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Two-dimensional model of a capacitively coupled rf discharge and comparisons with experiments
in the Gaseous Electronics Conference reference reactor
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We present results from a two-dimensional (2D) numerical fluid model of rf discharges in conditions
close to recently published measurements of the spatial distribution of plasma density in the Gaseous
Electronic Conference reference cell. The discharge is in pure argon at pressures in the 100 mtorr range,
frequency 13.56 MHz, and rf voltage amplitudes on the order of 100 V. The model is based on solutions
of the continuity, momentum (drift-diffusion), and energy equations for the electrons, continuity, and
drift-diffusion equation for positive ions, coupled with the Poisson equation. The results of the model
are qualitatively and quantitatively in good agreement with the experiments. The model predicts a max-
imum of plasma density off axis, as in the experiment. The ion current density on the electrode is also
nonuniform, and increases radially in the conditions of the experiments. The effects of the rf voltage,
pressure, and reactor geometry (electrode dimensions, gap length, guard rings, etc.) on the plasma prop-
erties and on the uniformity of the ion current on the powered electrode are also discussed. It is shown
that the existence of a maximum of plasma density in the radial direction, in the conditions of the experi-
ment, is due to the small value of the electrode spacing. The results show that the harmonic content of
the discharge current is also geometry dependent. The comparisons show that 2D, three-moment fluid
models can accurately describe the discharge and the effects of the chamber geometry on the plasma
properties for pressure above the limit where collisionless electron heating does not play a significant
role.

PACS number(s): 52.65.—y 52.80.Pi

I. INTRODUCTION

The Cxaseous Electronics Conference reactor [1] (GEC
reactor) has been designed to facilitate comparison be-
tween experiments performed by different groups in simi-
lar rf discharge conditions and to improve the methods of
measurement. These experiments are also extremely use-
ful in providing a set of reliable data for modeling and for
testing the accuracy of different types of numerical mod-
els of capacitively coupled rf discharges. In this paper,
we concentrate on the recently published experimental
results of Overzet and Hopkins [2,3], where accurate
electron-density measurements using Langmuir probe
and microwave interferometer techniques have been per-
formed in a GEC reactor in argon, at pressures ranging
from 100 to 500 rntorr. In Ref. [3], Overzet and Hop-
kins present two-dimensional (2D) measurements of the
spatial variations of the plasma density in the GEC reac-
tor. The primary goal of the present paper is to compare
results from a 2D Quid model of the discharge with the
measurements of Ref. [3], and to use the model to help
interpret the measurements. In a second part of the pa-
per, we study the effects of rf voltage, pressure, and reac-
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tor geometry on the discharge properties, and especially
on the radial uniformity of the plasma density and ion
current to the left electrode. The ion current density
profile on the driven electrode is an important parameter
in processing applications, since the uniformity of the
process, deposition or etching, is directly related to this
parameter.

After the first numerical models of dc discharges by
Ward [4,5] more than 30 years ago, the need for accurate
descriptions and predictions of dc and rf glow discharges
has constantly increased due, to a large extent, to the de-
velopment of plasma processing in the microelectronics
industry. A number of 1D Quid models of dc and rf
discharges have been developed in the last ten years
[6—28]. Some 2D calculations have also been done more
recently [29—38]. These models are Quid models, i.e., are
based on a Quid representation of the charged particles,
where the first two or three moments of the Boltzmann
equation, with appropriate closure relations are used to
describe the charged particle transport. These equations
are coupled with Poisson's equation, and the model gives
the space and time variations of the average properties of
the charged particles (density, mean velocity, energy, ion-
ization rate) and of the electric potential.

More detailed (and more time consuming) particle
models, where a fully kinetic description of the charged
particle transport is used, have also been developed in 1D
[39—48] and very recently in 2D [49]. These models
(PIC-MCC) use the particle-in-cell technique for the
transport of electrons and ions, and Poisson equation,
coupled with a Monte Carlo simulation to describe the
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collisions between charged particles and neutral atoms or
molecules. Since no approximations concerning the
transport of electrons and ions are made in the PIC-MCC
models, they are accurate in a wider range of discharge
conditions (lower pressure, higher frequencies) than the
Quid models where assumptions of the charged particle
velocity distribution functions must be made in order to
close the system of moment equations. Hybrid models,
where the high energy part of the electron distribution
function is described with a particle simulation while
Quid equations are used for the bulk, have also been
developed [50—53].

Although PIC-MCC simulations should be used at
very low pressure (typically below 100 mtorr), when col-
lisionless heating of the electrons in the sheath becomes
important, fluid models have been extremely useful in
helping to understand the basic properties of rf
[6,7,9, 11,13,36,37], dc [15,20,29], and pulsed discharges
[54] and in predicting the trends. Hybrid models have
also proved to be extremely useful in providing a better
understanding of transient [50] and dc [53] discharges.
Most of the discharge properties that had been predicted
by Quid models have been later verified by PIC-MCC
models (compare, for example, Refs. [13]and [48]). Com-
parisons of the results obtained by different groups hav-
ing different numerical methods but using the same set of
cross sections or swarm parameters and boundary condi-
tions have been compiled by Surendra [55]. These results
show that fluid models, although less reliable than fully
kinetic models, give reasonably accurate predictions of
the discharge properties for sufficiently high pressure.
The 2D ffuid models of Refs. [36] and [37] have also
shown the ability of the models to predict, at least quali-
tatively, the effect of the electrode configuration on the
localization of potential traps in dusty plasmas [56].

As a result of the GEC reference reactor initiative, the
recent availability of systematic and careful measure-
ments of electrical characteristics and plasma properties
of rf discharges makes it possible to check the validity of
the models from a more quantitative point of view.

We present, in Sec. II, the principles of the 2D model
and the data that have been used in the calculations. The
results of the models, in the conditions of the experiments
of Overzet and Hopkins [3], are presented in Sec. III, and
compared with the measurements. In Sec. IV, we
present a parametric numerical study of the GEC refer-
ence reactor in argon, with emphasis on the questions of
radial uniformity of plasma density and ion current den-
sity on the left electrode.

II. DESCRIPTION OF THE MODEL

The Quid model is the same as the one used by Boeuf,
Belenguer, and Hbid [36]. Since the details of the equa-
tions and approximations were not given in Ref. [36], a
complete description of the model is given in this section.
A summary of the model assumptions is given in II A, the
equations are listed in II 8, a discussion of the assump-
tions on the ionization and energy loss rates is given in
Sec. II C, the boundary conditions are presented in II D,
the data used in the simulation are described in II E, and
the numerical model is briefly presented in II F.

A. Assumptions of the model

In this paper we only consider the cold gas approxima-
tion, i.e., we neglect the interactions between the charged
particles and neutral atoms in excited states. The effects
of superelastic collisions or stepwise excitation or ioniza-
tion are therefore neglected. Although these collisions
have been shown to play a role in rf discharges at 1 torr
in argon [24], we believe that they are not very important
in the low pressure conditions (100—250 mtorr) and low
rf voltages (amplitude 100 V) of the experiments of Over-
zet and Hopkins [3]. Only electron impact ionization
from the ground state will be considered in the following.
Electron-electron and electron-ion collisions are not tak-
en into account in the model (the degree of ionization is
on the order of 10 ). Electron-ion recombination is also
neglected, which is a good approximation at these low
pressures.

Ion transport is described by a continuity equation and
a drift-diffusion momentum transport equation. Ion iner-
tia is thus neglected. The model could be slightly im-
proved by using an effective field in the ion drift-diffusion
equation to account for ion inertia, as in Refs.
[9,11,27,34,35,38].

Electron transport is described by the first three mo-
ments of the Boltzmann equation, the continuity,
momentum transport and energy transport equation. In-
ertia terms are also neglected in the electron momentum
transport equation, which reduces to the drift-diffusion
form (energy gradient terms are neglected in this equa-
tion). The electron diff'usion coefficient D, and mobility

p, are supposed to satisfy the Einstein relation
D, /p, =(k&T, )/e =

—,'s, /e, where the electron tempera-
ture T, or mean energy c., =

—,'k~T, at each location and
time are deduced from the electron energy equation. In
order to close the system of electron moment equations
we also assume that (1) the pressure tensor is isotropic
and diagonal, (2) the drift energy is negligible with
respect to the thermal energy, (3) the heat ffux is propor-
tional to the electron temperature gradient, (4) the mean
electron-neutral collision rates depend only on the elec-
tron mean energy. However, the electron distribution
function is not supposed to be Maxwellian. The function-
al dependence of the ionization rate, momentum transfer
rate (and mobility), and energy loss rate on the mean en-
ergy are supposed to be the same as at equilibrium, in a
swarm experiment, as in Richards, Thompson, and Sawin
[9]. This assumption is further discussed in Sec. IIC.
The model supposes cylindrical symmetry.

B. Equations

The following notations are used below. Indices e and
p refer to electrons and positive ions, respectively.
n,

~ ~~(r, t) are the electron (ion) number densities at posi-
tion r and time t. Since we assume cylindrical symmetry,
r is defined by only two parameters, the axial position x
and the radial position p. v, ~ ~~ is the electron (ion) mean
velocity, c, the electron mean energy, k; the electron im-
pact ionization rate, p, and D, the charged particle
mobilities and diffusion coefficients, and kI the energy
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loss rate. All these parameters are functions of r and t,
with k;, kL, p„and D, depending on r and t through
e, (r, t ). E(r, t) is the electric field and V(r, t ) the electric
potential in the discharge. N is the gas density. Using
this notation and the assumptions described in II A, the
charged particles transport equations can be written as
follows. Positive ions:

Bn
+V (n~v~)=n, Nk, ,Bt

Equating the right-hand side of (5) to zero at equilibri-
um gives the functional dependence of kL with c, :

kl [c,, ] =e —(p, ,E ), „;,=eG[F '[s, ]](F '[e, I)~ .
1

L 8 N 8

Knowing the variation of the ionization rate k, (from
Boltzmann calculations, or from swarm experiments)
with E/N at equilibrium,

nzv~ =n p E—D Vn

electrons:

(2) k; =H(E/N),

the functional dependence of k; with c,, is given by

(12)

Bn,
+V (n, v, )=n, Nk;,

Bt

n, v, = —n, p, E—D, Vn, ,

Bn, c, +V ( n—3e,v, +, q, )= en,—v, E n, Nk—
LBt

(3)

(4)

(5)

k; I e, ] =H[F '{e,] ] . (13)

The mobility p, [and momentum transfer rate
k =e/(mNp, )] can be expressed as a function of the
mean electron energy in the same way, using Eqs. (9) and
(10):

where the heat Aux q, is given by p, = G[F—'[e, I] . (14)

q, = ——2~Vv.„~=—5n, D,

and

(6)

E= —VV .

The electric potential V is obtained from Poisson's equa-
tion,

e
b, V= — (n —n, ). —

Ep
(8)

1
p = G(E/N) . —

8 (10)

The set of equations above is similar to the system used
in a number of papers on rf discharge modeling. Howev-
er, different ways of estimating the ionization, momen-
tum transfer, and energy loss rates have been used in
these papers. This question is discussed in Sec. II C. In
the present paper, we assume that these rates depend on
the mean electron energy in the same way as they do un-
der equilibrium conditions. By "equilibrium conditions"
we mean a situation where the rate of electron energy
gain is locally balanced by the energy loss rate. The mod-
el will therefore give exact results when applied to the
conditions of a swarm experiment (uniform electric field,
far from boundaries). At equilibrium, all the electron
mean properties can be expressed as a function of E/N.
Since the electron mean energy c,, is an increasing func-
tion of E/N, all the other electron mean properties can
be expressed as a function of c, In the present work, the
energy loss rate at equilibrium is obtained by writing that
energy gain is locally balanced by energy loss in Eq. (5),
i.e., by setting the time and space derivatives to zero. As-
sume that, at equilibrium, c, and p, are related to E /N
by

e, =F(E/N)

In summary, k, , p„and kl in Eqs. (3)—(5) are ob
tained as follows: (1) the equilibrium functions F, G, H,
characterizing the variations with E/N of the mean elec-
tron energy, mobility, and ionization rate at equilibrium
(constant electric field) must first be tabulated (they can
be obtained from a Boltzmann or Monte Carlo code, or
from swarm experiments); (2) kL, k, , and p, at a given lo-
cation and time during the simulation depend on the elec-
tron mean energy at this location and time as indicated in
equations (11), (13), and (14), respectively.

Note, finally, that by setting the right-hand side of Eq.
(5) to zero at equilibrium, one neglects a term of the order
of e,Nk; (which would come from the spatial gradient in
a steady state swarm experiment). This approximation is
reasonable if the electron mean energy is smaller than the
ionization threshold, which is generally the case in our
conditions (otherwise, it is easy to add this term in the
above derivation of kl [22]).

C. Comments on the ionization and energy loss rates

Different ways of estimating the ionization rate k; and
energy loss rate kL have been used in rf discharge model-
ing. The method described in Sec. II B and used in Ref.
[36] is similar to the methods used by Richards, Thomp-
son, and Sawin [9], Gogolides and co-workers [11,22],
Oh, Choi, and Choi [16],Meyyappan and Govindan [23],
and also Barnes, Colter, and Elta [10], Young and Wu
[34], and Economou and co-workers [24,38]. A similar
idea is also used by Passchier and Goedheer [35], al-
though the energy loss term in this paper (Eq. (3) of Ref.
[35]) neglects inelastic losses other than those due to ion-
ization. The assumption that the ionization rate, momen-
tum transfer and energy loss rate depend on the mean en-
ergy has been used for a long time in the theory and mod-
eling of electron transport in semiconductor devices
[57—60]. The derivation of the energy loss rate in Sec.
II B above is identical to the approximation discussed by
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Seeger [58] (see Eq. (4m. 6), p. 118 of Ref. [58]). It is also
possible to introduce, instead of the energy loss rate kL
and momentum exchange rate k defined above, an ener-

gy relaxation time r, (see Eq. (4m. 7), p. 118 of Ref. [58]):
NkI je, ] =1/r„and a momentum relaxation time r
defined by Nk I e, ] = 1/r, where the energy and
momentum relaxation times are also functions of the
electron mean energy. This relaxation time formulation,
is used explicitly, for example, in Refs. [10], [24], and [34]
in the context of rf discharge modeling and in Refs. [59]
and [60] in the context of semiconductor device model-
ing. It is completely equivalent to the method used in the
present paper and described in Sec. II B.

In other rf discharge models [6,8], the ionization rate
and energy loss rate are assumed to be of the Arrhenius
form, i.e., proportional to exp( E;/k&—T, ), where E, is.
the ionization energy threshold. Meyyappan and
Krevkosky [17] assume that the electron distribution
function is Maxwellian and obtain an analytical expres-
sion of the ionization rate as a function of electron tem-
perature (the ionization cross section is supposed to be
constant above the threshold).

Makabe and co-workers [12,21,28] assume that the ion-
ization rate is a function of a reduced effective field
E,rr(r, t )/N. This effective field is obtained from the solu-
tion of a differential equation, which is deduced from an
energy equation slightly different from (5). Note that the
method described in IIB is also equivalent to assuming
that the ionization rate depends on a reduced effective
field, this effective field being defined as the field which, at
equilibrium, would give the same mean electron energy as
Eq. (5).

Note, finally, that the equilibrium assumption of Refs.
[4,5,7,29,34] means that energy gain is locally balanced
by the losses so that the left-hand side of Eq. (5) is sup-
posed to be zero at any time or position in the discharge.
In that case, the electron mean energy at a given position
and time depends only on the value of E/N at that posi-
tion and time and is simply given by Eq. (9) (no energy
equation is needed). This is equivalent to assuming that
the energy relaxation time ~, defined above tends to zero,
or is negligible with respect to the rf cycle duration. For
a frequency of 13.56 Mhz, this assumption becomes
reasonable for pressures on the order of 1 torr (the exact
limit depends on the gas).

The discussion above shows that there is a variety of
approximations of the ionization and energy loss rates in
the literature and no systematic comparison of the
different approaches has been made. We believe that the
method described in this paper and first applied by
Richards, Thompson, and Sawin [9] to rf discharges is
more coherent and reliable than others for situations
where secondary electrons emitted by the electrodes do
not contribute significantly to the total ionization. If
secondary emission plays an important role [13,14], the
electrons emitted by the electrodes and accelerated in the
sheaths cannot be treated accurately with the energy
equation (5). These electrons should rather be described
by a modified energy equation accounting for their beam-
like nature [14,15,20] or by a hybrid fiuid-kinetic simula-
tion as described in Fiala, Pitchford, and Boeuf [53] for

dc glow discharges, Bouef and Pitchford [50] for tran-
sient discharges, Sato and Tagashira [51] and Sommerer
and Kushner [52] in the case of rf discharges.

l
en 4 e eth~ (15)

where U«h is the electron thermal velocity, given by

8k, T;
Ue, th=

m.m,
(16)

The electron energy flux to the electrodes and walls is set
to

q, „=—,'n, v, ,h(2k~T, ) . (17)

The ion flux to the electrodes and walls is supposed to be
purely drift when the ion drift velocity is directed to the
wall,

~p n ~pPpEn (18)

and is zero otherwise.
In the case of a dielectric wall, the total charge o. per

unit surface of the wall is obtained by assuming that elec-
trons and ions recombine instantaneously on the perfectly
absorbing boundary. The surface charge is therefore
given by integrating

(19)

The boundary conditions for Poisson's equation are of
the Dirichlet type (potential is imposed) on electrodes or
metallic walls, and of the von Neuman type on dielectric
walls (perpendicular field E„ is imposed; assuming a per-
fect dielectric, this field is obtained from the surface
charge o by E„=n.E=o /eo, where n is a unit vector
perpendicular to the surface and directed toward the in-
side of the reactor).

One of the electrodes is grounded, the other being
powered through a capacitor (see Fig. 2). The dc self-bias
is obtained iteratively, as in Passchier and Goedheer [35],
in such a way that the ion current to the electrode is ex-
actly balanced by the electron current over one rf cycle
when harmonic steady state is reached.

E. Data

The data used in the simulation are (1) the electron
mean energy, electron mobility, and ionization rate as a
function of E/N under equilibrium conditions (functions
F, G, H defined in Sec. II B, and (2), the ion mobility and
diffusion coefficient as functions of E /N.

The variations of the electron mean energy as a func-
tion of E/N (function F) have been obtained using the
multiterm Boltzmann solver of Segur, Yousfi, and Bord-
age [61], the set of electron-neutral cross sections in ar-

D. Boundary conditions

The electron fiux normal (index n) and directed toward
the electrodes or walls is given by (no reflection or secon-
dary emission is considered in the results below)
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gon being the same as in Fiala, Pitchford, and Boeuf [53].
The calculated equilibrium mean energy (function E) is
represented in Fig. 1(a). It is about 10%%uo higher than the
analytical linear expression used by Richards, Thompson,
and Sawin [9] for E/N greater than 10 Td (10 ' V cm ).

The parameters below are given at 300 K. For con-
venience, the gas pressure p is used instead of the gas den-
sity X.

The electron mobility is supposed to be constant and
its value is taken from Ward [5]:

pp, =3X10 cm V 's 'torr . (20)

for E/p ~60 V/(cmtorr),

8.25X10 86.52 2 —1 —1pp„= '
1 — torrcm V s

E/p (E/ )3/2

The ion mobility is also taken from Ward [5] and is given
by

pp =10 (1—2.22X10 E/p) torrcm V 's

The ionization rate at equilibrium (function H) is de-
duced from the ionization coefficient a and mobility by
k; =(a/N)p, E. The ionization coefficient at equilibrium
is supposed to depend on the reduced electric field ac-
cording to the formula

—8
a/p = A exp.

(E/p )'

where a is in cm ', p in torr, and A =34 cm ' and
8 = 16 [V/(cm torr)]

We find that the above formula is in much better agree-
ment with the Boltzmann calculations than the analytical
expression of Ward [5].

The electron energy loss rate is obtained from Eq. (11).
Ionization rate and energy loss rate are represented in
Fig. 1(b) as functions of electron energy. The ion
diffusion coefficient is set to 2X10 cm s ' at 1 torr, 300
K. The electron diffusion coefficient is deduced from the
Einstein relation.

for E/p )60 V/(cm torr) . (21) F. Numerical model

0
0

(a}

50 100 150
Reduced Electric Field (Td)

200

As in Refs. [7,29,35,36,50,53], the numerical method is
based on the Scharfetter-Gummel [62] discretization
scheme of the drift-diffusion equations. In contrast with
Refs. [13,14,50,53] the time integration scheme used in
this paper is not implicit, i.e., the transport equations and
Poisson's equation are integrated successively in time as
in Refs. [7,29]. Therefore, no linearization of the system,
matrix inversion, and Newton iterations are necessary.
Although the explicit method of integration is subject to
a constraint on the time integration step (the time step
must be smaller than the dielectric relaxation time), we
find that for the relatively low plasma density values of
the experiments of Overzet and Hopkins [2,3], this con-
straint is not strong and explicit integration is relatively
fast. The time step 6t in an explicit integration must
satisfy the constraint

10.000 =

5t& 1

(e/Eo)(n, P, +n Iu, )
(22)

1.000 =

0.100 =

I

U3

2
I

CO

0.001

0.010 =

6
Mean Electron Energy (eV)

FICx. 1. t,'a) Mean electron energy as a function of E/N ob-
tained from a multiterm Boltzmann calculation and used in the
discharge model [function I' of Eq. (9)]; (b) ionization rate k;
and energy loss rate kz as functions of electron mean energy
[Eqs. (13) and (11),respectively].

For a plasma density of 10 cm in argon at 0.1 torr,
this corresponds roughly to 6t &0.2 ns. At a frequency
of 13.S6 MHz, the number of time steps per cycle is
therefore less than SOO. With a fully implicit time in-
tegration scheme, this number can be dropped to less
than SO but since the computation cost per time step
would be much larger than in the explicit case, the expli-
cit scheme may still be more efficient. The fully implicit
scheme is extremely efficient for very large plasma densi-
ties [50], or for low frequency or dc discharges [53]. In
the model described here, we can use, if necessary and for
larger densities, a semi-implicit time integration scheme
in order to increase the time step and to accelerate the
calculations. In this simple scheme, a prediction of the
electron density at time t+5t, taking into account the
field variation during 5t, is used in Poisson s equation in-
stead of the electron density at time t, and the constraint
defined by Eq. (22) no longer holds (similar ideas are used
in Ref. [63]).
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The discretization of the electron and ion fluxes [Eqs.
(4) and (2)] in our model is identical to Eq. (A7) of Fiala,
Pitchford, and Boeuf [53]. Using this discretization, the
continuity equations (3) and (1) are expressed as in Eq.
(Al) of [53] using a Crank-Nicholson scheme. The con-
tinuity equations are integrated in time successively along
each spatial direction (splitting technique). Each integra-
tion involves the inversion of a simple tridiagonal matrix.

Using Eqs. (4) and (6), the electron energy equation (5)
can be modified in the equivalent form:

Bn, c., +—,'V [
—n, E,p, E D, V—(n, c, )]at

= —en, v E—n, Nk (23)

The left-hand side of this equation has the same form
as the left-hand side of the electron continuity equation,
the unknown function being here the electron energy
density (n, c,, ) instead of the electron density. The energy
flux term —,'[ n, e,p, E——D, V(n, c, )] can therefore be
disc retized in the same way as the electron Aux
(Scharfetter-Gummel scheme [62]), and Eq. (23) can be
integrated for (nE,)i,n the same way as the continuity
equation. We have found that if the energy gradient term
in the electron momentum transfer equation is not
neglected [i.e. , if the diffusion term is written V(n, D, ) in-
stead of D, b, (n, )], the energy equation cannot be written
in the form (21) and it is much more delicate to handle
numerically.

Poisson's equation is solved at each time step using a
successive over relaxation method. The code can deal
with relatively complex geometries (the geometry is
defined by the user using a simple interactive initializa-
tion program), dielectric or metallic walls, in cylindrical
or rectangular systems (periodic boundary conditions in
the direction perpendicular to the discharge axis can also
be used in the rectangular case). It can also be applied to
electronegative gases. Accelerating techniques, which
will not be described here, can also be used to accelerate
convergence toward harmonic steady state (this may be
necessary in the case of electronegative gases where the
negative ion loss processes that control the density of
negative ions can be extremely slow).

For the conditions considered in this paper (typically
13.56 MHz, 0.1 torr argon, plasma density on the order
of 10 cm ) the computational time is on the order of a
few rf cycles per minute of CPU time on a HP9000/735
workstation. Without acceleration, harmonic steady
state (more than 1000 cycles simulated) is reached in less
than 10 h CPU time under these conditions. The conver-
gence time can be divided by 10 if one uses accelerating
methods (such as overrelaxation of the continuity equa-
tion). At steady state, the production-loss balance for
each type of particle is checked: the number of electrons
(ions) created in the volume per cycle must be equal to
the number of electron (ions) lost in the volume (recom-
bination, attachment) and through the walls and elec-
trodes.

III. RESULTS FOR THE GEOMETRY
OF THE GKC REFERENCE CELL IN

THK CONDITIONS OF OVKRZET AND HOPKINS

In this section we show some results of the 2D model
described above, for conditions close to the plasma densi-
ty distribution measurements of Overzet and Hopkins [3],
in a GEC reference cell in argon.

A. Conditions of the simulations

The calculations presented below have been performed
in pure argon at a gas temperature of 300 K and frequen-
cy of 13.56 MHz. The argon pressure has been varied
from 0.05 to 0.5 torr, and the amplitude of the rf voltage
V& from 50 to 1SO V. The typical reactor geometry is in-
dicated in Fig. 2 (cylindrical symmetry). The powered
electrode is surrounded by a grounded guard ring. In all
the calculations presented below, the dimensions of the
chamber are XT = 10 cm (length) and RT = 10 cm (radius)
and the thickness of the guard ring is zero. The grid is
uniform axially and radially with 41X41 grid points.
The grid spacing is therefore 0.25 cm in both directions.

To simulate the experiments of Overzet and Hopkins
[3] in the GEC reference reactor, we used the following
electrode dimensions (see Fig. 2):

R, =S cm,

R„=5.25 cm,

RT=10 cm,

R, =5.25 cm,

X, =X„=3.5 cm,

X, =6.25 cm; d=X, —X, =2.75 cm,

Xz-=10 cm .

Note that these dimensions are close but not identical to
those of the reactor used by Overzet and Hopkins [3] (in
this reactor, d, R„, R„XT, and RT were, respectively,
2.54, 5, 5, 12, and 12.5 cm).

Ji

RT R,

V& cos[m t]

FIG. 2. geometry of the simulated reactor (CxEC reference
cell, not to scale).
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TABLE I. Definitions of the di6'erent discharge conditions simulated and discussed in this paper.
Each case is denoted by a number between parentheses, the standard case being (1). Bold characters in-

dicate a change of the corresponding parameter with respect to the standard case.

Vz (V) p (torr) d (cm) R, (cm) R„(cm) R, (cm) Other

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

100
50
150
100
100
100
100
100
100
100
100
100
100
100

0.1

0.1

0.1

0.05
0.25
0.5
0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

2.75
2.75
2.75
2.75
2.75
2.75
1.5
4

6.5
2.75
2.75
2.75
2.75
2.75

5
5
5

5
5

5

5

5

5

3.75
7.25

5
5

5

5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25

4
7.5
5.25

5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25

7.5
7.25
5.25
5.25

guard ring
guard ring
guard ring
guard ring
guard ring
guard ring
guard ring
guard ring
guard ring
guard ring
guard ring
guard ring
Ilo guard rmg
Ilo guaI'd rmg
left plate at
cathode
potential

Other cases have also been simulated and are reported
in this paper. These cases will be described in Sec. IV.
Table I identifies the di6'erent cases that have been con-
sidered.

B. Description of the results

Figure 3(a) shows the contours of constant electron
density (n, )(x,p) (averaged over one rf cycle) in the
geometrical conditions of Overzet and Hopkins and for
p =0. 1 torr and V,&=100 V (200 V peak to peak). One
can see an ofF-axis maximum of the electron density be-
tween the two electrodes at the location x =4.87 cm and
p= 3.62 cm. The radial coordinate of the maximum elec-
tron density is slightly smaller than the powered elec-
trode radius. The position of the maximum and its value
is in excellent agreement with the measurements of Ref.
[3]. Detailed comparisons of the calculations and mea-
surements are given in Sec. III C below. The time aver-
aged plasma potential ( V)(x,p) is shown in Fig. 3(b).
The maximum of plasma density is associated, as expect-
ed, with a maximum of plasma potential as shown. The
potential at the maximum is about 2 V above the poten-
tial on axis at the same axial position. The location of
these maxima is closer to the powered electrode due to
the asymmetry of the reactor. The calculated dc self-bias
(average potential of the powered electrode) is —66 V un-
der these conditions. Note that off-axis maxima of the
plasma density have been reported in several papers on
2D rf discharge models [32—38]. Experimental probe
measurements of the plasma potential in rf discharges
[64] have also shown the existence, in some reactor
configurations, of o6'-axis maxima of the plasma potential
which are related to plasma density maxima.

The time averaged iomzation rate (n, Nk; )(x,p) and
electron mean energy ( e, ) (x,p) are represented in Figs.

4(a) and 4(b), respectively. It is interesting to note that
both the ionization rate and mean electron energy reach a
maximum at a location close (but not identical) to the
maximum of electron density. As mentioned in Ref. [36],
the maxima of electron density (or potential) and ioniza-
tion rate are not necessarily coincident.

Figures 5(a) and 5(b) show the contours of constant
time averaged electron density and ionization rate, re-
spectively, in the second case described by Overzet and
Hopkins in Ref. [3], i.e., for a pressure of 0.25, all the
other parameters being the same as in the previous case.
The results are very similar to the 0.1 torr case, the elec-
tron density maximum being slightly more pronounced at
0.25 torr.

Figures 6(a) and 6(b) show the radial variations of the
time averaged electron and positive ion current densities
on the driven electrode (X=X„O(p (R, ) in the 0.1 torr
and 0.25 torr cases, respectively. The ion current density
to the electrode is not uniform and increases radially un-
der these conditions. The sharp increase of the current
densities on the edge of the electrode is due to the pres-
ence of the guard ring which induces a large radial elec-
tric field on the edge of the electrode. Note that although
the total electron and ion current (averaged over one cy-
cle) to the electrode are identical, the electron and ion
current densities are not identical at each point of the
electrode surface. The electron current density is smaller
than the ion current density in the center of the electrode,
while the reverse is true close to the edge of the electrode.

C. Comparisons with experiment

Figure 7 shows comparisons between the model results
and the Langmuir probe measurements of Overzet and
Hopkins [3] for a pressure of 0.1 torr. The calculated axi-
al [Fig. 7(a)] and radial [Fig. 7(b)] variations of the aver-
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aged electron density are near the electron and ion densi-
ty measurements of Overzet and Hopkins (see Figs. 1 and
2 of Ref. [3]), which should act [3] as upper and lower
bounds of the actual plasma density distribution. The ax-
ial and radial shapes of the calculated electron density
follows closely the density profiles measured by Overzet
and Hopkins. As in the experiment, the peak in the den-
sity occurs approximately 1 cm inside of the actual radial
edge of the electrodes.

Figure 8 shows the radial profile of the calculated and
measured densities for a pressure of 0.25. The agreement
between measurements and calculations is also very good
in that case.

10

IV. OTHER RESULTS AND DISCUSSION

In this section we present a parametric study of the
discharge and plasma properties, and discuss the effect of
pressure, voltage, and geometry on the radial uniformity
of the plasma density, ion current on the left electrode,
and other discharge properties. We also briefly comment
on the influence of the electrode geometry on the har-
monic content of the total discharge current.

A. Conditions of the simulations

The conditions of the simulation results discussed in
this section are summarized in Table I. Each set of con-
ditions is noted with a number between parentheses, (1)
being the "standard" case of Overzet and Hopkins. In all
the simulations, the length of the reactor Xz and its ra-
dius RT have been kept constant (10 cm each). The
cathode length X, is also the same in all simulations
(X, =3.5 cm). Note that in most cases, only one of the

0

0
C4

0 2—

10

o
0

I

2 4 6
Axial Position (crn)

10 o 6—

0
4

(b)

10
0

4 6
Axial Position (crn)

10

6

0
4

(b)

0
0 4 6

Axial Position (crn)
10

0

0
C4

FIG. 3. Contours of constant time averaged (a) electron num-
ber density and (b) electric potential in the standard case (1): ar-
gon, V&=100 V, F=13.56 MHz, p=0. 1 torr, dimensions ap-
proximately equal to the reference cell of Overzet and Hopkins
[3]. The increment of the density contours is —' of the max-

imum density (2X 10 cm ). The increment in the equipoten-
tial contours is 10 V, except for the four values below the max-
imum potential (38.03 V). The dc self-bias of the left electrode
is also indicated. The dashed line on the left electrode side
represents the guard ring.

4 6
Axial Position (crn)

FIG. 4. Contours of constant time averaged (a) ionization
rate (unit: 2.5X10' cm 's '), and (b) mean electron energy
(unit: 1 eV) in the conditions of Fig. 3.
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parameters is different from the standard case.
For each case, the parameter that differs from the stan-

dard case is printed in bold characters in Table I. This
parameter is the rf voltage for cases (2) and (3), the gas
pressure for cases (4)—(6), the electrode spacing for cases
(7)—(9), the electrode radius for cases (10) and (11), the
right electrode radius for case (12). In case (13), the
guard ring around the left electrode has been removed.
In case (14), the guard ring is also removed, and the plate
around the left electrode is no longer grounded and is at
the same potential as the powered electrode.

The results at 0.05 torr are probably quantitatively
questionable because collisionless heating may be non-
negligible at this pressure. The presence of metastable
species could also affect the results at 0.5 torr; however,
we believe that the trends predicted by the model under
these "extreme" conditions are still valid.

B. Parametric study of the ofF-axis plasma density
maximum and ion current density on the powered electrode

The radial variations of the plasma density for different
conditions of rf voltage, pressure, electrode spacing, and
electrode radius are shown in Fig. 9. We see that the off-
axis maximum of plasma density is enhanced by an in-
crease of rf voltage [Fig. 9(a)] or pressure [Fig. 9(b)],
everything else being kept constant. An increase in the
electrode spacing tends to decrease the importance of the
off-axis maximum [Fig. 9(c)]. The radial maximum of
plasma density disappears completely when the right
electrode is removed [case (9) of table I], i.e., when
X, =XT (see Fig. 2). This can also be seen in Fig. 10(b),
where the contours of constant time averaged electron
density corresponding to case (9) are represented. The
plasma density is maximum on the discharge axis in that
case. The radial maxima of plasma density also decrease
and finally disappear when the radius of both electrodes
is decreased [Fig. 9(d)].

(a)

10
0.04

o 6—
U)
0

c4 4 0.02

4 6
Axial Position (cm)

10 0.00 I

4
Radial Position (crn)

C R

(b)

10
0.08

(b)

o

U)
0

c4 4

0

U3 0.04—

0.02—

Ol

0 4 6
Axial Position (crn)

0.00
0 2 4

Radial Position (czn)

C R

FICx. 5. Contours of constant (a) time averaged electron num-
ber density and (b) ionization rate (unit: 7.2X10' cm s ') for
a 0.25 torr pressure [case (5)], the other parameters being the
same as in Fig. 3. The increment of the density contours is 2'o of
the maximum density (5.5 X 10 cm ).

FIG. 6. Electron (dashed line) and ion (solid line) current
densities on the surface of the powered electrode for (a) 0.1 torr
and (b) 0.25 torr; conditions of Figs. 3 and 5, respectively [cases
(l) and (5)].
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Increasing the radius of the grounded electrode while
keeping constant the driven electrode radius does not
affect significantly the existence of the radial nonunifor-
mity, as can be seen in Fig. 10(a), which shows the con-
tours of constant electron number density for case (12).

Taking off the guard ring has a strong effect on the
plasma density distribution, as can be seen in Fig. 11(a),
where the density contours for case (13) are displayed.
The density maximum is now outside the electrode gap,
and closer to the driven electrode. This is due to the fact
that the lateral part of the driven electrode plays, in that
case, an active part in the discharge maintenance, due to
the formation of an important sheath field around this
electrode. In Fig. 11(a), the plate surrounding the driven
electrode is grounded. If this plate is no longer ground-
ed, but, rather, at the same potential as the driven elec-
trode, the shape of electron density contours changes as

~ Expt. Ref. [3]:electrons

Expt. Ref. [3]: ions

4 — ~ Model

2

~ 3

P

2—

Q
~ ~

I ~

0
0 0.5 1 1.5 2
Axial Position from the Cathode Surface (cm)

5
. (b)

4-
()

P

s

(L)

Q

P 0 p

P I
~ ~0
~ ~

~ Expt. Ref. [3]:electrons

Expt. Ref. [3]: ions

Model

Radial Position (cm)

10

FIG. 7. Comparisons of the calculated (present work) and
measured (after Figs. 1 and 2 from Overzet and Hopkins [3])
plasma density (a) on axis and (b) radially, at a distance x = 1.25
cm from the surface of the powered electrode at 0.1 torr and
100 V peak rf voltage [case (1)]. The calculated curves (straight
lines) correspond to the time averaged electron density of Fig.
3(a). The experimental results correspond to the Langmuir
probe measurements of the time averaged electron (~ ) and ion
(o) density. These measurements should act as upper and
lower bounds on the actual plasma density [3].

4

E
O

2

4

~ Expt. Ref. [3]:electrons

Ref. [3]:ions

9
~ 0

0
0

Radial Position (cm)

10

FIG. 8. Comparisons of the calculated (present work) and
measured (after Fig. 4 of Overzet and Hopkins [3]) radial profile
of the plasma density at a distance x = 1.25 cm from the surface
of the powered electrode at 0.25 torr and 100 V peak rf voltage
[case (5)]. The calculated curve (straight line) corresponds to
the time averaged electron density of Fig. 5(a). The experimen-
tal results correspond to the Langmuir probe measurements of
the time averaged electron ( ~ ) and ion ( p ) density [3].

indicated in Fig. 11(b) [which corresponds to case (13) of
Table I]. The plasma density maximum now moves to-
ward the left plate. This is due to the enhanced ioniza-
tion rate in this region due to the presence of a larger
sheath field when this part of the reactor is no longer
grounded. Similar effects of the boundary conditions
have already been described in Ref. [36].

The effect of the discharge parameters and reactor
geometry on the radial distribution of ion current on the
powered electrode is illustrated in Figs. 12 and 13. Note
that in all cases the ion current density on the powered
electrode increases sharply on the very edge of the elec-
trode. This is due to the presence of the guard ring,
which imposes a zero potential very close to the driven
electrode.

We see, as in the discussion on plasma density nonuni-
formity above, that increasing the voltage tends to
enhance the nonuniformity of ion current density on the
powered electrode [Fig. 12(a)]. The eFect of pressure
[Fig. 12(b)j is less clear. However, increasing the gap
length has a strong effect on the profile of ion current
density, as seen in Fig. 12(c). The ion current distribution
is nonuniform and increases radially for short gap lengths
[cases (7) and (1)]. When the electrode spacing is in-
creased, the ion current distribution becomes more uni-
form. The ion current even slightly decreases on the edge
of the electrode for the longest gap length considered
[case (9)]. The ion current distribution on the driven
electrode is also more uniform when the radius of the
electrode is smaller, as shown in Fig. 12(d). Finally, it is
interesting to note (Fig. 13) that the ion current density
on the face of the driven electrode tends to be much more
uniform when the guard ring is removed and when the
plate surrounding this electrode is no longer grounded
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0.04 TABLE II. Calculated dc self-bias, peak current, and power
dissipated in the discharge for each case indicated in Table I.

0.02

0.00
4

Radial Position (crn)

FIG. 13. Time averaged ion current density on the cathode
surface for different con6gurations of the powered electrode.
The corresponding case number (see Table I) is indicated on
each curve.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(1 1)
(12)
(13)
(14)

dc bias (V)

—66
—25

—110
—69
—59
—53
—64
—66
—66
—71
—60
—65
—57
—34

Peak current
(mA)

136
55

204
105
178
179
140
127
119
66

257
135
125
576

Power (mW)

1085
380

1936
736

2070
2570
1245
969
868
521

2111
1090
981

3892

[cases (13) and (14)).
Overzet and Hopkins [3] suggest that the existence of

the off-axis maximum of plasma density in their condi-
tions is due to the presence of the guard ring around the
driven electrode, which induces a large radial electric
field on the edge of the driven electrode. The simulations
tend to show that this electric field is not responsible for
the off-axis maximum, because, if it were the case, this
maximum would not disappear when the gap length is in-
creased, as predicted by the model [Fig. 9(c)].

We have not found a simple analytical argument that
allows us to predict whether or not the off-axis maximum
between the electrodes will exist for a given set of condi-
tions. Some ideas as to the position of the density max-
imum may be suggested from the following simple model
calculations. We have solved the arnbipolar equation for
the plasma density, —D, Vn =nv;, assuming an ioniza-
tion frequency of the form v, (x,p)

=if�(x,

p), where A, is
a parameter to be determined (eigenvalue problem) and
f(x,p) a given 2D profile. The results show that if the
ionization frequency is nonzero only in the volume be-
tween the faces of the electrodes and decreasing with dis-
tance from the axis, the density rnaximurn is on axis. Ei-
ther a slight radial increase or a finite value of the ioniza-
tion frequency outside the volume between the electrode
faces is a necessary condition for the existence of the off-
axis maximum. As the electrode separation increases, the
density rnaximurn moves closer toward the axis.

300—
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C. Peak current, power, and dc self-bias

The peak current, the discharge power, and the dc
self-bias of the driven electrode for the cases of Table I
are reported in Table II. We see that the dc self-bias (ab-
solute value) increases with increasing rf voltage and de-
creases with increasing pressure, in qualitative agreement
with the well known properties of capacitively coupled

I
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60 80

FIG. 14. Time variations during one rf cycle of (a) discharge
current and (b) left electrode voltage for three different values of
the rf voltage. The corresponding case number (see Table I) is
indicated on each curve.
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discharges. Changes in the electrode spacing have a rela-
tively small effect on the dc bias in our conditions. The
dc bias is enhanced when the driven electrode radius is
decreased, as expected, since experimental results show
that the dc bias is a decreasing function of the driven
electrode to grounded electrode area ratio [65]. This is
also why the dc bias decreases when the guard ring
around the driven electrode is removed and when the
plate around this electrode is no longer grounded [cases
(13) and (14) of Table II, respectively]. Note in case (14)
that the power dissipated in the discharge is substantially
larger than in the other cases. This is because the
discharge is, in that case, no longer confined between the
faces of the two electrodes. Although we have seen in
Sec. IV B above that the ion current density to the face of
the left electrode has a good uniformity in that case, it is
clear that processing in these conditions would not be
very efficient.

D. Harmonic content of the total current

Figures 14(a) and 14(b) show the variations of the total
discharge current and driven electrode voltage as a func-
tion of time during one rf cycle for three different values
of the rf voltage. We see that the current is not perfectly
sinusoidal and that the distortion increases with increas-
ing rf voltage. The largest deviation from a purely
sinusoidal form occurs when the left electrode voltage ap-
proaches zero and becomes positive, i.e., during the be-
ginning of the anodic part of the cycle for the driven elec-
trode. The dc self-bias of the driven electrode appears in
Fig. 14(b). As expected, the dc bias increases with the
amplitude of the applied rf voltage.

A systematic study of the current distortion and of the
inhuence of the geometry on the harmonic content of the
current is left to a future work.

V. CONCLUSION

The results presented in this paper can be briefly sum-
marized as follows.

The 2D, three moment electron, two moment ion, Quid
model of rf glow discharges described in this paper can
well reproduce qualitatively and quantitatively the exper-
imental measurements of plasma density distributions of
Qverzet and Hopkins [3] in the GEC reference cell. The
model predicts an off-axis maximum of the plasma densi-
ty whose location and value are very close to those mea-
sured experimentally.

The model predictions of the effect of the geometry on
the discharge properties and electrical characteristics are
in agreement with well known experimental observations.

We have shown how the electrode and reactor
geometry, as well as the discharge parameters (pressure,
rf voltage), affect (1) the existence and locations of plasma
density maxima in the reactor and (2) the uniformity of
the ion current to the driven electrode.

The results presented in this paper show that Quid
models of rf glow discharges can be useful in helping
design or improve capacitively coupled rf reactors. How-
ever, more work remains to be done to extend the validity
of these models to a larger range of parameter space (e.g,
to situations where the plasma chemistry modifies the
electric behavior of the discharge through second kind
collisions).
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