 or cos(nP) = 0, where n is an
integer, which corresponds to the dense spectrum filling
the band between zero and the plasma frequency.

To avoid confusion, it should be noted that many text-
books on partial differential equations state that there
is no solution of hyperbolic-type equations like (4) in a
closed area. The examples mentioned above correspond
to the eigenvalue problem, which was seldom (if ever) dis-
cussed in the mathematical literature but is of physical
sense.

There is still no answer to the question whether the
discussed spectrum may appear in a cylindrical wave
guide. One of the reasons for the mode locking is visible
in Fig. 2: if two curves intersect at some point then be-
cause of the equidistance of the transverse wave numbers,
q, in Eq. (1) there is an infinity of other curves coming
through the same point. In a cylindrical waveguide q 's

are proportional to the roots of the Bessel functions, thus
generally this property no longer holds. However, for
large n the transverse wave numbers represent a nearly
equidistant set and one may expect the mode locking to
appear.

The presented theory of a corrugated plasmaguide is
valid in a specific frequency band, 8 & s;„,where the
function f(z, s) (9) is a circle map. An attempt to dis-
card this limitation yields severe mathematical problems.
When s ~ s;„,there appear confluent points of f (z, s).
In previously studied applications of circle maps (e.g. ,

[6]), this bifurcation leads to the transition to chaos,
which was, in fact, the main object of these studies. In
the present context, if 8 & s;„, then f(z, s) becomes
discontinuous, moreover, since the characteristic curve
leaving the x = 0 axis can change the z direction of its
propagation, f (z, s) is no longer a circle map. It is asso-
ciated with a Bow at a more complicated manifold, like
a sphere with two handles, and, to my knowledge, there
is no detailed theory of corresponding maps.

Preliminary computer runs with 8 ( s;„have shown
that there is no (or, at least, little) chaos in character-
istic curves and the spectrum remains qualitatively the
same. This problem needs further investigation and will
be discussed elsewhere.

Finally, as we have already mentioned, this theory has
a number of over physical applications. For example,
if Eq. (4) describes electromagnetic radiation in a res-
onator with oscillating walls, our results show that in a
wide range of parameters a sequence of short pulses is
formed. In other words, this may be considered as the
Fermi acceleration of photons, which, in contrast with
usual stochastic acceleration, is of regular character.

AP PENDIX A: ARBITRARY CYCLES

The cycle points for an arbitrary plateau, Lgy~ are
conveniently described by a function, o.~y~, which gen-
eralizes Eq. (16):

f ~ql (z, oq/y (z)) = oq/J (z) + P. (Al)

Obviously, o.(z) = o', /J (z).
The following are some properties of oq/~(z) that may

be easily derived from its definition.
(1) ~q/&( + 1) = oq/&(z).
(2)There are exactly Q minima and Q maxima at the

interval [0, 1).
(3) All its extremal values are equal. The range of

values of oq/J (z) is Eq/~.
(4) All cycle elements, n+(s), are the roots of

o.q/~(z) = 8, so that oq/~(n+) ). 0, o.q/~(o„) & 0.
The general solution of Eq. (8) corresponding to s C
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A~I~ and the wave number k = 7r(2n + A)Q/P is

oo Q —1
gin ( ) ) ) vrirn(2n+A) +z

( 1)Aj

m= —oo j=p

xh(z —n,"(s) —m). (A2)

The latter generalizes Eq. (20) and may be verified by
straightforward substitution into Eq. (8).

Following the evaluation of Sec. IIIB, it is readily
shown that the Stieltjes integral (24) with 4"(z, s) given
by Eq. (A2) represents a quasiperiodic function, such
that

~( + 1) in (2n+A)Q/E yr( ) (A3)

The whole z axis may be paved by alternating intervals
M+ with difFerent signs of cr&&&(z). Since the values of

A(z, s) in difFerent intervals are related by Eq. (8), the
following constraint on E(z) must hold:

defined by a vector, R, with R = +8, R = +1. Starting
from any point in (x, z) plane, a rough incremental search
of the intersection between the line with a given R and
the boundary x = a(z) is performed. If the line goes
down and crosses the z axis, the procedure is terminated.

(2) The coordinates of the intersection point, (zo, zo),
are found by the Newton iteration method.

(3) The direction of propagation is chosen according to
the value of a'(zo), which allows us to handle both simple
paths depicted by the line 1 in Fig. 1 and more compli-
cated situations (line 2). Then step (1) is recursively
repeated.

The procedure is repeated to obtain any number of
iterations of f(z, s). The coordinates of all intersection
points are stored, which allows us to use the recursion
relation following from Eq. (9) to evaluate derivatives of
f(Q)(z s)

2. Devil's staircase

+(gcIJ (z)) = (—1)"+(z) (A4)

where g~I~(z) = f (z, a~I~(z)). Any function satisfying
both relations (A3) and (A4) is determined by its value in
any two adjacent intervals, say Mp+, and therefore, may
be represented as (24) with the inverse transform given
by (25).

APPENDIX 8: NUMERICAL METHODS

1. Circle map

The circle map (9) is evaluated in few steps.
(1) The direction of a characteristic line (Fig. 1) is

The computations where performed using the following
algorithm.

With a(z) given by Eq. (18), plateaus with Q = 1, 2
were evaluated analytically. Equidistant values of 8 from
the complementary set were taken (As = 0.001) to per-
form the rough search for cycles using a few hundred
(usually 300) of map iterations for each s. The cycles
with Q ) 100 were discarded and, thus, some interval
(s;„,s „)was covered by first approximation plateaus.

This data was used for more exact computations. For
all rational numbers Q/P (Q ( 100, Q/P ( s „),
Eq. (Al) was solved by the Newton iteration method pro-
viding crqIp(z). The lower limit of Q/P was controlled
by the condition s ) s;„.The iterations were initiated
either by the position of the Q/P plateau already found
during the rough search or, if no corresponding Lgy~
had been found yet, by the positions of nearby found
plateaus. Finally, another iteration cycle was organized
to locate the two adjacent extrema of ogpu (z) providing
the edges of the plateau.

[1] W.R. Lou et al. , Phys. Rev. Lett. 67, 2481 (1991).
[2] A.W. Trivelpiece and R.W. Gould, J. Appl. Phys. $0,

1684 (1959).
[3] See, for example, J.M. Ziman, Principles of the Theory

of Solids (Cambrige, University Press, 1972), Chap. 1.
[4] E.Z. Gusakov and A.D. Piliya, Pis'ma Zh. Eksp. Teor.

Fiz. 48, 71 (1988) [Sov. Phys. JETP Lett. 48, 75 (1988)].
[5] See, for example, H.G. Schuster, Deterministic Chaos

(Physik-Verlag, Weinheim, 1984).
[6] M.H. Jensen, P. Bak, and T. Bohr, Phys. Rev. A 80,

1960 (1984).
[7] V.I. Arnol'd, Geometrical Methods in the Theory of Or

dinary Differential Equation (Springer, Berlin, 1982).

[8] M.A. Lavrentiev and B.V. Shabat, Problems in Hydrody
namics and Their Mathematical Models, 2nd ed. (Nauka,
Moscow, 1977).

[9] G.T. Moore, J. Math. Phys. 11, 2679 (1970).
[10] V.V. Dodonov, A.B. Klimov, and V.I. Man'ko, Proceed

ings of the P N. Lebedev Physi. cal Institute, edited by
M.A. Markov and V.I. Man'ko (Nauka, Moscow, 1992),
Vol. 208, p. 105.

[11] B.B. Kadomtsev, Collective Phenomena i n Plasmas
(Nauka, Moscow, 1988).

[12] C.C. Lin, The Theory of Hydrodynamic Stability (Cam-
bridge University Press, 1955).


