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A suspended particle with specific director anchoring on its surface introduces a complex dis-
tortion Geld in a nematic liquid crystal matrix. Topological defects —disclination loops, boojums,
and hedgehogs, are needed to match the director near the particle surface with that at the far dis-
tance, which is determined by boundary conditions on the sample. This paper analyzes the elastic
energy and stability of a singular loop of wedge disclination and the first-order transition of the
radial hedgehog into a wide singular loop, driven by an external magnetic Geld. The far field of
distortions, created by a "Saturn ring" of disclination around the spherical radial particle, allows
one to calculate the potential of interaction between such particles and with the surface of the liq-
uid crystal. Particles are repelled from each other and from the rigidly anchored surface with the
potential U 1/r . If the sample surface has soft anchoring, the particle is attracted to it at close
distances and is repelled, if beyond the anchoring coherence length ( . Several experiments to test
these conclusions are suggested.

PACS number(s): 61.30.Gd, 64.60.Cn, 64.70.Md

I. INTRODUCTION

A nematic liquid crystal is uniform in its ground state.
Such a state, however, is rarely achieved in practice. On
quenching into the phase with broken symmetry, a lot of
topological defects appear in the system [I]. The kinetics
of the phase transition and properties of the low temper-
ature phase strongly depend on the subsequent behavior
of these defects; this problem has a general relevance in
condensed matter physics and in cosmology. Topological
classification of singularities in liquid crystals, based on
homotopy groups in the order parameter space, has been
successfully developed [2,3] and the corresponding topo-
logical dynamics has been verified experimentally [4,5].
Preceding this work, and in parallel, a lot of research
based on continuum director distribution and free energy
calculations has been carried out [6,7].

There are two important aspects of the physics of de-
fects which singularities are topologically stable and,
therefore, cannot appear in the system Huctuationally, in
isolation. On the other hand, in some constrained ge-
ometries the structure with topological defects can be
the ground state, and properties of such a state can
be distinctly diferent from those of the uniform one.
Constraints on the sample system are most commonly
imposed by its boundaries. For example, nematic liq-
uid crystal confined to a spherical droplet with radial
(homeotropic) boundary conditions on the director neces-
sarily has a radial point defect (a radial hedgehog) in the
middle. A similar droplet with planar conditions would
have a bipolar system of boojums [4] (representing the
well-known topological problem of "combing the hedge-
hog"). However, constraints can be imposed by inner
boundaries as well. Figure 1 represents the geometry
of director distribution around a particle, brought into
the liquid crystal matrix. The law of topological charge
conservation requires the introduction of additional sin-
gularities, which accompany the particle. The type of

these defects depends (as in the droplet) on the kind of
surface anchoring —the two limiting cases are drawn in
Fig. 1. One can imagine that in most cases the result-
ing structure will be localized, although sometimes there
might be a possibility of introducing strings as well [5,8].

This paper addresses the problem of disclination loops,

FIG. 1. (a) Particle with radial boundary conditions and a
disclination ring in the plane perpendicular to np. (b) Parti-
cle with planar boundary conditions in an otherwise uniform
nematic requires a bipolar structure with boojums on poles.
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in particular circular rings, which seem to be the most
probable scenario after the particle with radial anchor-
ing is brought into the otherwise uniform nematic liquid
crystal. This problem has two main aspects, fundamen-
tal and practical, and the paper is divided accordingly.
Properties, energy, and stability of the disclination loops
are important for understanding phase transition kinet-
ics, possibility of monopoles, and topological dynamics.
Their relevance is far beyond the specific object of this
paper, nematic liquid crystals, and spreads from cosmol-
ogy to solid state physics. In the next section we shall
discuss qualitative, geometrical characteristics of difFer-
ent disclination loops and clarify the distinction between
globally singular and nonsingular loops [9]. Section III
analyzes the energy of a (globally singular) wedge loop
and draws the conclusion that a hedgehog would always
be broken into such a (topologically equivalent) loop of
characteristic equilibrium radius a*. Section IV consid-
ers the efFect of an external orienting field on such a ring
disclination. It is shown that a first-order transition takes
place on increasing the field along the loop normal, at
which the ring expands from its microscopic state with
a* 10 A. to the radius R, comparable with the system
size. This transition has a wide hysteresis, with critical
fields scaling difI'erently with B, and seems to be accessi-
ble for experiment.

The last two sections of this paper deal with more prac-
tical questions. Foreign particles, suspended in a liquid
crystal, have been studied quite extensively, beginning
from [10]. Most of these studies [11,12], however, deal
with strongly elongated particles (addressing the issue of
their ordering) and neglected effects of topological de-
fects. In this paper the director distribution around the
radial solid particle [Fig. 1(a)], accompanied by a discli-
nation ring, is approximated and its energy is calculated.
The potential energy of interaction between such parti-
cles is found to represent anisotropic repulsion, decaying
as 1/r with the distance. Section VI describes the in-
teraction of such particles with the fiat boundary of the
sample. This interaction strongly depends on the anchor-
ing energy on the boundary: particles are repelled from
the surface by image forces if the anchoring is suKciently
rigid. Weak anchoring produces a region of attraction
near the surface, which, in practice, may result in de-
pletion layers in particle distribution. These questions
may have relevance in several areas of practical applica-
tions, which deal with properties of suspensions, because
they enable control of the location of external particles
in, outside, or near the surface of the volume occupied
by nematic liquid crystal. Mixtures of biphase liquids,
or just small volumes of liquid crystal, with surfactant in
a micellar state have many internal or external bound-
aries and, therefore, are also an appropriate object for
the present theory.

II. DISCLINATION LOOPS IN NEMATIC LIQUID
CRY STAL

The analysis of disclination loops is relatively simple in
the case when a circular loop of a wedge (+1/2) defect is

considered. This represents a special situation when the
closed line singularity corresponds to a topological point
defect, a hedgehog with the charge (+1) in this case. In
the language of the Volterra process [13,14] and orienta-
tional Burgers vector 0, characterizing the disclination,
the wedge loop has its local Burgers vector always parallel
to the line [the antiparallel configuration represents the
(—1/2) loop and would correspond to a (—1) hyperbolic
hedgehog]. Consider the process of loop formation in the
order parameter space 7Ziv = S /Z2, unit sphere man-
ifold of orientations n of a nematic. A stable (1/2) discli-
nation corresponds to a half-circle contour on this sphere
with the opposite ends of its arc equivalent through the
condition n = —n. Enclosing the line singularity into a
wedge loop corresponds to the rotation of such a contour
about its symmetry axis, which corresponds to Fig. 2
with Burgers vector tilt angle 8 = 7r/2. Such process
(accounting for n = —n condition) covers the whole unit
sphere 'R~ with a continuous closed surface of points—
orientations n. This, of course, represents a hedgehog
point singularity [2,3,5], which has a most significant dis-
tortion field: the elastic energy of a hedgehog is linearly
proportional to the size of the system, Eg KB.

One must note, however, that there are many ways
to encircle a loop of a topologically stable (1/2) discli-
nation so that no efFective point singularity will. occur,
and, consequently, the orientational distortions and their
elastic energy will remain finite. The classic example
has been studied by Friedel and de Gennes in 1969 [15]:
the twisted loop, which has its Burgers vector constant

FIG. 2. A process of encircling a loop from a (1/2) discli-
nation in the space 'R~ (the disclination is wedge if the line
is parallel to the Burgers vector A and twist, if perpendicu-
lar). The loop is assumed to be in equatorial plane. The key
characteristic of the loop is the tilt angle 0 between the local
Burgers vector A and the loop normal. A singular (wedge)
disclination loop corresponds to the full sweeping of 'RN by an
initial contour at 0 = vr/2. Nonsingular loop: at any oblique
angle 0 between the loop plane and the Burgers vector the
sweeping is not complete and the resulting surface can be
contracted to an equatorial circle, 0 = 0 [sic.] topologically
unstable twist loop.
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and perpendicular to the loop plane (and, therefore, to
the disclination line itself). In the order parameter space
R~ this loop corresponds to the rotation of the half-circle
(1/2)-disclination contour about the normal to its plane,
Fig. 2 with no Burgers vector tilt, 8 = 0. This results
in a full circle on the unit sphere 'R~ —a distribution n
homotopically equivalent to the uniform state. Accord-
ingly, the energy of the twist loop, which is the opposite
limiting case to the wedge one, is found to be limited,
Et. Ka in[a/r, ] [15], where a is the loop radius and r,
is the disclination core radius. There can be a continu-
ous set of disclination loops between these two limiting
cases, when the mutual orientation of the Burgers vector
and the line is either Gxed, or varies along the loop, but
the resulting director distribution n(r) fails to cover the
closed surface covering the order parameter space 'R~,
see Fig. 2 for any finite O. All such surfaces can be
contracted to a circular contour and ultimately to a
point on the unit sphere 'R~, which means that the con-
figuration is still homotopically equivalent to the uniform
state. In other words, this means that such intermedi-
ate loops can be matched into a uniform director Geld
at far distances and, therefore, can exist in a generally
uniform nematic liquid crystal. In contrast, the wedge
loop can only exist on its own in a topologically con-
strained system —the classic example being the spheri-
cal droplet of a nematic liquid crystal [4]. Interpolation
formula for the loop energy would then take the form
Er(e) 87rKR/[1 + n(R/a) cos 8] + zvr Ka in[a/r, ],
where cr is a coefficient of order unity and O is the (con-
stant) tilt angle between the Burgers vector 0 and the
loop normal, Fig. 2.

As we discussed in the Introduction, inserting a parti-
cle with rigid boundary conditions on its surface into an
otherwise uniform nematic matrix introduces an efFective
topological singularity, which then has to be compen-
sated by another defect of the opposite charge. A similar
situation has been studied by Meyer [16] spherical
air bubbles (with weak anchoring, however) are accom-
panied by a (—1) hedgehog in the surrounding nematic.
Another example of such topological charge conservation,
[17], shows that a wedge loop of (+1) disclination [with
the overall point charge (+2)] is needed to compensate
for a hyperbolic (—1) hedgehog in the middle of a radial
nematic droplet. In the case we examine here, Fig. 1,
the (1/2)-wedge loop will be required to compensate for
the long range distortions around the particle. Therefore
it is useful to study the properties of such a loop.

asymptotically satisfies the equilibrium condition for the
nematic, n

~~

V' n, at large distances from the loop (in
the one-constant limit for nematic elasticity). It is then
straightforward to calculate the total elastic energy of
such a defect: taking the disclination core size r„radius
of the loop a )) r and the "outer radius" of the system
B )) a, one obtains in the one-constant approximation
Kg ——K3 ——K:

&R&
Er = ~K 4R+ 4R — arctan[a/R]

a

+a —(1 —in[2]) —6 arctan[R/a)
( 2

+—a in[a/r, ] + 2vrar, 8, ,
2

vr2
E& 8~KR + Ka ln[—a/r, ]2

( 4 Z.r2&——Ka 5+ in[2] —— ' +O(a /R),
2 vr K)

where 8 is the energy density of the disclination core,
which was missing in the paper [19]. Assuming the core is
melted, this energy can be qualitatively set as E, U/g,
where U is a characteristic microscopic interaction energy
and (~ is the nematic correlation length. A natural ex-

III. STABILITY OF THE WEDGE LOOP

The simplest situation is the circular (+1/2) loop, be-
cause the symmetry of its director distribution is the
same as that of coordinate lines of the ellipsoidal coordi-
nate system [18], Fig. 3 (this concept has also been ex-
plored by Mori and Nakanishi [19]). Although in practice,
especially for very different values of Prank constants, the
director Geld may be quite different in detail, the ellip-
soidal coordinates (o., r, Pj give a very plausible analyt-
ical ansatz. One can also show that setting ~n

~

= 1

FIG. 3. (a) Director distribution around the circular loop
of (+1/2) wedge disclination. (b) Model director field, n = 1,
in oblique ellipsoidal coordinates [18].
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pectation, that r, (~, leads to a qualitative relation
Kr, and, therefore, the numerical factor in brackets

in the second, approximate, expression for E~ is 4.42.
At large distances f'rom the loop, R/a )) 1, its defor-

mation Geld and energy correspond to those of a standard
radial hedgehog, 8aK~B. On this background, additional
terms in equation (1) are small corrections. Note, how-
ever, that for a nonsingular loop this would be the only
relevant contribution to elastic energy.

The question of stability of the radial hedgehog arises
&om examining the equation (1). Minimizing Ei at R —+
oo one obtains that the disclination loop has a universal
equilibrium radius a*, given by

a* = r, exp 4+ in[2] —— ' ' 30r, .K

For the typical nematic correlation length, r (iv 100
A. , this radius is of the order a* 0.3 p, . Such a small loop
would be practically unobservable by optical methods.

Some interesting possibilities open when one exam-
ines extreme limiting cases. Near the transition to the
isotropic phase, or to a biaxial nematic, the core energy
becomes much smaller, increasing the numerical factor in
Eq. (2). Also, in a system with Ki )& Ks, bend defor-
mations (the loop) are preferable to splay deformations
(the hedgehog), and the loop would expand. Such a large
splay constant is entirely possible in main-chain nematic
polymers and a corresponding microscopic experiment in
radial droplets would be of great interest. Another curi-
ous region corresponds to smaller "outer radius" B of the
radial droplet, where the equilibrium loop size strongly
deviates &om the universal form (2). In that case o,*

becomes dependent on the droplet size, a* (Rr, )
/ .

One has to emphasize once again that all such predic-
tions should be regarded only as qualitative arguments:
equations (1) and (2) are valid in a strict mathematical
sense only at Ki ——Ks and R/r, ~ oo.

lna B+ — lnB r, —5.69

+— ——— B ~ —7
vr K 3' B

Hi = — —(C —0.6)
1 K
B gQ

2
where the parameter C = s ln[R/r, ]

—
z

~g'. For a
typical experiment [5] the nematic droplet size is around
10p, taking the usual estimate, E' r K, we have C
8.1 and Hi 2.7(K/y )i/zR

The thermodynamic transition field H* is the point at
which AF[ ~ = 0. We obtain

H* = — —i/2 (C —3.82)
x

2.9 K
H B

(5)

where (~ is the magnetic coherence length,
(K/y ) i/zH . Equation (3) is an approximation at
a/R « 1 and u/r, )& 1 and it is useful for the qualitative
analysis. For a more exact consideration in the region
past the transition, when a R, the full loop energy (1)
is necessary its behavior is analyzed numerically and
plotted in Fig. 4. One can recognize all features of the
first-order transition: the lower critical field Hi (curve
b), when the metastable state at a R first appears, the
thermodynamic transition point H* (curve c), when the
two locally equilibrium states have the same free energy,
and the upper critical field Hz (curve d), at which the
hedgehog structure [i.e. , the small loop with a* given by
Eq. (2)] becomes absolutely unstable.

The lower critical Geld corresponds to the situation
when the maximum of the curve AF(a) is located at
a/R = 1. This defines the field

IV. HEDGEHOG - LOOP TRANSITION
IN MAGNETIC FIELD 0

An obvious way to suppress the radial hedgehog and
favor the wide disclination loop is by applying an exter-
nal Geld. Consider a spherical volume of nematic liquid
crystal with radial boundary conditions. In equilibrium
such a system has a radial hedgehog in the middle, or
rather a wedge loop, Fig. 3, with a very small radius
a* 30r . Switching on the magnetic field along the axis
of the loop will result in a first-order transition (jump)
to a configuration with a* B, the size of the system.

The diamagnetic contribution to the free energy den-
sity of a nematic is, as usual [7], —zy (n . H) with

the diamagnetic anisotropy. Substituting n, given
by ellipsoidal coordinates, Fig. 3 [18], and integrating
over the sphere, we obtain simply —

s y H (R +3a R) .
Then the total energy (we keep the one-constant approx-
imation) has the constant contribution, F~ = 8mKR-
9vry H B, and a part, dependent on the loop radius:

CQ

a 0.5—

0.0—

Q)

-0.5—

- l.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Free energy (in units —vr KR) of the radial droplet
in magnetic field, Eq. (3), as a function of loop radius, a/R,
for difFerent characteristic values of the field (see text). Pa-
rameter y H R /K is equal to 0 [curve (a)], 9.5 [curve (b)],
12 [curve (c)], and 20 [curve (d)].



1334 E. M. TERENTJEV 51

At the upper critical field H2, the minimum (a = a*) and
the maximum of the &ee energy (3) merge at a/R « 1
and II )& H*. Neglecting complicated efFects of transcen-
dental equations for these two extrema, a crude estimate
of this condition reads

4 f.r.' C —5.69
r, exp 4.69 —— ' = R

0.3 K
(Rr )1/2

Two critical fields, Hi and H2, determine the ulti-
mate hysteresis width of the droplet switching transition.
Since the barrier between the two metastable states at
this transition is of the order of KR )) k~T, it is very
likely that the system will remain trapped in each cor-
responding state for a wide range of fields. This means
that on increasing the field, the actual transition (i.e. , the
loop expansion a -+ R) will take place near H2, while on
decreasing the field, the loop will contract back to the
radial structure (a = a*) at a much lower field Hi.
For a typical nematic droplet with R 10@ and mag-
netic anisotropy y 10, these fields have the order of
magnitude H* 10 Oe and 02 10 Oe. There exists
an experiment [20] on the radial droplet switching in ex-
ternal electric field, results of which support the present
conclusions.

For all purposes of this paper, the disclination loop in
the switched state can be assumed to lie on the droplet
surface. In practice, however, the ring may or may not
become a surface disclination, depending on the anchor-
ing conditions on the droplet surface. If the nematic an-
choring energy W is very large, K/W « (H « R, then
the ring will be separated from the surface by a distance

(H. Anchoring properties will also affect all three char-
acteristic fields. Obviously a more careful analysis of the
transition is required to take into account all such efFects
(see [20] for qualitative discussion and [21] for computer
analysis) .

V. SPHERICAL PARTICLE
WITH HOMEOTROPIC ANCHORING

Bringing a foreign particle with sufIiciently rigid
homeotropic boundary conditions into an otherwise uni-
form volume of nematic is equivalent to the creation of an
eH'ective topological singularity in its center. Conserva-
tion of the topological charge demands the compensation
of the corresponding radial hedgehog distribution by an
appropriate defect with the total charge (—1). The most
probable scenario is the ring of the wedge (—1/2) discli-
nation, which has a far distortion field similar to that of
the hyperbolic hedgehog, Fig. 1.

Calculation of the director distribution for such cylin-
drically symmetric structure requires adding together the
two vector fields, n~ ~ for the radial hedgehog and n~ ~ for
the loop, and renormalizing the result in order to preserve
the !n! = 1 constraint. This superposition procedure is
allowed in the one-constant elasticity approximation and

for the structures, which have cylindrical symmetry de-
generacy of the director fields. In cylindrical coordinates
we can write, approximately,

(R)
/

. (R)
/

. ( ) 0

1 p —u')
!

n( ) cos !
———arctan(4 2 z )

t 'll 1 p a'l (l)n( ' = sin! ———arctan !;n& ——0,(4 2 z )

(7)

with r = z + p (some care should be taken in order
to eliminate the break point on the axis line p = 0).
Similar set of fields corresponds to the other structure
with topological charge cancellation: the hyperbolic (—1)
hedgehog with a ring of wedge (+1/2) disclination around
it. In this case we know the field of the loop to a much
greater precision, see Sec. III. In ellipsoidal coordinates
we have

(R) (1+~')(1 ~') .
+1+a2 72 ' ~ 1+o2 ~2

n@
——0(H)

(~) ~~ + a . (i) ~v ~ . (~)nz Qo-2+ v-2
' ' i/o-2+ v-2 ' (8)

where z = ao'7 and p = ag(1 + a 2)(1 —r2), cf. [18],with
the variables in the range r /a & a & oo; —1 & 7 & 1.

Superposition and renormalization of the fields in (7)
or (8) is quite tedious although the result can be pre-
sented in a closed form. However, the present analysis
has two main purposes: to find the equilibrium radius of
the loop around the particle, assuming rigid anchoring
conditions, and to obtain the potential of interaction of
such particles between each other and with the surface of
the liquid crystal. Therefore, the task can be significantly
simplified.

In order to determine the loop equilibrium radius it is
sufIicient to use numerical integration in the one-constant
approximation to obtain the energy of the structure de-
scribed by n(r, a) = (n( ) + n( ))/!n( ) + n(')!. The bal-
ance between the loop tendency to contract and reduce
the far-field energy and the penalty for violating the rigid
anchoring conditions on the particle results in the equi-
librium radius of the disclination ring: a —1.8'P, where
P is the particle size. An obvious interpolation to the
general case of finite anchoring strength on this surface
gives the optimal separation a* 'P 0.8'P/(1—+K'P/W).
As in Sec. III, this result should be regarded only as a
qualitative prediction because the distortion field of the
loop n(') in (7) and (8) is only valid at a )) 'P Still, .
the fact that a P will stand in the realistic situation
and consistently oriented "Saturn rings" must surround
each radial particle in the nematic volume. It would be
interesting to compare this prediction with results of an
experiment or a computer simulation in order to assess
the degree of accuracy of such a crude continuum model.

Interactions with such a particle are determined by its
far field of distortions n(r), which has the simple asymp-
totic form,
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n, = cos o. r; n~ = sino; r sin 20
with n =, , (9)4r a2

where 0 is the polar angle of spherical coordinates cen-
tered in the particle (the angle n = 2a pz/[p + z ] in
proper cylindrical coordinates). In an otherwise uniform
nematic all such particles have their rings oriented in the
same way, perpendicular to the undistorted director n~.
Therefore, it is straightforward to calculate the interac-
tion potential between the two particles separated by a
distance d, by superposition of the two fields (9) taken at
different origins and integrating the corresponding Frank
&ee energy. This potential represents anisotropic repul-
sion, proportional to 1/d . When the particles are situ-
ated along the symmetry axis z = no of their d.istortion
field, their interaction is

1 2 4 1
U;„,(d) = -~ Ka —.

4 d3 (10)

This expression, as the far field around the particle (9),
is asymptotically valid at d &) a.

VI. INTERACTION WITH THE FREE SURFACE

(9vr Ka l '/

( 2 Apg)

Taking Lp 1 g cm, K ~ 10 dyn and a 1p, we
obtain 6* 10p. Clearly h, * is not very sensitive to the
particle size 'P a and will remain in the range of tens
of microns for quite a spectrum of particle dimensions,
which would make the observation more simple. One
might also notice that 6* decreases with the nematic or-
der parameter, h* Q / .

An interesting implication of the above model is the
interaction of the foreign particle with the surface of liq-
uid crystal. Consider the semi-infinite volume of uniform
nematic with homeotropic (for definiteness) director ori-
entation on its fIat surface, in which we have placed a
particle with homeotropic coating, analyzed in the pre-
vious section. The symmetry axis of the resulting distor-
tion field is perpendicular to the boundary. The outcome
of an interaction crucially depends on the anchoring con-
ditions on the nematic boundary. When the director is
rigidly locked on this surface, we can use the concept of
images and obtain that the particle is repelled from the
surface with the potential U 27r Ka /h, see Eq. (10).
Here 6 is the distance from the surface, a 7 is the
radius of the disclination ring.

This repulsion can be detected in a simple experiment.
Consider the Hat homeotropic nematic cell with the bot-
tom plate coated to ensure suKciently large anchoring en-
ergy W, . Put in small heavy particles, which, given suK-
cient time, would all sink to the bottom due to the grav-
ity potential Us(h) —7ra Apgh (here, Ap = p~ —pN.

is the density difFerence). This force will be balanced
by the repulsion of the distortion field and particles will
accumulate in the layer, at the equilibrium height,

1.5

(Q

0.9
O

0.6
.0
U
(Q

& 0.3
Z

1 I
I I

I
I

I
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I
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I qI
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FIG. 5. Potential energy (in units 2mKa /( ) of interac-
tion between the particle and the homeotropic surface with
anchoring strength W, as a function of separation h/( from
this surface Parameter ( .= K/W, is the anchoring co-
herence length. Dotted lines show the approximation by
U 1/h at large distances and U h at h/( « 1.

The problem of interaction of a defect with the free
surface of a liquid crystal, or, in general, a surface with
moderate anchoring strength TV„hasbeen first analyzed
by Meyer [16,22] (see, also, the review [23)). In the spirit
of that approach in our crude model, we can use the
far-field distortions (9), introduce the array of images
to compensate for the director deviation on the surface,
and integrate the resulting Frank free energy plus the
surface energy W, O . The result is presented in Fig.
5. When the particle is far from the surface, Ii » (
K/W„ the director on it is virtually undisturbed and the
potential is determined by the repulsion from the single
image at d = 2h, Eq. (10). At h « (, the director
on the surface is strongly distorted from its equilibrium
homeotropic orientation and largely follows the original
field (9), created by the particle alone. This results in a
situation when the total energy, which is determined. now
by only a part of the volume accessible for deformations,
decreases as this volume decreases, i.e. , the particle is
attracted to the surface.

A crude approximate of the numerical results on the
plot 5 can be made by taking U(h) 2vr2Ka4/hs at large
distances, h » (, and linearly increasing U(h) Ch at
6 « ( . The coefficient C can be matched at h = ( and
is estimated as C 27r Ka /( . The energy barrier is, by
the same arguments, AU C( = 27r2a4W, /K . Given
sufBcient time for diffusion, all particles within the layer
of thickness K/W, will be attracted to the free surface
and accumulated outside the liquid crystalline region.

Another simple experiment could be devised to test
these conclusions. Consider the container half-filled. with
the nematic, which has a flat horizontal free surface (with
air, or with a light isotropic liquid). Put in small heavy
particles, which would sink through the liquid crystal if
there was no potential barrier LU. Only very heavy par-
ticles, with the density difFerence Ep & 2mKa/g( will
be able to go over this barrier, lighter ones will remain
trapped at the distance ( from the surface by the
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attraction part of the potential U(h). Taking typical val-
ues for weak anchoring energy W, 10 erg cm
Frank constants K ~ 10 dyn, and particles a ~ 1 p,
we obtain that Lp 0.5 g cm is required for sepa-
rating particles from the surface. If no gravity, or other
external field, is involved in such an experiment (for ex-
ample, when the surface is in the vertical plane), the ini-
tial uniform distribution of particles will develop a gap

near the surface, where all defects will have been
attracted and adsorbed to this surface. It is worth noting
that at small nematic order parameter Q, the anchoring
coherence length ( Q and the barrier AU 1/Q,
all subject to the applicability of our approximations:
a/h « 1 and a/( « 1.

VII. DISCUSSION

This paper has three distinct groups of results and
arguments. The discussion in Sec. II has an emphasis
on the possibility of topologically unstable disclination
loops, depending on the configuration of the local Burgers
vector. In fact, all loops, except a narrow class of wedge
rings, are homotopically equivalent to the uniform state.
This means that their energy is Gnite and such localized
defects (but not "monopoles") can appear in the system
as fIuctuations. Such a possibility is especially relevant
for the kinetics of the first-order transition after quench-
ing into the nematic phase. Considering conceptual simi-
larities between topological defects in liquid crystals and
in various other systems with broken symmetry, such a
conclusion may have a wider range of importance.

Sections III and IV target various aspects of the class
of topologically relevant wedge dischnation loops. The
continuum elastic energy analysis of the (+1/2) ring de-
fect is based on the reasonable model for the director
distribution, along the coordinate lines of ellipsoidal sys-
tem. It is shown that the circular loop has an equilibrium
radius, a* of a few thousands A. , i.e. , the correspond-
ing radial hedgehog monopole will always be split into
the small loop. Note that, although the equilibrium ra-
dius a* is small, it is big enough to satisfy the condition
a )) r (the disclination core size), which is necessary
for applicability of this continuum approach. The fact
that the ansatz, not an exact minimization solution for
the director, has been used is not very relevant for our
conclusions: had such a solution been known and used,
the corresponding free energy would be even lower than
(1) and the loop even more favorable. The equilibrium
radius a* exponentially depends on the core energy E' of
the disclination line. However, it is most likely that the
relevant combination, Z, r2/K is of the order of unity for
any model of the core (biaxial, or melted into an isotropic
phase, for example) and the result a* 30r is fairly sta-

ble. Such a small radius a*, probably, will not be seen
in any optical experiment, however, the conclusion that
true monopoles do not exist in nematic liquid crystals is
an important one.

There are ways to make wedge disclination rings big-
ger: by choosing a material with high elastic anisotropy,
Kj » K3, or by applying an external Geld. Section IV
analyzes the first-order transition, the switching of the
radial nematic droplet by the magnetic fi.eld. At low
fields the radial hedgehog (in fact, the small loop with
a = a*) structure is demanded by boundary conditions.
At suKciently high Geld, this loop expands to the radius
of the order of the droplet size. This transition is shown
to have a very wide hysteresis. In a real experiment (like
[20]) the droplet would stay trapped in a corresponding
metastable state, making the "switching on" field much
bigger than the "ofI'" field.

The last two sections of this paper describe a more
practical problem the behavior of a solid particle,
brought into nematic liquid crystal [24]. Radial particles
are surrounded by a "Saturn ring" of (1/2) disclination,
in the plane perpendicular to the initial uniform director.
Qualitative arguments on superposition of director fields
show that the radius of such a ring is of the order of the
particle size, decreasing when the anchoring on the parti-
cle surface becomes weaker. It is shown that such parti-
cles interact with each other by means of their distortion
Gelds, the resulting anisotropic repulsion potential is pro-
portional to the inverse cube of separation between the
particles. The behavior of micrometer or submicrometer
particle suspensions in liquid crystals must be very in-
teresting due to this interaction. Particles not only repel
each other, but are repelled from the surface of the sam-
ple as well, provided it has suKciently rigid anchoring.
On the other hand, a free surface, or any boundary with
weak director anchoring, produces the region of parti-
cle attraction with an energy barrier AU separating the
region of repulsion at far distances. One can imagine ap-
plications of such an efI'ect, for example, in a biphase liq-
uid (with one component mesogenic) suspended particles
would avoid going into the liquid crystal but accumulate
on its surface. On increasing the temperature above the
nematic transition, the described eKect would disappear
and particles would distribute evenly. The ability to con-
trol the location of microscopic particles in a fIuid system
may have a wide practical signiGcance.
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