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Reliability and accuracy of the determination of self-affine exponents are studied and quantified from
the analysis of synthetic self-affine profiles and surfaces. The self-affine exponent is measured using
different methods either relying on the determination of a "fractal dimension" (i.e., box counting and di-
vider methods) or directly analyzing the self-affine exponent. The second group of methods includes the
variable bandwidth, the first return and the multireturn probability distribution, and the power spec-
trum. The accuracy of all these methods is assessed in terms of the difference between an "input" self-
affine exponent used for the synthetic construction and the "output" exponent measured by those
different methods. The statistical results of this study provide a quantitative estimate of the dependence
of the accuracy with the system size and the value of the self-affine exponent. Artifacts in the measure-
ment of self-affine profiles or surfaces, misorientation, signal amplification, and local geometric filtering,
which lead to biased estimates of the self-affine exponent, are also discussed.

PACS number(s): 05.40.+j, 68.35.Bs, 61.43.Hv, 47.53.+n

I. INTRODUCTION

In recent years the descriptions of scaling invariance
have become of crucial importance for many physical
problems. The concept of self-similarity, e.g., developed
by Mandelbrot [1], has been extended to account for an-
isotropy through the notion of self affine symmet-ry. This
scaling is fully characterized by d —1 exponents in d-
dimensional space. For d=2 (e.g., two-dimensional cuts
such as the one considered in the body of this paper), one
single exponent is needed. It is called the Hurst, or self-
affine, exponent. A large number of natural surfaces are
found to be self-affine, such as those encountered in sur-
face growth models [2], in landscape and erosion surfaces
[3],or in fracture surfaces [4—8].

Most of the methods used for the determination of a
self-affine invariance are devoted to (1+1)-dimensional
profiles and their reliability has hardly ever been dis-
cussed [8—11]. When it is, accuracy is only meant as an
estimate of the quality of the power-law regression. In
particular, no systematic comparison of the different
analysis tools is available.

Methods for measuring self-affine exponents can be
schematically cast into two groups. On the one hand,
one finds the classical methods, developed for analyzing
self-similar objects: divider method, box counting
method, area-perimeter method, etc., which provide a
so-called "fractal dimension. " For most of these
methods, a relationship with the self-affine exponent has
been derived. On the other hand, several methods have
been designed to specifically determine the self-affine ex-
ponent. They are more recent and not always systemati-
cally documented.

A number of artifacts may "pollute" the measurement
of a self-affine object and hence introduce systematic er-
rors in the self-affine exponent. Two types of biases can
be distinguished: those which take place during the
geometric measurement of the object and those which are
relative to the method used in the signal analysis. In the
latter case, sensitivity and accuracy are method depen-
dent, and from the results reported below, we strongly
recommend the simultaneous use of different tools in or-
der to appreciate the confidence in the measured ex-
ponent in a quantitative way.

An accurate estimation of the self-affine exponent may
have deep physical implications and is of crucial impor-
tance for the identification of the universality class of
various phenomena such as fracture propagation [5,7, 12].
Fracture surfaces are found to be self-affine with a well
defined exponent quite insensitive to the material type
and the rupture mode. Whenever this observation is
violated, one may wonder whether it is a real violation or
simply a systematic underestimation of error bars in the
analysis. This point may also help to resolve apparent
discrepancies in published results. The existence of some
universal symmetries of the fracture propagation process
is an exciting problem which heavily relies on an accurate
and faithful analysis of experimental data.

Another example where the role of the analyzing tools
in self-affine measurement is crucial is a recent very ac-
tive debate on the roughness of imbibition fronts in a
porous medium. The reported experimental values were
all inconsistent with most available models. A recent
analysis [13] shows that a possible origin of this
discrepancy —or even more annoyingly, of apparent
agreexnent between different studies —may result from a
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FIG. 1. Three examples of synthetic self-
afBne pro51es for di8'erent self-a%ne exponents,
respectively, (a) /=0. 2, (b) /=0. 5, and (c)
(=0.8.
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misuse of a measurement technique out of its field of va-
lidity.

In order to assess the accuracy and the reliability of the
different methods of signal processing, these are tested
against synthetic self-affine sets considered here as
"ideal" and which are well characterized by a prescribed
self-affine exponent. Artificial alterations of the profiles
corresponding to what could be measurement biases have
also been introduced in order to estimate their inhuence
on the exponent determination. Other effects such as the
existence of a crossover at intermediate length scales or
multifractal properties are not considered in this study.
One should keep in mind that the analysis presented here
addresses only "monofractal" objects [14]. Multifractal
signals where the Hurst exponent becomes ill defined (it
depends on the order of the studied moments) are not
considered.

This paper is organized as follows. In Sec. II, self-
affine properties are briefly reviewed and the generation
procedure of the synthetic sets is presented. In Sec. III,
we consider the tools derived from the techniques initial-
ly- developed for self-similar objects and which provide a
fractal dimension. In Sec. IV independent methods for
the self-affine characterization are described. Section V is
devoted to the systematic study of the accuracy of those
methods. Finally, in Sec. VI, the inAuence of some of the
most important measurement artifacts on the self-affine
analysis is investigated.

II. SELF-AFFINE PROFILE CONSTRUCTION

A self-affine set is statistically invariant under an affine
transformation. For a horizontal surface, the affine trans-
formation is written in terms of the horizontal distances
d„and d and the vertical distance d,

tion f can be chosen, without any loss of generality, to be
a Gaussian distribution. Figures 1(a), 1(b), and 1(c) show
examples of such self-affine profiles for, respectively,
three different exponents: 0.2, 0.5, and 0.8, each of them
being normalized so that the maximum magnitude of the
signal is identical for all profiles.

For this study, each profile is characterized by both a
self-affine exponent g and a size L. We systematically an-
alyze profiles with an exponent in the range [0.1,0.9] with
a step of 0.1 and system sizes in geometrical series from
2 to 2' . For each point of the space (g, L), a set of 100
independent profiles is considered.

III. MEASUREMENT OF FRACTAL DIMENSION

One of the most often used methods to characterize a
self-affine structure is to estimate the fractal dimension of
the profile. Although it seems natural to associate a frac-
tal dimension with an object that fulfills some kind of
scale invariance, it has been recognized for a long time
that the very concept of fractal dimension is not well
defined as soon as the symmetry obeyed by the structure
is not a pure self-similarity.

The reason for such a statement is that the fractal di-
mension gives the scaling of a measure with a length
scale. For a self-affine object, the scaling with the dis-
tance along one axis may differ depending on the orienta-
tion of the axis. We will see below that a variety of
different fractal dimensions can be defined and observed.

The vague definition of a fractal dimension for a self-
affine object has, in the past, resulted in some misuse of
the fractal dimension in this framework, as well as some
confusion in the measure of this property. Nevertheless,
we will analyze two methods which have been introduced
in this connection and used in the past: the box counting
and the divider method.

d» ~A»d», dy ~Ryder, dz ~Azdz (2.1)

Requiring that such transformations can be combined
implies a group structure. As a consequence, A, and A,,
have to be homogeneous functions of, say, A, . The
homogeneity exponents are called the self-affi ne ex-
ponents, or Hurst exponents. They obey

(2.2)

Isotropy along the (x,y) plane implies g =l. In this
study, we will restrict ourselves to the two-dimensional
case where a single g exponent is needed. These two-
dimensional sets can always be considered as cuts
through a three-dimensional medium. Conventionally,
we assume that the profile lies in the (x,z) plane.

Ideal self-affine objects are constructed using the algo-
rithm proposed by Voss [15]. For (1+1)-dimensional
profiles the basic procedure is as follows: knowing the
values of z at both ends i and j of a root segment, we
coinpute its value at the center l as the average (z;+z )/2
plus a Auctuation ae. At each generation k, the Auctua-
tion e„ is picked from a statistical distribution f (e) with
zero mean and scaled by a factor a proportional to the
length of the parent segment ~i

—j~ raised to the power g,
g being the prescribed self-affine exponent. The distribu-

A. The box counting method

The box counting method consists of covering the
profile with boxes of size a X(pa) for a fixed aspect ratio
p, and various sizes a. Let n (a) be the number of boxes
needed to cover the profile. We can estimate the scaling
of n (a) for a profile such that ( M ) = A hx &, where A is
the amplitude of the profile. Over a distance hx =a, the
fluctuation of height amounts to LL = Aa~. Two situa-
tions can arise: if Aa ~ &&pa, then the number of boxes to
consider in the interval [x,x+a] will be A/pa~ ', so
that the total number of boxes over a profile of length L,

will be

n (a) = ( 2 /lJ, )L„a~ for a && ( A /p) '~" (3.1)

On the other hand, if Aa~~ pa, the number of boxes will
be one over a distance a along x. Thus, in this case the
total number of boxes can simply be expressed as

n(a)=L„a ' for a ~(A/p)' " (3.2)

Thus the roughness exponent g can only be measured in a
specific range of a values. Moreover, it should be noted
that the upper bound on a depends on the aspect ratio of
the box p or, alternatively, on the amplitude of the profile
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40
bQ0 FIG. 2. Analysis of a synthetic profile of

length 65 536 with a 0.5 exponent by the box
counting method. The decimal logarithm of
the number of boxes n (a) is plotted according
to the box length a. According to the height of
boxes, two kinds of regimes are expected.
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n„=n (a)/n, = (3.3)

We see that the aspect ratio p does not appear in the ex-
pression of n . Thus as p tends to zero, the strip tends to
a line, and for each line, we are measuring —using a box
counting technique —the fractal dimension of the inter-
section between the line and the profile. This fractal di-
mension can be read from Eq. (3.3) as D, = 1 —g.

B. The divider method

We now turn to another method which appears to be
close to the previous one, although it gives rather
different information. The divider method consists of
computing the length of the profile by walking a yard-
stick of length a over it. Again, one computes the num-
ber of intersections n (a) vs a. I.et us first derive the ex-

A. This upper bound does not mean that the correlations
have died over this distance. It is an intrinsic limitation
of the method and does not reveal a correlation distance.
Therefore, in order to use this method, one should be
careful in setting the parameter p, or rather one should
perform the measurement for different values of p.

In Fig. 2 we show the evolution of n (a) vs a for three
different p. One corresponds to the regime (3.1), another
to the other regime (3.2), and a third one displays a cross-
over between both regimes at an intermediate length
scale.

We can derive a simple property from the above results
which will be useful in the following discussion. For p
small enough to be in the regime (3.1), we consider a strip
zo & z &zo+ pa for a zo such that the profile is intersected
at least once. The number of possible strips satisfying
this property is n, =AL~/(pa) Assuming . that each
strip is equivalent, we can compute the number of boxes
per strip

pected scaling behavior and then discuss its validity. The
two end points of the yardstick at a given stage are such
that a =Ex +M . Therefore one should disfjngujsh
two regimes: one for which hx »M and one for which
the opposite inequality holds. As in the previous method,
both regimes can be encountered depending on the
yardstick length a.

If hx « M, then Lz =a, and since M = A hx ~, we can
write bx =(a/A)' ~. Therefore,

n (a)=L, for a «A (3.4)

If b,x »M, then Ex=a. The expression of n(a) is
thus similar to Eq. (3.2), but for a slightly different condi-
tion,

n(a)=L a ' for a »A' " (3.5)

Figure 3 shows a typical measurement of n(a) for a
large profile changing the amplitude A to cross from the
first regime (3.4) to the second regime (3.5). The theoreti-
cal slope for the self-afBne sensitive regime is indicated by
a thin line. We indeed observe good agreement for a
large yardstick length, but at a smaller scale, strong
corrections are observed.

The argument leading to the result (3.4) is straightfor-
ward, but it requires a more careful examination. The
point is that if the value of b,z is very well defined, it is
not the case for hx. Indeed, when the magnitude of the
profile is large compared to its length, so that (3.4) should
hold, the ratio between extreme values of hx becomes
large (it can amount, in practice, to several orders of
magnitude), although the maximum value of b,x is small
compared to a. The lower bound on hx is given by the
argument developed above, provided it is larger than the
short length scale cutoff, but the upper bound is not. In
between the two extreme values of hx, the probability
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FIG. 3. Analysis of a synthetic profile of
length 16386 with a 0.5 exponent by the divid-
er method. The decimal logarithm of the num-
ber of dividers n (a) is plotted according to the
divider length a. The amplitude of the signal is
a very sensitive parameter and separates two
distinct regimes.
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distribution of 4x is a power law which can be traced
back to the "first return" probability distribution (cf. Sec.
IV B}. In computing the number of yardsticks needed to
cover the profile, only the upper bound of Ax will matter.
When the yardstick length a increases, the ratio between
the extreme values of Ax becomes narrower and thus the
result becomes closer to the expectation (3.4). However,
if a continues to increase, one will finally encounter the
regime where (3.5) holds.

Let us note that a pure numerical artifact may
inhuence the hx distribution. Indeed, if the length Ax is
considered an integer, the lower bound of the distribution
is largely overestimated and the width of the distribution
becomes narrow again. Subsequently, the method gets
closer to the box counting method in situation (3.1}. An
apparent power-law regime can be found with an ex-
ponent g —2 instead of —1/g.

These observations lead to the conclusion that severe
bounds should be imposed on the domain which allows
the determination of the roughness exponent. Otherwise
any value can be measured. This method is by far the
most difficult to handle and the most restricted in range.
We will, however, consider this method in Sec. V so as to
prove an extensive comparison between available tools
and, in particular, those which have been used in the
past; however, we do not recommend the use of this
method to estimate the roughness exponent. Other
methods exist, in particular, in 2+ 1 dimensions, such as
the slit-island method [1,8], but they are not considered
here.

IV. SELF-AFFINE ANALYSIS

Three independent methods for the analysis of (1+1)-
dimensional self-affine profiles are considered here, name-
ly, the variable bandwidth method, the return probabili-
ty, and the power spectrum.

A. The variable bandwidth method

A profile of length I. is divided into windows or
"bands" of width 5 indexed by the position of the first
point xo of the band. The standard deviation of the
height m and the difference 6 between the maximum and
minimum height are computed on each band and then
averaged over all the possible bands varying the origin xo
at fixed b, : ( w (b, ) ) and (5(b, ) ) . Bandwidths larger

0 0
than L/2 are discarded because of insufficient indepen-
dent sampling. Both quantities follow a power law of 5,
as expected for self-affine set [16]:

(4.1)

Figure 4 illustrates the power-law behavior of m and 6 for
a self-affine profile with (=0.5.

Let us note that the variable bandwidth method is only
relevant for a self-affine exponent in the range gE [0;1],
in agreement with the choice of exponents used for the
synthetic generation of profiles. Outside this range, an
apparent exponent equal to the upper or lower bound will
be observed. We should note that other methods such as
the spectral analysis of Sec. IV C are not limited to such a
range. Therefore, when using this method, if an exponent
close to 0 or 1 is detected, one should resort to the spec-
tral analysis to check the result. Then, using the fact that
a derivation reduced the self-affine exponent by one and
an integration increases it by one, it is always possible to
build a signal characterized by an exponent in the admis-
sible range gH [0;1] and then use the variable bandwidth
method.

This method is similar to the bridge method [9]. The
main difference is that in the latter the linear trend be-
tween the first and the last point is subtracted from the
signal for each band, in contrast with the above method.
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FIG. 4. Example of self-affine analyses of a
synthetic profile with a 0.5 exponent by the
variable bandwidth method. Estimations of
the root mean square 5 and the maximum-
minimum difference 5, according to the band-
width 5, are shown. Best fits lead to the indi-
cated value of the self-affine exponent g.
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FIG. 6. Analysis of a synthetic profile of
length 16386 with a 0.5 exponent by the first
return and multireturn probabilities. The re-
turn probability is the probability, starting at a
given height, to cross again the profile at the
same height after a distance d. When only the
first intersection is considered, the method is
called the first return probability. When all
the intersections are considered, the method is
called the multireturn probability. Actually,
the probability is built as a histogram. So bin-

ning can be either linear (sizes of classes are all
equal) or logarithmic.

The results of both methods are almost identical for both
the rms computation [see Fig. 5(a)] and the maximum-
minimum difFerence [see Fig. 5(b)]. This leads us to favor
the variable bandwidth method since it is numerically fas-
ter.

B. Return probability

For each point xo of the profile with height h (xo), we
see the minimum distance d at which the pro61e is inter-
sected again at the same height h(xo+d)=h(xo). The
distribution of the distances d built for all the points of
the profile is called the erst return probability distribu-
tion pi(d). For self-affine profiles, it can be shown that
the first return probability satisfies [17]

tersection between a constant height line and the pro61e
is a fractal set of dimension D i

= 1 —g. Therefore the sta-
tistical distribution of distances between intersections,
and hence pi(d), follows a power law whose exponent is
—D) —1.

An example of this analysis is illustrated in Fig. 6 for
(=0.5. Note the poor precision that can be obtained in
the curve fit due to the noise at large distances. A discus-
sion of this technique in connection, in particular, with
the efFect of an additional bias is given by Hansen, Mklrly,
and Eng&y [17].

A logarithmic binning instead of a linear one is useful
to damp the Auctuations occurring for large distances.
Due to the change in measure associated with a logarith-
mic binning, the scaling (4.2) is changed to

p, (d) ~d~ (4.2) p'i""(d) =dpi(d) (4.3)

This property can be derived easily from the previous
discussion. We have seen above in Eq. (3.3) that the in-

This is illustrated in Fig. 6.
%'e should also mention an alternative technique that
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FIG. 7. Analysis of a synthetic profile of
length 16 386 with a 0.5 exponent by the power
spectrum method. The power S(f) is plotted
according to the frequency f in a decimal log-

log diagram.
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is related to the first return probability technique. It con-
sists of studying the probability of any return —not just
the first one —after a distance d. This latter probability,
or multireturn probability, scales differently from Eq.
(4.2), namely, as

p (d) ~d (4.4)

This method has been used in particular by Bouchaud,
Lapasset, and Planes [5].

Again this result can simply be obtained from the self-
similarity of the intersection between the profile and a
constant height line. Over a distance d the number of in-

D)tersections scales as N„=(d/ a)
' [see Eq. (3.3)]. Thus

p (d) is proportional to the derivative of n with respect
to d. As above, a logarithmic binning of this multireturn
probability scales as

method, best fits are estimated when the window size is in
the range [4,3L/8]. For the return probabilities the linear
regression is in a range of distance included between 2
and half the maximum return distance. The fit for the
spectral method is computed over the whole spectrum.

It should be noted that we kept the number of profiles
constant, independently of the profile length, so that the
data relative to the largest size represent a more
significant computational effort and a broader statistical
weight.

The results g,«„«(g;„~«,L) for the difFerent analysis
methods are presented in two sets of plots. The first set
[Figs. 8(a) —8(g)] captures the infiuence of the main
effects: system size L and self-affinity exponent g;„«.
The second set [Figs. 9(a)—9(g)] focuses on the estimation
of the error bars.

p (log)(d) ~ d 1 —g

Such a power law is shown in Fig. 6.

(4.5) A. Finite size effect
and self-afFine exponent influence

C. Power spectrum

The power spectrum S (f ) of the profile is the Fourier
transform of the autocorrelation function o
(bx) = (h (x +Ax)h (x) ) —(h (x +Ex) ) (h (x) ). For
self-affine profiles, the power spectrum is expected to
scale as [18]

S(F)~f (4.6)

This scaling result can simply be recovered by a power
counting after having observed that the self-affinity im-
plies o (b,x ) —b,x ~. Such scaling is nicely visible in Fig. 7
with a slope of —2 for an exponent /=0. 5.

V. INTRINSIC ANALYSIS ERRGR BARS

Synthetic profiles of given lengths and self-affine ex-
ponents are generated as described in Sec. II. Those
profiles are hereafter consider "ideal. " They are analyzed
with both "self-similar" methods outlined in Sec. IV—
the box counting and divider methods —and "self-affine"
methods —the variable bandwidth (rms and maximum-
minimum difference), the first return and the multireturn
probability, and the power spectrum. Their intrinsic er-
ror is defined as the difference between the input ex-
ponent value (used for the construction) and output ex-
ponent estimated from the analysis.

While the input exponent is prescribed, the output ex-
ponent is defined statistically. Indeed for each pair
(g;„~«L), 100 analyses with the three methods are carried
out from independent profiles. Then, for each method,
average curves (logio[n (a)] ), (log, 0[to] ), (log, o(5) ),
(log, o(p)), and (log, o(S)) are defined from the data.
The output exponent is obtained by a linear fit of the
average curves. For the box counting method, a fit is run
for box sizes included in [L/10, 9L/10], where L is the
length of the profile. The range of meaningful divider
size is much more severe especially if the self-affine ex-
ponent is small. We take care to always compute regres-
sion only in the (3.5) domain. For the variable bandwidth

Figures 8(a) —8(g) present a comparison between input
and output exponents according to the different analysis
methods. Each curve of the different graphs shows the
finite size effects. The diagonal where the output ex-
ponent equals the input exponent would be the response
of an ideal analyzing process.

As the system size —number of points along the
profile —increases, the output exponent gets closer to the
input exponent. For the first return probability method,
the smallest errors are not obtained for large systems
where a systematic overestimate emerges. The reason for
this observation is to be found in the inhuence of the very
noisy end of the probability distribution (see Fig. 6 as an
example).

On the one hand, methods such as box counting, rms,
and maximum-minimum difference are mainly sensitive
to the self-affine exponent. In this case, the typical trend
of the curve is not parallel to the diagonal. Small self-
affine exponents are systematically overestimated whereas
large exponents are underestimated. Consequently, there
exists a typical value of g where the output exponent is
correct independent of the system size. It is close to 0.4
for the rms method, 0.6 for the box counting method, and
0.7 for the maximum-minimum difference method. This
leads to the global conclusion that the rms method pro-
vides generally a low value of g in contrast with the box
counting and the rnaximurn-minimum difference method.

On the other hand, the first return and multireturn
probability methods and the power spectrum method are
more sensitive to the size effects. The response is more or
less parallel to the diagonal. Error is then mainly a func-
tion of the system size. The divider method shows such a
behavior if we ignore the low self-affine exponent. The
finite size effects are very important for the first return
probability. The spectral method appears as the more ac-
curate one with a small systematic underestimate effect.

B. Error estimates

The analysis error is defined as the difference between
the input exponent and the output exponent. Figures
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FIG. 8. Comparisons of the "output" ex-
ponent obtained from the self-affine analysis
and the "input" exponent introduced in the
numerical construction for the seven methods
of analysis: (a) the variable bandwidth method
using a rms estimator, (b) the variable band-
width method using the maximum-minimum
difference, (c) the first return probability
method, (d) the multireturn probability
method, (e) the power spectrum method, (f) the
divider method, and (g) the box counting
method. Box counting, the rms and the
maximum-minimum difFerence are mainly sen-
sitive to the self-affine exponent, while first re-
turn and multireturn probability and the
power spectrum are more sensitive to size
effects.
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FIG.G. 8. (Continued).

0.0
I

0.2 0.6
I

0.4
tnput exponent

I

0.8 1.0

0.3
(W.8

(W.3

(=o.i
~ 2

10

O |;W.7

P 1 (w.4

I

0.0
II

q=o.2

100
size

1000 10000

FIG. 9. stimation of the intr'
the differen

e intrinsic errors as
nce etween the in

minus the out
e input exponent

ou put exponent f
methods of 1ana ysis: (a) the v

for the seven
bl b d

sing the
'

imum ifference
i i y method, (d) the

ob bil't h de o, {e) the o
method, (f) th d' '

power spectrum
e ivider method a

counting meth d
, and (g) the box

e o . Absolute e
directly read fr

errors can be
rom these curves.

0.1 — (w.8

(W.7
pp

G4 (W.6

I',W.5

(W.4

—0.2—

~ 6
Q I;W.3

—0.3—
(W.2

O
—0.4 — (~

—0.5
10

I

100
size

1000

b)
I

10000



142 SCHMyTTBUHL, VILO E AND ROUX 51

O
Q

C4

Cj
I

Q

II

Cj

0.3

0.2—

0.1

0.0—

—0.1—

—0.2
100 1000

size

c a I;=0.1

(=0.2
W.3
W.4
W.5
W.6
W.7
W.8
W.9

10000

c)

100000

0.2

0.1—
O
Q

0.0
O

I

—0.1—
.6

II

o —02

&-0 (W.1~ (=0.2
c-e (=0.3~ (=0.4~ (=0.5~ (=0.6~ )=07.

' (=0.8~ (=09 FIG. 9. (Continued).

—0.3
100

I

1000
size

10000 100000

0.2—

O
C4

O
I

Q

II

0

0.2—

0.1

0.1

0.0—

100
size

I

1000 10000



51 RELIABILITY OF SELF-A-AFFINE MEASUREMENTS 143

0.0

O
Q

Q —0.4—
I

C4

—0.6—II

O

—0.8

0.2

I

100
I

1000
size

10000
I I

100000

FID. 9. (Continued).

0.1

O
C4

0.0 —z
G4

-0.1 -~
C4

II

o —0.2—

(3-E) (E).1

a—Ej (=0.2
0-E& gW. 3
am p,=o4.
ww (W.5
v—v (=0.6
&-w (=0.7v', '

, P,W.8~ /=0. 9

—0.3
100

I

1000
size

I

10000 100000

9 a —9(g) allow us to uautifquantify the error for the different

Previous effects can be also read
1 fh lfe -a ne exponent for box, s

and the maximum-
r ox counting, the rms

tdb 11 d
um-minimum differenc
separated curves. On

) 'c1provi e curves more
posed. There the d

re or less superim-
e error decreases ra

'

multireturn prob b'1'a iity can alsobe u
pidly with size. The

not-too-large self-affin
e put in this group for a

e exponent.
solute errors can be read directl-'""h

f hac t at the ower
h 1' bl Th

T
e. e detail of the error

bl f h
'

1e ypica system sizes (256, 1024
an or the seven methods. It is e

ied seriously, unle
t em size less than 1024 can hardly be stud-

n ess one has some inde
sessing the self-affi h

ependent way of as-
-a ne c aracter of the

large statistical 1'samp ing. More r
e profiles and a very

extracted from th egra hifa
precise results may b

p restricted range of self-affine
e

exponents is found.
It shouould be emphasized that usin o
d ' '

h be error bar on b t
-I P l d

~ ~

s o a seuere underestim
11 S hs. uc a procedur

imperatively.
p dure is to be prohibited

Method

Box
Divider

rms
Maximum-minimum

First return
Multireturn

Spectrum

L=256

0.35
0.65
0.30
0.39
0.23
0.25
0.10

L= 1024

0.28
0.45
0.25
0.31
0.10
0.18
0.07

L =16384

0.20
0.15
0.16
0.24
0.12
0.10
0.03

TABLE I. Table of error bars for a
mp e sizes. The error b

ree

observed value for all
rror ars are the maximum

ma
or a exponents. Note tha

ay e very conservati 'f
at these estimates

ponents is studied.
ive i a narrower rrange of self-affine ex-



SCHMII J.BUHL, VILOl j.E, AND ROUX

VI. MEASUREMENT ARTIFACTS

Up to now the self-affine objects were assumed to be
performed without any flaws. Actually, Ineasuring a
self-affine object is rather difficult and has to satisfy two
main requirements. The setup has to provide a very
broad dynamic (ratio between large scales and small
scales) and a large sampling has to be recorded for a
correct statistical description of the object. The latter
point requires rapid measurement, which is difficult to
combine with a broad dynamic. In this section the
influence of some of the measurement errors on the self-
affine analysis is assessed.

A. Large scale efFects

At the system scale, the drift and the signal magnitude
are the two main effects that inhuence the scaling
analysis.

1. Misoiientation

A linear drift is very often superimposed on the signal
due the difficulty of determining correctly the mean

plane. Adjusting the measurement setup frame to the
profile frame is quite a difficult problem. In order to as-
sess the effect of a rotation on the three methods studied
above, a linear function z =sx is added to the synthetic
profiles.

The addition of a linear drift of slope s to a synthetic
profile (which by construction has a zero mean) intro-
duces a characteristic length scale l, at which the typical
roughness amplitude equals the linear drift

Al~=sl, , (6.1)

where A is the amplitude of the roughness profile. This
gives the expression for the crossover scale

(6.2)

At scales smaller than l„ the drift appears as a negligible
correction, whereas foe larger scale, the drift dominates.

Analyses of those "polluted" profiles are performed
with the self-affine methods. Figures 10(a)—10(d) summa-
rize the results obtained for a synthetic profile with ex-
ponent /=0. 5, and various slopes s. The major result
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here is that all the methods are quite sensitive to the ad-
dition of a rotation. For both the rms and the
maximum-minimum difference method, a linear drift in-
troduces an apparent g exponent of one at large length
scales. As expected, the cutoff l, decreases as the slope s
increases. One should always keep in mind that a drift
may be difficult to detect for a self-affine exponent close
to one and may well lead to an overestimation of that ex-
ponent. Moreover, such a unit exponent must not be
misinterpreted as the signature of a self-similar object
(/= 1).

The power spectrum method is also sensitive to this
effect. The spectrum has a slope close to —2, which is
the Fourier transform of the linear ramp. The expected
slope for the power spectrum of a self-affine signal with
exponent /=0. 5 turns out to be also —1 —2g= —2. Ob-
viously one has to be cautious when such an exponent is
measured from the analysis of signal. For the return
probability method, the measurement is reported to be a

function of s and a quantitative analysis is given in Ref.
[17]. In Fig. 10(d) such an eff'ect is not strongly pro-
nounced.

2. Signal amplijication

By construction, the variable bandwidth method, the
return probability estimation, and the power spectrum
computation are insensitive to the amplitude of the signal
in terms of scaling studies. They do not couple the two
directions x and z. In contrast, the divider and the box
counting methods exhibit a strong sensitivity to the signal
amplitude and therefore depend on the gain of the ap-
paratus, as discussed in Sec. III.

Amplitude A plays a similar role for both methods,
changing the crossover length a. The specific inQuence of
this amplitude is shown for the divider method in Fig. 3,
where three levels of the amplitude A (as previously
defined) are analyzed. For a small value of A, the divider
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just measures the horizontal length of the profile and the
slope of Fig. 3 becomes one. For large amplitudes, the
slope is now related to the self-affine exponent s = —1/g.

B. Local filter

While the simple large scale artifacts discussed above
can be avoided thanks to simple data filters, local filters
introduce much more complicated biases. Only one ex-
ample of such local filters will be studied here to illustrate
the types of difficulties that may be encountered. Let us
consider the measurement of a self-affine object by a
mechanical tip [14]. The tip is supposed to follow slowly
the profile with a given step defined here as the unit
length. Due to the finite size of the needle, holes are
much more difficult to reach than hills and locally the
recorded geometry of the object will be partially distort-
ed. The shape of the tip is assumed to be elliptic and
characterized by two parameters: a, half of the horizon-
tal long axis, and b, half of the vertical small axis. Two

extreme cases are considered: the circle for which a =b
and the Gat tip for which a & b.

Figure 11(a) shows a profile with self-affine exponent
0.8 and the tip trajectories for both geometries of the nee-
dle. A large needle is used to amplify the effects. When
the tip is spherical, a path is made of circle arcs and
straight lines. The number of arcs is a function of the
sphere radius. On the other hand, a Hat instrument
reproduces more details between the tops of the hills
(where a plateau appears) and the bottoms of the holes.

Power spectra are computed from these three data sets
[see Fig. 11(b)]. The spectrum slope for the initial profile
is well correlated to the self-affine exponent—2.6= —1 —2g. However, slopes of the "measured"
profiles lead to overestimated exponents: 1.3 for the large
spherical tip and 0.95 for the long Hat setup. The slope s
of the spectrum is a function of the needle size. In the
case of a spherical tip, two extreme cases can be predict-
ed; a zero radius —compared to the measure step —gives
rise to a slope of s = —1 —2g and a large radius leads to
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FIG. 11. Infiuence of a local geometric
filter, due, for instance, to the tip shape of the
measurement setup. An elliptic shape is as-
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b the half vertical axis. Consequently, one case
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to an almost rectangular tip. A synthetic
profile with an exponent of /=0. 8 is measured
using these two measurement setups. (a) The
measured profiles obtained for these two cases,
compared with the exact one. (b) The analysis
of those biased profiles using the power spec-
trum method, compared with the power spec-
trum of the synthetic profile (with a slope of
s = —1 —2g).
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the description of arcs of similar radius /=2 and s = —4.
Even if the absolute error is wider for a Bat tip, the es-
timation of the self-affine exponent with the Fourier spec-
trum is less affected.

VII. CONCLUSION

Characterization of self-affine objects is quite difficult
and has to be done carefully. Two main biases in the
analyses have been identified in this paper: intrinsic er-
rors of the methods used to analyze the signal and ar-
tifacts lnhel ent ln data acquisition.

Two groups of methods can be separated. The "self-
similar" methods are inherited from the so-called fractal
description. We focused on the two most often used: di-
vider and box counting. We show that a lot of care has
to be taken to make them relevant. Therefore, we do not
recommend them, especially the divider method. Specific
"self-affine" methods have been recently developed; the
variable bandwidth, the first return, and the multireturn
probabilities, and the power spectrum. The intrinsic er-
rors for the seven methods of signal analysis have been
reported. For the box counting and the variable band-
width method, the error is shown to be controlled mainly
by the self-affine exponent. For the divider method, the
first return and multireturn probabilities, and the Fourier
spectrum, the error is shown to be controlled mainly by

the finite size of the signal. For each of those methods er-
rors have been quantified in terms of the system size and
the self-af6ne exponent. Those results [Figs. 9(a)—9(g)]
may help to assess the confidence in the measured ex-
ponents that can be expected.

There are two kinds of artifacts inherent in the georne-
trical description of the self-affine object: large scale
filters due to a rotation or signal amplitude and local
filters. Both cases can induce spurious effects which may
affect the exponent determination. Careful analysis is
needed to detect and filter out those effects.

All the results of this study point out that in order to
estimate the reliability of a self-affine exponent, it is im-
portant to provide enough information on the apparatus
used for the data recording and to systematically make
use of several methods for measuring the exponent, each
of those methods invoking a different response. Again we
emphasize that the reliability of one single method, as
judged from the quality of the power-law fit, gives a
strongly underestimated value of typical error bars and
thus should be avoided.
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