
PHYSICAL REVIEW E VOLUME 51, NUMBER 2 FEBRUARY 1995

Instabilities of charged polyampholytes
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We consider polymers formed from a (quenched) random sequence of charged monomers of
opposite signs. Such polymers, known as polyampholytes (PA's), are compact when completely
neutral and expanded when highly charged. We examine the transition between the two regimes by
Monte Carlo simulations, and by analogies to charged drops. We 6nd that the overall excess charge
Q is the main determinant of the size of the PA s. A polymer composed of N charges of +qo is
compact for Q ( Q, = qadi% and expanded otherwise. The transition is reminiscent of the Rayleigh
shape instability of a charged drop. A uniform excess charge causes the breakup of a Quid drop. We
speculate that a uniformly charged polymer stretches out to a necklace shape. The inhomogeneities
in charge distort the shape away from an ordered necklace.

PACS number(s): 36.20.—r, 33.15.Bh, 64.60.—i, 41.20.—q

I. INTRODUCTION

Polyampholytes (PA's) are long chain macromolecules
with a random mixture of oppositely charged groups fixed
along their backbone [1]. Several elements conspire to
make the behavior of such heteropolymers a problem of
great interest. One (admittedly somewhat remote) moti-
vation is the similarity to the macromolecules of biolog-
ical interest such as nucleic or amino acids. The specific
sequence of monomers on such chains is essential to bi-
ological activity. For example, the sequence of amino
acids determines the ultimate shape of a protein [2]. At-
tempting to unravel the precise factors responsible for
protein folding, several statistical models have been pro-
posed [3]. These models sacrifice the specificity of par-
ticular proteins, by essentially focusing on generic prop-
erties of heteropolymers with competing interactions [4].
PA's can be regarded as a particular example of this class.
From another perspective, properties of random systems
with competing interactions have been on the forefront of
statistical mechanics for the past decade [5]. The proto-
type of complexity in this class of problem, the spin glass,
has much in common with random heteropolymers. The
statistics of the ground state, and those of low lying ex-
citations, is paramount to both systems. As examples
of soft condensed matter, heteropolymers have the ad-
vantage of faster relaxation, compared to their "harder"
counterparts. Indeed there is much encouragement from
recent experimental studies of solutions [6] and gels com-
posed of PA's [7,8].

'Permanent address.

It may appear that the long-range nature of the
Coulomb interaction between charges is yet an additional
complication of an already hard problem. Yet for a uni-
formly charged polymer (a polyelectrolyte), it is possible
to find the exact scaling of the radius of gyration Bg
on the number of monomers N [9]. The proof relies on
the nonrenormalization of the dimensionless interaction
parameter u = Q /(k~TR" 2) in d embedding dimen-
sions. Since Q oc N, it follows that Rg N", with
v = vh, = 2/(d —2) (for 4 ( d ( 6). Inspired by the sim-
plicity of the homogeneous case, we suggested a similar
argument for the randomly charged PA [10]. Consider
a model PA composed of N charges +go, randomly and
independently chosen at each site. Although the mean
net charge is zero, a typical PA has excess charge of
order +qo~K. Independent of its sign, this leads to a
repulsive self-energy, on average described by the dimen-
sionless parameter u = Nqo2/(k13TR" ). Assuming that
this parameter is not renormalized as in the uniformly
charged case leads to a swelling exponent of v = 1/(d —2)
(for 3 ( d ( 4), i.e., a polymer that is stretched in d = 3.

However, in an electrolytic solution oppositely charged
ions rearrange so as to screen the long-range Coulomb
interaction. The net eKect is an attractive energy [11],
described by the Debye-Hiickel (DH) theory. Higgs and
Joanny [12] assumed that the monomers in a PA can sim-
ilarly rearrange to compact configurations, thereby taking
advantage of the DH attraction. A partial resolution of
the contradiction between the two predictions is obtained
by noting that DH theory requires the exact neutral-
ity of the electrolyte, while the renormalization-group-
(RG) inspired approach depends on the excess charge
in a typical sequence. Monte Carlo simulations [13,14]
indeed confirm that PA's with Q = 0 become compact
at low temperatures. By contrast, sampling all random
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quenches with unrestricted Q produces a broad range of
sizes, with an average consistent with Bg cx ¹

Depending on the conditions, experiments observe
both compact and expanded conformations [6]. One
set of experiments [7] was performed on gels produced
by crosslinking PA's [8]. By changing the conditions of
the solvent (pH, salt content, etc.), it is possible to con-
trol both the excess charge Q on the PA chains and the
screening length. Due to the large screening length, the
Coulomb interactions are significant. As a function of
Q, the gel undergoes dramatic changes in volume, the
neutral gel being the most compact. However, the vol-
ume of the gel does not change gradually with increasing
charge. There is an interval of Q around the neutral point
where the gel remains compact, suddenly increasing in
volume by an order of magnitude beyond a threshold Q, .
The threshold scales with the number of monomers N,
within a screening length, as Q, = qo~¹ Motivated
by the experimental results, we undertook a systematic
examination of the dependence of the size of a PA on its
excess charge. Monte Carlo simulations show that PA's
are compact for small Q, and expanded when Q exceeds
a critical value of Q = qo~N, in complete analogy with
the experiments. Some aspects of this transition can be
understood by analogy to the behavior of a charged drop.
The spherical drop is stable for charges smaller than a
Rayleigh limit Q~ oc ~V, where V is the volume of the
drop. Charged beyond this point, the drop elongates to
minimize the Coulomb repulsion. The elongated drop
rapidly disintegrates into smaller droplets. In attempt-
ing to follow a similar scenario, a PA chain breaks into a
necklace of globules connected by strings. The detailed
shape of the necklace is determined by charge inhomo-
geneities.

The main results of this work were summarized in an
earlier publication [15]. Here we provide more detailed
results and additional information. The paper is orga-
nized as follows. The competing arguments applied to
PA s are discussed in some detail in Sec. II, and their in-
consistencies are emphasized. The results of Monte Carlo
simulations on the dependence of the radius of gyration of
the polymer on temperature and excess charge are pre-
sented in Sec. III. Various details of the Monte Carlo
procedure are relegated to Appendix A. We argue that
as Q is increased beyond a threshold Q„ the PA under-
goes a sudden transition from a compact to a strongly
elongated state. In Sec. IV we provide a qualitative pic-
ture of this transition by analogy to the shape instability
of a charged drop. Some known results pertaining to such
drops, as well as new calculations for spheroidal shapes,
are presented in Appendix B. Such analogies cannot be
extended to the strongly distorted limit where, as argued
in Sec. V, a uniformly charged polymer deforms into a
necklace of compact beads. Such a shape is the best com-
promise for the PA in trying to mimic the ground state
of a charged drop, which, as described in Appendix C, is
obtained by splitting into several droplets. In Sec. VI we
point out the importance of quenched randomness in the
PA. An ordered necklace is not stable to charge inhomo-
geneities, and the beads must rearrange in complicated
shapes dependent on the details of randomness.

II. POLYAMPHOLYTE PHENOMENOLOGY

In this work we consider PA's immersed in a good sol-
vent in which the concentration of counterions is small,
and hence the electrostatic interactions are treated as
unscreened. Experimentally, the details of a charge se-
quence are determined by its fabrication process. Marko-
vian sequences are constructed by adding one monomer
at a time, the probability of choosing a particular
monomer (e.g. , positively or negatively charged) depends
only on the last monomer [16]. Such a construction leads
to correlations in the charges qi, which decay exponen-
tially as

qiqj = qp~ —1(A(1.

for T ) qo2/a

for T ( qo2/a.
(2)

For the generalized Markovian chains, the net charge
of a sufficiently long segment (such that A~ (( 1) grows

The extreme limits of A = —1 and A = 1 correspond to
nonrandom sequences that are alternating [17], or fully
charged, and will not be considered here. The behav-
ior for A is asymptotically similar to the case where the
charges are uncorrelated (A = 0), and we shall focus
mostly on such chains.

We shall, however, allow for the possibility that the
total charge of the chain is constrained to a particular
value of Q. Experimentally, this net charge can be con-
trolled by changing the pH, and other properties of the
solvent. At several points we shall also contrast the be-
havior of quenched and annealed PA's; the latter is de-
fined as a predetermined collection of positive and neg-
ative charges which can freely move along the polymer
chain. Note that in this definition the total charge is
fixed. If this constraint is also removed the polymer low-
ers its energy by getting rid of any excess charge. Note
that such annealed PA's are not very realistic, and should
not be confused with the case considered by Raphael and
Joanny [18],where the excess charge can adjust its value
depending on the temperature, concentration of PA's,
and concentration of the counterions.

A short X-monomer segment of a PA wi.th uncorrelated
random monomers has typical charge of qo+/. If we as-
sume that the segment is a self-avoiding walk, its radius
of gyration is approximately aE, where a is a microscopic
length (e.g. , the monomer diameter or nearest neighbor
separation along the chain). As the typical electrostatic
energy of such a subchain is q02E "/a, interactions be-
come important for T qP "/a. (We shall henceforth
measure temperature in energy units, i.e. , set k& = 1.)
Alternatively, we can define Ez = (Ta/q02)~~l~ l, and
divide the entire chain into segments of E~ monomers.
The interactions within each segment are small com-
pared with T, while interactions between the segments
are strong. Such segments form the basic "ions" in an
analogy [19]between PA's and usual electrolytes [11]em-
ployed by Higgs and Joanny [12]. The spatial extent of
each segment is
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as qp/N(1+ A)/(1 —A). The previous argument thus
remains valid after replacing qp by qpg(1+ A)/(I —A).
This simple change is suKcient to relate most high-
temperature properties of the short-range correlated
sequences to the uncorrelated ones (e.g. , in a high-
temperature series expansion for the radius).

In the spirit of a RG analysis, we can attempt to in-
crease the short distance cutofF along the sequence by
a factor Z. Perturbations around the high-temperature
phase depend on the dimensionless interaction param-
eter u = q&/rI, T (( 1, where qr is a typical charge on
length scale E, while rg is the spatial extent of the short-
est segments. Upon rescaling the cutoff by a factor 6,
qs increases by ~b, while rs scales by b, as in a self-
avoiding walk. Thus the renormalized interaction pa-
rameter u(b) = b u grows under rescaling and reaches
unity for E equal to Sz defined above. At this scale rg
becomes of the same order as az . Beyond this point the
interactions are relevant, strongly modifying the behavior
of the chain.

Different approaches to the problem are in agreement
in the weak coupling regime of u (( 1. The strong cou-
pling regime is not easily tractable, and different assump-
tions lead to different conclusions. Higgs and Joanny [12]
construct the free energy of a long PA by erst assuming
that it has a uniform density and then proving this as-
sumption self-consistently. (See also Refs. [13,14].) In
this approach the %-monomer PA is divided into blobs
[20] of Ez monomers each, forming a liquid of uniform
density as depicted qualitatively in Fig. 1(a). The blobs
are noninterpenetrating and arranged so that the neigh-
borhood of each blob is predominantly occupied by blobs
of opposite charge. This arrangement roughly resem-
bles the structure of a salt crystal. The excess charge
of each blob is effectively screened and the dense con-
figurations take energetic advantage of the large num-
ber of neighbors of opposite sign. The energy gain per
blob is approximately the nearest neighbor interaction,
i.e., e, (T) qPz /az . We note, however, that even
in the ideal NaCl crystal, the condensation energy per
atom (0.874qp/a) is a small fraction of the interaction en-
ergy between the nearest neighbors (3qp/a), and is thus
strongly inHuenced by further neighbors. The validity of
the picture depicted in Fig. 1(a) rests on the assumption
that it is possible to fold a randomly charged object in
a way that not only provides the correct neighborhood
to each charge, but also keeps more extended neighbor-
hoods approximately neutral. Thus such configurations
require the possibility of specific foldings of the PA at
both local and global levels.

The primary focus of the DH-type approach is the min-
imization of the extensive part of the energy by creating
a homogeneous liquidlike structure, while nonextensive
energies due to surface tension and electrostatics are rel-
egated the role of determining the overall shape of the
globule. By contrast, a RG-inspired approach [10] to the
problem assumes that the blobs form a self similar struc--
ture [as depicted in Fig. 1(b)] which attempts to take
care of energies on every length scale. In d space dimen-
sions, the dimensionless interaction parameter at scale I.
is u(E) = qpE/(Tr& ) This expression re.presents the

typical interaction energy of a random 8-monomer seg-
ment, assuming that the Coulomb interactions cannot

I

be screened. For a self-similar structure with rg oc g
1—8—

u(E) oc E~ ( ), and the interaction parameter grows
or diminishes under rescaling unless v' = 1/(d —2).
[The analogous argument leads to the exact value of
vh = 2/(d —2) for uniform polyelectrolytes where no
screening is possible [20].] This result is valid only for

FIG. 1. Qualitative views of the spatial arrangement of
"blobs" in a PA with quenched randomness. Electrostatic
interactions within each blob are smaller than k~T. Lighter
and darker shades of the spheres denote predominantly posi-
tively or negatively charged blobs. The DH view assumes that
the blobs can rearrange in a pattern (a) where interactions are
screened on long distances. According to a RG-inspired pic-
ture the blobs form a self-similar pattern (b) with the same
interaction energy on all length scales.
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3 & d & 4: For d ) 4 the electrostatic interactions are
irrelevant and v = 1/2, while for d ( 3 the polymer is
stretched (v' = 1). Keeping interactions equally strong
on all length scales also generates a condensation energy
proportional to Nqo/a. However, as this argument does
not provide the prefactor, i.e., the actual value of the
condensation energy, it is not possible to deduce whether
the DH-type or RG-type ansatz produces the lower free
energy state.

Are the two aforementioned approaches mutually ex-
clusive? In this work we present evidence that they ac-
tually represent two facets of the same problem: DH the-
ory attempts to minimize the condensation energy with-
out paying attention to the surface. However, an object
can be (locally) "compact" and still have an extremely
extended shape which is controlled by the nonextensive
part of the energy. The RG-inspired approach attempts
to accommodate the latter energy.

realizations of randomness, and all results were averaged
over ten different quenches. However, rather than tak-
ing the same configurations through changing tempera-
tures, ten distinct quenches were used for each T and Q.
The smoothness in variations of various quantities with
temperature then provides added confidence in the ther-
mal and quench averaging process. Not surprisingly, as
explained in Appendix A, the overall uncertainties are
entirely due to quench averaging as the statistical errors
of the thermal averages are smaller than the differences
between quenches.

Figure 2 depicts the temperature dependence of B
for 64-monomer chains. The number near each curve
indicates the charge, Q/qo. At very high temperatures
the electrostatic interactions are unimportant and the
chains behave as self-avoiding walks, with Bg (x: % and
v = 0.588. The typical electrostatic energy of such con-
figurations is estimated as

III. NUMERICAL SIMULATIONS (U) =) qq,
1 (Q —qo2N)

r; —r,
~

Rs
(4)

Configurations of a polymer are completely specified
by listing the position vectors (r, ) (i = 1, . . . , N) of its
monomers. The shape and spatial extent of the polymer
are roughly characterized by the shape tensor,

N N

rgb rg 7/ ) (3)

where the greek indices denote the Cartesian components
of the vectors. Thermal averages of the ordered eigenval-
ues Aq ) A2 ) As of this tensor (sometimes referred to
as moments of inertia) are used to describe the mean
size and shape; their sum, i.e. , the thermal average of
tr8, is the squared radius of gyration B . Since we
are dealing with sequences of quenched. disord. er, these
quantities must also be averaged over different realiza-
tions. In three dimensions, uniform uncharged polymers
in good solvents are swollen; their Bg scaling as N with
v = 0.588 as in self-avoiding walks. Polymers in poor
solvents are "compact, " i.e. , described by v = 3.

The Monte Carlo proced. ure used in this work is iden-
tical to that described in Ref. [13]. Here we describe
some important features, while the more technical de-
tails are described in Appendix A. The simulated chains
are composed of 1V monomers whose positions are dis-
cretized to a cubic lattice (d = 3) with lattice con-
stant a. The connectivity of the polymer is maintained
by restricting the maximal distance between neighbors
to 4a. The excluded-volume interaction is enforced by
not allowing two monomers to come any closer than
~2n. Each quench is characterized by a set of charges
qi = +qo. The electrostatic interactions between the
charges, 4 = P(, .

) U;~(~r; —ri ~), are included by as-

signing energy U;~. (r) = , q/ qicv+ r to each pair (i,j)
at a separation distance r, with c = 2a, which "softens"
the potential at short distances.

The results of the simulations are parametrized by the
chain length 2V, temperature T, and the overall excess
charge Q = P,. q;. Each Q can be obtained by many

where we have employed q;qi = (Q —qIIN)/N for i g j,
and used Bg as a measure of interparticle separation.
Note that the interaction changes sign at

Q, =qpvN.

This is because the energy of strongly charged polymers is
dominated by the repulsive interaction of excess charges.
However, for weakly charged polymers, there is an attrac-
tive interaction between fluctuations in the charge distri-
bution; the typical fluctuation of Q leads to the above
result.

As the temperature of the chain is lowered, the effects
of interactions become apparent for

Tg --(U) (Q —qoN)/aN

600

400

200

0 I I ] I I I ] I I I I I I I

—2 0 2

in(T)
FIG. 2. B (in units of a ) as a function of T (in units

of qo/a) for several values of the excess charge Q for a
64-monomer chain. Each point is an average over the ten
independent quenches used at each temperature. The num-
bers near each curve indicate Q/qo.
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Chains with charge larger than Q, expand, while those
with Q ( Q, shrink with decreasing temperature. The
strongest deviation occurs for the fully charged polymer,
which for N = 64 starts at Tg —320qo/a. For Q = 0,
the deviation begins at the much lower temperature of
Tg = 5qo/a. Indeed, on the logarithmic scale of Fig.
2 the departure from the infinite temperature values of
R is most apparent for Q = 64qo, starting at ln(T) —6
(beyond the limits of the figure), compared to ln(T) = 1.7
for Q=0.

To see if the averages in Fig. 2 provide a good mea-
sure of the PA size at low temperatures, we constructed
histograms of the distribution of R at T = 0.05qo/a
for several values of Q. As thermal fiuctuations are
small, the histograms in Fig. 3 represent differences be-
tween quenches. The distributions are fairly narrow,
their widths not exceeding the distance between their av-
erages. Thus a point in Fig. 2 provides a good measure
of R2(Q), independent of further details of the sequence.
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FIG. 3. Histograms of the distribution of the (ten) values
of R (measured for N = 64 at T = 0.05qo/a) for several
charges Q/qo, indicated near the histograms.

FIG. 4. Spatial conformations of 64-monomer PA's at T = 0.05qo/a, for values of Q/qo equal to (a) 0, (b) 4, (c) 8, and (d)
16. Dark and bright shades indicate opposite charges. The diameter of each sphere is about 0.4 of the actual excluded-volume
range.
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The average of B for unrestricted quenches is then ob-
tained from R (Q) as

R (random) = dQR (Q)P(Q),

where P(Q) oc exp[ —Q /(2qIIN)] is the probability den-
sity of an excess charge Q. In previous work [13], we
found a very broad distribution for R (random). Even
in sampling a few quenches, there were several com-
pletely collapsed, and some strongly stretched con6gura-
tions. Figure 4 shows the spatial conformations of several
quenches examined in this study. The weakly charged
configurations for Q/qp —0 or 4 are spherical globules,
indistinguishable from each other. The chains are slightly
expanded for Q/qo ——8, while for Q/qp = 16, a value of
only twice Q„ they are strongly stretched. It can now
be appreciated that the previously observed breadth of
the distribution for R (random) simply follows from the
strong dependence of R on Q rather than indicating a
large scatter of B among difFerent quenches with the
same Q.

The averaged radii of PA's in Fig. 2 change monotoni-
cally with temperature. This suggests that compact and
extended states are separated in the (Q, T) plane by a
straight line starting from Q = Q = qIIi/N at infinite T.
This hypothesis was tested by looking at the Q and N
dependence of the radius of gyration for chains of lengths
N = 16, 32, 64, 128. To achieve good thermal averages,
simulations were performed at T = O. lqo/o, and not at
the lowest temperature in Fig. 2. The dependence of B
on Q is depicted in Fig. 5. The vertical axis is scaled
by N /' to remove the N dependence of the B of the
compact globules at Q = 0. The charges on the hori-
zontal axis are scaled by Q, (N) for all polymer lengths.
Although monotonic, B exhibits strong variations with
Q. The radius is barely increasing for small Q, but an
extremely steep rise begins beyond a threshold charge.
Due to the monotonic increase or decrease of PA sizes

60

10

I
0 I I I I I I I I I I I I I I I I I I I I I

0 0.5 1 1.5 2

Q/N'/z

FIG. 6. Scaled largest eigenvalue AI of the shape tensor
as a function of charge Q/qo for several chain lengths. The
symbols are the same as in Fig. 5.

with temperature, this variation becomes even sharper
at low temperatures. Figure 5 strongly suggests that the
transition from compact to stretched con6.gurations at
low temperatures still occurs for Q = Q .

When the distortions of a globular object are small,
the changes in B are not very sensitive to the changes
in shape. The increase in the largest eigenvalue of the
shape tensor A~ due to elongation of the object is par-
tially compensated by a decrease of other eigenvalues.
Figure 6 is analogous to Fig. 5 except that it depicts the
charge dependence of the Aq. The strong elongation of
the PA for Q ) Q is also apparent from this figure.

IV. ANAL OGIES TO CHARGED DROPS

To explain the above results, we start with the empir-
ical observation that PA's with vanishing excess charge
Q compact to spherical "globules" of spatial extent R—
aN / and surface area 8 —a N / . It is thus natural to
represent the total energy (or rather the quench-averaged
free energy) of such globules as a sum of condensation and
surface energies,

40
EpA(Q = 0) = —e,N + pS . (8)

20

0 I I I I I I I I I I I I I I I I I

0 1 2 3
Q/N'~2

FIG. 5. Scaled Bs as a function of Q/qo for chain lengths
N = 16 (open triangles), 32 (full triangles), 64 (open circles),
and 128 (full circles).

The condensation energy is proportional to qo/a, while
the surface tension is p = pqo/a, where the dirnension-
less prefactor p 0.1 is found to be rather small [21]. It
should be emphasized that Eq. (8) is not self evident as-
it represents the average energy of a connected chain of
N monomers with long-range interactions, rather than
N independent particles. While the existence of an ex-
tensive condensation energy is natural, nonextensive cor-
rections may in principle be present without any relation
to the surface. The presence of the surface term is de-
duced from the numerical observations that the object
is approximately spherical. We may hope that this form
of the energy persists as long as the deformations of the
globule are not too large.
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If we now uniformly add a very small number (Q/qII ((
Ki~s) of charges along the chain (e.g. , by randomly re-
placing Q/2qII of negative charges by positive ones), with-
out modifying the spatial conformation of the PA, its to-
tal energy increases approximately by qo ~q ~/a, represent-
ing the sum of changes in local interactions. For moderate
charges (Q ) qo&i~ ) the energy inclease is dominated
by the long-range interactions and is of order Q /R. If
the PA is now allowed to relax, it will lower its energy by
finding more favorable configurations, and thus,

[23] of increasing potential rather than charge. There-
fore many features of the problem which are of interest
to our study are usually not addressed. In Appendix B
we summarize the relevant aspects from our perspective,
while only quoting the main results in this section.

A closely related problem is that of an insulating uni-
formly charged drop. This problem has been considered
in the framework of the charged drop model of atomic
nuclei (see, e.g. , Ref. [39]). The nonextensive portion of
the energy of a spherical shape is now

E,~(q) & —..m+ &S+ q'/R . (9) E(')(q) = — +4~~R .3Q 2

5R
The above considerations are equally applicable to a
charged drop, and we shall explore such analogies to treat
weakly distorted PA's. In the following paragraphs, we
initially review the results pertaining to the shape of a
charged conducting drop. This analogy is most appropri-
ate for an annealed version of the problem in which the
charges are free to move along the polymer chain. We
then go on to consider the shape of a charged insulating
drop of immobile charges, which is a better representa-
tion of quenched PA's.

For a conducting drop all the charge accumulates on
the surface. The nonextensive contribution to the energy
of a freely suspended spherical drop of radius R is

1 Q2
E(Q) = — +4~R'q.

2 R (10)

However, the drop can change shape to minimize the sum
of surface tension and Coulomb energies. The surface en-
ergy of an uncharged drop, E(0) = 4mR p, sets the over-
all energy scale of the problem while the dimensionless
parameter,

a =—Q /(16~R p)—:Q /Q~

determines its shape. We shall refer to Q~ as the
Rayleigh charge of the drop. Note that the estimates
of p and R following Eq. (8) for the model PA lead to
Q~ Q, . Let us initially consider only small deforma-
tions in shape of a single drop. Investigations of the shape
of charged liquid drops go back at least to the last cen-
tury [22]. Some of the several variants of this problem are
(a) a freely suspended charged conducting drop [22—27];
(b) an uncharged conducting drop in an external electric
field [28,29]; (c) a dielectric drop embedded in a different
dielectric liquid in an external electric field [30—34]. The
last problem has received recent attention because it is
mathematically identical to that of a drop of magnetic
Iluid in a magnetic field [32,34—37]. The conducting drop
is the limiting case of an insulating drop with infinite
dielectric constant. Problems (a) and (b) are strongly
related since similar shape instabilities are induced by
both the external field and the internally generated. field
of a charged drop. In fact, in many experimental situ-
ations (see, e.g. , Ref. [38]), the drop is suspended from
a tube. Creating instabilities by raising the potential of
the tube is intermediate between the idealized situations
described by (a) and (b). The stability conditions in ex-
periments are usually discussed from the point of view

The similarity between Eqs. (11) and (12) is evident.
As explained in Appendix B, this similarity persists even
for the nonspherical shapes discussed in this section: all
results for conducting drops are transformed into results
for insulating drops by replacing Q /2 with 3Q /5. This
analogy, however, does not persist to arbitrary deforma-
tions and differences between conducting and insulating
models will become apparent in Sec. V.

If the only allowed deformations of the charged drop
are to ellipsoids of rotation (prolate spheroids), the spher-
ical shape remains stable until o. reaches 0.899. At this
point the d.rop becomes strongly elongated with eccen-
tricity e = 0.95, and continues to stretch with increasing
n. For large n the long axis of the drop (and hence Rg) is
proportional to o. / . Due to the sharp increase in the as-
pect ratio of the spheroid with increasing o., the increase
in the energy of the system slows down and becomes of
the order of (a lno. ) ~ (compared to order of n for the
undistorted sphere). Figure 7 depicts the resulting de-
pendences of R and E on o;. The behavior of R in Fig.
7 closely resembles the sudden expansion of polyamphilic
gels in Ref. [7].

A more quantitative comparison between our results
and the predictions of the charged drop model is possible:
The transition in Fig. 5 appears at n' = Q /(qIIN) —1.

4
C3

CY

I I I I ] I I I I ] I I I I

0 1 2 3 4
Q2/Q2

FIG. 7. Radius of gyration of the minimal energy spheroid
in units of the radius of gyration of the undistorted sphere
(left), and the energy of the spheroid scaled to that of the
uncharged sphere (right), as a function of oI.
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The instability of a charged drop to ellipsoidal shape oc-
curs for o. = 0.9 in the conducting case, and o; = 0.7 in
the uniformly charged case. In Eq. (Bl) we show that
n = Q j(12Vp), where V = a K is the volume of the
system, while p —O. lqo ja [21]. Thus o. —n', and the
observed critical value of o," is surprisingly close to the
predictions of the model. (Given the numerous approxi-
mations of the model, such excellent agreement is proba-
bly fortuitous. ) We conclude that, as long as the value of
n is not too large, our Monte Carlo (MC) results, the pre-
dictions of the spheroidal drop model, and experiments,
are in good. agreement.

For comparison with Fig. 7, Fig. 8 depicts the energy
per monomer as a function of scaled excess charge, ob-
tained &om MC simulations. At Q = 0, the curves for
different %'s almost coincide. (Slight corrections of order

~/s are present, but invisible at this scale. ) For small

Q, the energy per monomer increases as Q /(BK)
Q /K /, as indicated by the straight dashed line in Fig.
8. For large charges, the energy increase slows down,
indicating distorted PA's. Since distortions start for
Q /qoK = 1, in terms of variables used in Fig. 8 the
departures of longer chains begin earlier.

The results of this section are not sensitive to the ex-
act shape of the elongated drop. Any shape character-
ized by a long dimension BII and a short dimension B~
(such as major and minor semiaxes of an ellipsoid) repro-
duces the same answers qualitatively. The electrostatic
energy is approximately Q /A~~, while surface energy
grows as pB~BII. Their sum has to be minimized sub-
ject to the constraint of fixed volume, imposed by requir-
ing V = B&BII. For example, Gutin and Shakhnovich

[40] consider the more general case of Q K~. Mini-
mizing the total energy for elongated shapes, they find

BII N~ ~ ~j, and B~ % ~ ~~/ . Only a finite
stretching is predicted for P = 1/2. [A directed version
of this problem also exhibits a continuously varying expo-
nent v(P) [41].] Another recent study by Dobrynin and
Rubinstein [42] relaxes the constant volume constraint

and also reaches the conclusion that there is an onset of
stretching for P = 1/2, although a completely stretched
state is reached only for P = 2/3, when the Coulomb
energy becomes extensive.

However, as we shall show in the following sections, the
ground state of a charged drop is not a simple elongated
shape for large values of o.. Conducting drops can shed
away excess charge, while insulating drops disintegrate
in a process similar to nuclear fission. Related pathways
are available to PA's.

V. BEYOND SINGLE DROPS

Linear stability analysis indicates that a spherical
shape is unstable to a variety of perturbations [26]. Ex-
periments show that a conducting drop disintegrates
when the Rayleigh stability limit is exceeded. Nuclear
fission demonstrates the corresponding instability of in-
sulating drops. Appendix C presents several mechanisms
by which conducting and insulating drops can decrease
their energy. For example, we show that a conducting
charged drop can get rid of its entire electrostatic energy
by emitting an infinite number of infi. nitesimal droplets.

The mechanisms discussed in Appendix C rely on
the breakup of the charged drop. Such routes are not
available to the PA chain which must maintain its con-
nectivity. Is the charged PA susceptible to similar in-
stabilities despite its connectivity? Figure 9 depicts
R (T = 0.1qo/a)/B (T = oo) as the function of the
reduced charge Q/N~/2 for different values of N The.
curves become steeper with increasing N and intersect at
Q/N / —1.4qo. At the intersection point the radii scale
as self-avoiding walks with a prefactor slightly larger than
the infinite temperature value. For Q ) 1.4Q, the PA's
at low T are more stretched than self-avoiding walks,
in disagreement with the finite elongation predicted for
ellipsoidal shapes. How does the PA go beyond the ellip-
soidal limit while maintaining its connectivity? We can
still exploit analogies to charged drops.

0. 1

—0.05
O

mug 0 5i

—0.1
0 0.5

Q2/N4/3

FIG. 8. Energy per monomer in units of q&&/a versus scaled
excess charge for several chain lengths at T = 0.05qo/a. The
symbols are the same as in Fig. 5. The dashed line is the
energy of an undistorted PA.

0 i i » ]

0 0.5 1 1.5 2

Q/N 1/2

FIG. 9. Ratio between squared radii of gyration at
T = O. lqo/a and T = oo as a function of scaled excess charge.
The symbols are the same as in Fig. 5.
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The annealed PA is modeled by a deformable conduct-
ing "drop" of particles of size a, constrained to maintain
a spherical topology. Although such a drop cannot ex-
pel charged particles, it can still reduce its energy by
extruding charge in a finger of length L and diameter
a. Due to the long-range nature of the Coulomb interac-
tions in three dimensions, the electrostatic energy of an
elongated object (of finite cross section) is determined
only by its longest dimension. Balancing the Coulomb
energy (Q2/L) of the finger with the increase of surface
energy pat, we find that the optimal finger length is
L Q/+pa. Fingers appear spontaneously only if their
cost (roughly Qgpa) is less than the Coulomb energy of
the uniformly charged sphere, Q /B, i.e. , for Q ) Rgpa.
The fingering instability occurs for n —a/B « 1, i.e. ,
far below the shape instability of a sphere. Thus the
typical annealed PA has a protruding finger of length
L oc Q cc N~ for P ) 1/3. But, as the weight of the
finger is small, and it does not afI'ect the scaling of R for
P & 5/9. Such PA's have large spanning sizes without
appreciably greater Rg.

The insulating (uniformly charged) drop follows a dif-
ferent route. As is shown in Appendix C, it is stable
for small o. , but reduces its energy by splitting into sev-
eral droplets of equal size for o. ) 0.293. We can again
constrain the overall object to remain singly connected
by linking the droplets via narrow tubes of total length
L and diameter a. As long as La « R, most of the
charge remains in the spheres. The total electrostatic
energy is proportional to Q /L, while the surface energy
cost grows as paL. Equating the two gives L oc Q; not
surprisingly, of the same order as the Angers in the con-
ducting case. However, whereas the surface tension in the
conducting case results in one big central drop, for the
insulating case the droplets are separated as in a neck-
lace. The radius of gyration is now of the same order as
the span of the necklace, L.

VI. RANDOMNESS IN THE NECKLACE MODEL

The necklace model provides a good picture of a poly-
mer with a short-range attraction between its monomers
and a uniformly distributed excess charge: A polymer
with Q )) Q~ is split into roughly ci oc Q2/N beads con-
nected by a string. Each bead is just below the Rayleigh
threshold, and the string is stretched by their Coulomb
repulsion to a length L oc Q. [Note that, as shown in
Appendix C, the optimal number of beads is propor-
tional to (Q/Q~) and not Q/QR. ] For Q && qpN,
only an infinitesimal fraction of monomers are part of
the string, and the overall extensive part of the energy is
unchanged. This picture should extend to any determin-
istic sequence, e.g. , composed of alternating charges [17],
which has a compact state when uncharged. . It should
be stressed that the reasoning that leads to the necklace
model is somewhat speculative. The starting point is the
continuum description of a globule, while the end result
contains elements which rely on the discreteness of the
monomers, where the continuum desciption is no longer
valid. Further numerical work is required to confirm (or

disprove) this picture.
Is the necklace model also applicable in the presence

of random charges? For our model PA's n = Q /(qpN),
with a prefactor almost identical to unity, and we shall
use this relation as an exact definition of o.. For o. && 1 we
may try to split a chain into o. segments of approximately
equal size. Each segment has average charge Q/n oc N/Q
and incorporates N/a oc (N/Q) monomers. Thus the
fIuctuations in charge of each segment are of the order
of the average charge itself, and the picture of uniform,
mutually repelling, beads is no longer applicable. It is not
clear how we should model the shapes and distribution
of the segments which have o. s of order one.

Let us illustrate the difFiculties caused by randomness
for the case of an unrestricted PA. Since Q2 = qp2N,
where the overline denotes an average over the ensemble
of all quenches, we have K = 1. As demonstrated in
Appendix C, the insulating drop is unstable to splitting
already for o. 0.3, and thus a typical random PA is
expected to form several globules connected by narrow
tubes. Now consider splitting sequences of N monomers
with total charge constrained to a particular o. into two
equal subchains of charges Qi and Q2. It is easy to show
that each segment has a.,„b,h;„= (1 + n)/2, while the
mean product of the charges is QiQ2 ——qpN(n —1)/4.
The subchains have, on average, values of o. close to unity.
Also, for o. = 1, the average value of the product of
charges vanishes. We thus have the paradoxical situation
in which most spherical shapes are unstable, while there
is on average no energetic gain in splitting the sphere into
two parts. It is most likely that the ensemble of chains
with o. = 1 contains a broad distribution of sizes and
shapes.

Thus charge inhomogeneities drastically modify the
necklace picture. The resulting PA is probably still com-
posed of rather compact globules connected by a (not
necessarily linear) network of tubes. The globules are
selected preferentially from segments of the chain that
are approximately neutral (or at least below the insta-
bility threshold), while the tubes are from subsequences
with larger than average excess charge. It is amusing to
inquire how a random sequence is best partitioned into
large neutral segments. The resulting segments appear
to have a broad distribution which will be addressed in a
future publication [21]. Some aspects of the distribution
of large neutral segments in random sequences have been
investigated by Kantor and Ertay [43].

In summary, we find that the behavior of PA's and
other charged polymers is controlled by the parameter
n oc Q /N. Chains with small values of n form compact
spherical globules. The globules split for o. ) 0.3, result-
ing in a necklace of beads if the charge inhomogeneity
is small. The span of the uniform necklace scales with
the net charge Q. We do not have a consistent theo-
retical picture for the random PA beyond the instability
threshold. The numerical results in Fig. 9 suggest that
the size of such PA's grows faster than that of a self-
avoiding walk, i.e. , v ) 0.6. The simulations so far are
not inconsistent with v = 1 suggested by a scaling argu-
ment [10]. However, as the simulations suffer from the
usual shortcomings of small sizes, sampling, and equili-



1308 YACOV KANTOR AND MEHRAN KARDAR

bration, a definitive answer about the behavior of PA's
is still lacking.
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APPENDIX A: MONTE CARLO PROCEDURE

The model used for MC simulations is described
in Sec. III. Discretizing monomer locations simplifies
checking for excluded-volume interactions; allowing the
bond length between the nearest neighbors to fluctuate
without energetic cost (a "square-well" potential) pro-
vides sufFicient flexibility to facilitate equilibration. The
square-well potential has been used before in continuum
simulations of tethered surfaces [44]; on discrete lattices
it is known as the fluctuating bond method [45]. The
details of the MC procedure are as follows.

For each T and Q we start by selecting a (quenched)
random sequence of charges +qo, whose sum (the total
excess charge) is fixed to Q. This is accomplished by
randomly selecting (N —Q/qo)/2 positions on the chain
for negative charges, and placing positive charges on the
remainder. For each quench, we perform a thermal equili-
bration at temperature T, and then calculate the thermal
averages of interest. The thermalization is repeated for
ten diferent sequences and the results are averaged over
the quenches. In an elementary MC step a monomer is
picked at random and moved a single lattice unit. The
move is accepted according to the usual Metropolis rule.
Since each move requires recalculation of interaction en-
ergies, it involves O(N) operations. The MC time unit is
defined as the period during which N attempts are made.
Thus the computer CPU time per single MC time unit
increases as N2.

Obtaining good averages in random systems is a sig-
nificant challenge. Errors appear due to both inadequate
thermal equilibration and insufFicient quench averaging.
Our high-temperature chains (for T ) 5qo/a) are similar
to uncharged polymers and their equilibration is limited
by the slowly decaying "Rouse mod. es." The slowest de-
cay time is approximately the interval taken by a polymer
to difFuse its own radius of gyration, estimated as follows:
Since the acceptance rate of an elementary MC move is
of order one throughout the simulation, the diffusion con-
stant of a single monomer is also of order one (in units of
squared lattice constant divided by the MC time unit).
The difFusivity of the polymer center of mass is N times
slower, resulting in a difFusion constant of D = a2/N,
and a relaxation time of r' = B N/a . At high temper-
atures w' scales as N + ", where v = 0.588. At low tem-
peratures (T ( O. lqo/a) the polymer is almost compact,

and a characteristic time can be obtained by considering
phonons, plasma oscillations, or large-scale density fluc-
tuations. Such time scales, in our MC time units, grow as
r" = R2/a2 N ~s. Unfortunately, there are probably
much slower (and more important) time scales associated
with crossing over large barriers to shape rearrangement
which are thermally activated. We have no estimates for
such times.

We used v = N MC units as the basic equilibration
time. Each equilibration lasted 250&, but the first 10m

configurations were dismissed in calculating thermal av-
erages. As the number of operations per equilibration in-
creases as N, this is close to the maximal equilibration
time which can be reasonably used in a simulation of this
type. Several hours of CPU time (on a Silicon Graphics
R4000 computer workstation) were needed to equilibrate
each quench at a given temperature for N = 64. Conse-
quently, more than a day of CPU time is used to generate
a single data point by averaging over ten quenches. To
collect all the data on N = 64 chains we needed about
two months of CPU. For N = 128 we spent ten days
of CPU time to obtain a single data point, and there-
fore only the Q dependence at a single temperature was
investigated.

We believe that the times used in equilibration pro-
duce satisfactory thermal averages. A direct check of the
temporal correlation function of the radius of gyration
for N = 64 indeed indicates that the correlation time
is approximately equal to w at high temperatures. This
sufFices to produce very good thermal averages. For ex-
ample, a particular sequence of N = 64 monomers with
Q = 0 at T = 25 has average R = 152a2, with stan-
dard deviation of approximately 60a . For this polymer
~' = 152 x 64 = 2.5w, and thus our simulation contains
approximately 100 independent configurations. There-
fore the average value of B is accurate to about +6a .
However, the average B for ten distinct quenches are
scattered over an interval of width 40a . Thus the accu-
racy of our thermal averaging sufIices to show that dif-
ferent quenches have slightly difI'erent thermal averages
of B . The accuracy of the final average is, therefore,
limited by the number of quenches rather than by the
thermal averaging.

The correlation time obtained at low temperatures
from temporal correlation functions of neutral PA's is
shorter. This just reflects the reduction in size of the
entire polymer. As mentioned earlier, correlations of Bg
are rather insensitive to shape changes and their much
longer activated time scales. To obtain some, admittedly
indirect, measure of the quality of equilibration for dense
polymers, we compare our simulations with the quite ex-
tensively investigated restricted primitive model (RPM).
The latter represents a solution of positively and nega-
tively charged particles (+qo), interacting via a Coulomb
force and a hard core repulsive potential of diameter o..
(For a review of the subject see Ref. [46].) The ther-
modynamics of the model is conveniently presented in
terms of a dimensionless density p, = no where n is the
actual number density, and a dimensionless temperature
T, = k~To/qo2. At low temperatures the solution un-
dergoes a phase separation between high and low density
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phases. As indicated by the dashed line in Fig. 10, the
critical point occurs at very low density (unlike regular
fluids with short-range interactions). Numerical investi-
gations of this phase transition [47—50] have encountered
considerable diKculties: despite the low density, the be-
havior of the system becomes very erratic close to the
critical point.

Since our simulations also involve low temperatures
and relatively high densities, it is interesting to find out
where our system is located on the (T„p,) plane. Of
course, as we are dealing with a single polymer rather
than a dense solution, the comparison involves a few
somewhat arbitrary factors. Our lattice potentials ap-
proximately mimic interactions of the hard core particles
of RPM. From this comparison we relate the MC temper-
ature to T„by T, = 1.2Ta/qo. Second, we calculate the
polymer density, assuming that the monomers uniformly
occupy the volume of a homogeneous ellipsoid with iden-
tical eigenvalues of the shape tensor (A, ). This leads to
a reduced density, p, = 2.4a /QAiA2As. For a neutral
PA, p, is approximately independent of T for T ) 5qo2/a,
and increases at lower T, leading to the trajectory indi-
cated by the solid line in Fig. 10. At densities close to
the critical density of RPM, the PA temperature is al-
most an order of magnitude higher than the critical tem-
perature. At lower temperatures the trajectory of PA
simulations approaches the phase boundary on the "liq-
uid" side, at densities two times higher than the critical
density of RPM. Thus our polymers stay away from the
problematic region where critical fluctuations may cause
significant equilibration problems. Since our equilibra-
tion times exceed by several orders of magnitude those
used in RPM simulations, we believe that we have well
equilibrated results.

The acceptance rate of MC moves in our simulations is
approximately 0.6 for all temperatures. It drops to 0.46
at T = 0.05qo/a, and further lowering of temperature
leads to a gradual freezing. " Repeated heating and cool-

ing cycles performed on several samples indicates that the
behavior is essentially reversible for T ) 0.05qo/a. We
believe that the configurations obtained for T = 0.05qo2/a
are very close to the actual ground state. Most of the
low-temperature investigations were actually performed
at T = O. lqo2/a where the thermal averages are more reli-
able. For chain length N = 64 we performed an extensive
study of the dependence of Ag and other quantities on T
and Q. We also investigated the % dependence of these
quantities at T = O. lqo/a for 2V = 16, 32, 64, and 128.

APPENDIX B: SPHEROIDAL DISTORTIONS
OF CHARGED DROPS

In this appendix we discuss the minimum energy shape
of a single charged drop. We first examine the conduct-
ing drop, and then relate the results to insulating ones in
the last paragraph. In terms of the dimensionless param-
eter n, Eq. (11) for the energy of a charged conducting
spherical drop is

&(Q) = E(o)(1+2~).

For large Q the spherical shape is unstable, and the stable
shape is determined by minimizing the sum of surface
and electrostatic energies. In an equilibrium shape the
surface is an equipotential, since otherwise energy can
be reduced by redistributing the surface charge. The
pressure difference between the inside and outside of the
drop at any point on the surface is given by

I'1 11
Ap ='7

i
+

I

27rrr
(rl r2)

(B2)

where r~ and r2 are the principal radii of curvature, and
0 is the surface charge density. In equilibrium the pres-
sure inside the drop must be constant. Thus Eq. (B2),
with a constant value of Ap at all points, determines the
equilibrium shape. This is in fact a rather complicated
integro-differential equation whose general solutions are
not known. Note that for Q = QR, we find bp = 0 for a
spherical drop.

In 1882 Lord Rayleigh investigated the stability of a
charged drop [22] and showed that for n = 1 the sphere
becomes unstable to surface distortions described by the
Legendre function P2(cos0). [The points of instability
for higher harmonics are given by n = (n+ 2)/4. ] The
instability does not result in a small distortion as o. ex-
ceeds unity but, rather, leads to a strongly elongated
shape. For o. ) 1 no exact analytical treatment is avail-
able. Some progress is possible by assuming that the
drop is an ellipsoid of revolution (i.e. , a prolate spheroid)
[23]. Since both the surface area and the electrostatic
energy of such shapes are known (see, e.g. , Ref. [51]), the
problem reduces to the minimization of

FIG. 10. High and low density 8uid ("liquid" and "gas")
transition line (dotted) in the plane, (T„,p, ), where T, and
p are the reduced temperature and density (see text) of the
restricted primitive model. The solid line indicates the tra-
jectory of the neutral PA's used in our MC simulations.

ln [(1+ e)/(1 —e)]

E(Q) = ' ' (1-")"
i
1+ ""

eijl —e2 J
(1 e2)1/3

+ 2' (B3)
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with respect to eccentricity e—:gl —b2/az, where o, and
b are the major and minor semiaxes. The first term in
the large square brackets is the total surface area (in-
corporating the constraint of fixed volume), while the
second term is the electrostatic energy (Q enters via n).
It has been shown [23] that a prolate spheroid is not an
exact equilibrium shape: for aspect ratio a: b = 2: 1
the pressure difFerence Ap in Eq. (B2) varies by about
2% for difFerent points on the surface. Nevertheless, we

may assume that the forces pulling the ellipsoid out of
the shape are small as long as n/6 is not excessively large.
Numerical solutions of a drop in an external field con6rm
that the ellipsoidal approximation is reasonably good for
shapes that are not too elongated [29,34,33].

Ailam and Gallily [24] noted that Eq. (B3) has a lo-
cal minimum for e g 0 even for n smaller than unity,
i.e., below the Rayleigh stability limit. However, they
did not determine this range accurately. Figure 11 de-
picts E(Q) as a function of e for several values of a in
the relevant parameter range. A new local minimum
erst appears for o. = 0.887, and becomes the global
minimum for o; & 0.899. At the latter o. a spherical
drop should discontinuously "jump" to a strongly elon-
gated shape with e = 0.95. However, the spherical
shape (e = 0) remains a local minimum until n = 1.
In an ideal experiment in which the charge is gradu-
ally increased the drop stays in a metastable spherical
shape. At o. = 1, the sphere becomes unstable and
stretches to e = 0.98. For o. )) 1, the eccentricity ap-
proaches unity. In this limit, the asymptotic forms of
the surface and electrostatic energy are (1 —e) i~s and
—(1 —e) ~ ln(1 —e), respectively. The minimum energy
is achieved at e2 = 1 —(vr/8n)z/in (a/8a)2, while the
energy increases as

much smaller than that of the undeformed sphere (oc Q2).
The exact dependence of E(Q) on n is plotted in Fig. 7.
In the same figure we also present the squared radius of
gyration of the elliptical drop,

R~(Q) a +26 (1 —e ) ~ +2(1 —e )~

R2(0) 3R2 3
(O5)

Since for large Q, 1 —e is proportional to n 2 up to log-
arithmic terms, Rg Rn ~ R(Q/Q~) ~ . While the
ellipsoidal shape is not an exact solution to the charged
drop problem, Eq. (B4) provides an upper bound on the
total energy.

VJe next consider a drop in which the charge is uni-
formly distributed over the volume. This system has
been considered in the context of the liquid drop model
of atomic nuclei (see, e.g. , Ref. [39]). The energy of the
uniformly charged sphere, Eq. (12), is

&"(Q) = &(0)
I

a+1
I

(12
r

(B6)

As in the case of the conducting drop, the uniformly
charged drop becomes locally unstable [52—54] to in-
Finitesimal distortions for n = 5/6. Assuming that the
drop distorts into a prolate spheroid, its energy can be
written down explicitly [54]. The resulting energy is iden-
tical to Eq. (B3), except that the factor of 2n in the sec-
ond term is replaced by 12n/5. The same factor relates
Eqs. (Bl) and (B6). Thus all the previous results for
conducting drops are also applicable to insulating drop
after multiplying a's by 6/5. We should note that this
simple substitution does not hold for drops of arbitrary
shape.

E(Q) = 2.03E(0)(n ln n) '~ (B4)
APPENDIX C: SPLITTING A CHARGED DROP

Note that the asymptotic increase of E(Q) (oc Q ~ ) is
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CO

II

(U

0.999

0 99Q I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 O. B

FIG. 11. Energy differences between drops of prolate
spheroidal, and spherical, shape (normalized to the energy
of spherical drop) as a function of squared eccentricity e
The graphs correspond (from top to bottom) to a = 0.88,
0.89, 0.895, 0.898, 0.90, 0.91, and 0.92.

An elongated ellipse is not a local equilibrium shape of
a drop, since perturbations P (cos 8) with n ) 2 become
unstable [26]. There are other theoretical indications that
no elongated shape is the global ground state. For exam-
ple, as the eccentricity increases the electric field at a tip
[ Q/bz Q(1 —e ) ~ ] becomes strong enough to sup-
port conical tips [23,33]. Experimentally, it is observed
that, for o. ) 1, a conducting charged drop disintegrates
into smaller ones. Assuming that the experiments can
be described by the charged drop model [38,55,56], dis-
integration begins for o. equal to or slightly above one.
This is not surprising, since already at o. = 1 the equilib-
rium shape is strongly deformed. The instabilities lead
to ejection of smaller droplets whose size distribution is
believed to be controlled by hydrodynamic effects. Ap-
parently, after a significant elongation, many roads to-
wards decreasing energy open up and the choice is made
by dynamical effects. In this appendix we shall investi-
gate the splittings of a drop into several spherical droplets
removed to infinite separations.

First consider the splitting of a single conducting drop
of radius R into two (secondary) droplets with radii Ri
and R2. Using Eq. (Bl) for the energy of each droplet,
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the total energy of the in'. nitely separated pair is

E,(Q) = ' + ' +4~~(R', +R,') .
2Rg 2B2

(C1)

The charges satisfy qi + q2
——Q, while the radii are con-

strained by Bz + B& ——B to preserve the total volume.
Minimizing E2(Q) with respect to qi, while treating q2
as a dependent variable, gives

q; = (C2)

Substituting this result into Eq. (Cl) we find

( 2E, (Q) = E(0) + ). Pj j
(C3)

where the reduced radii r~ = R~/R satisf'y the fixed vol-
ume constraint P rs = 1. [Note that E(0) denotes the
surface energy of the original drop. ] The stationary value
of E2(Q) is found by solving BE2(Q)/Ori ——0, and treat-
ing r2 as a dependent variable. The resulting equation
has several possible solutions, including

3 3 1
P i P2 ~

2
(C4)

However, the symmetrical solution is a minimum only
for a & 1. Thus strongly charged drops would prefer
splitting into two equal droplets. A second solution,

1 ( 4ns &

r~2 = — 1+ 1—
2

~ 1+3n) (C5)

ma + (n —m)b = 1,

b [ma + (n —m) b] —n

The solution for a particular m exists only in a G.nite

exists only for o. & 1, where it is an energy minimum,
less than that of a single sphere. Thus a weakly charged
drop can always reduce its energy by splitting into two
unequal parts.

Further breakup of the drop is possible, and we next
consider splittings into n droplets. The solution to this
problem is analogous to the previous case. The distri-
bution of charge among the droplets is still given by Eq.
(C2) and E„(Q) has exactly the same form as Eq. (C3)
with j summed from 1 to n. The search for extrema of
E (Q) leads to several solutions, classified by two sets of
droplets. One set contains m small droplets of reduced
radius a, while the remaining m —n have larger reduced
radii b (b ) a), such that

2

E,'*'(Q) = -') " +4~&) R,'
2 2

=E(O) ~) .,'+) .,' (C7)

The charges jqi) and the reduced radii (r~. ) satisfy the
same restrictions as in the conducting drop. For n ( 1/6
the only extremum is a maximum at ri ——rz ——1/2. For
n ) 1/6, this point is a local minimum. However, only
for o. & 0.293 is the resulting energy lower than that of
the original drop. A similar scenario is found for splitting
the drop into n secondary droplets. Larger values of o.
are needed to stabilize solutions with higher n, and there
is an optimal number of droplets (all of the same radius)
for each o.. Since the energy of an n-drop system is

() 3 (Qi n (R) /

+4~q
/ )

= E(0) —~~-'~'+ ~'~'12
5

(C8)

the optimal n (for large n) is found from BE '
/On = 0

(')

as

24
n = —o. .

5
(C9)

The total energy of the optimal configuration grows as

E *„,(Q) = 2.53E(0)n i . (C10)

Thus the uniformly charged drop cannot lower its energy
as drastically as its conducting counterpart. Since we
have not exhaustively searched for other con6gurations,
the above result should be regarded as an upper bound
to the ground state energy. Note that this bound has the
same scaling (up to logarithmic corrections) on n as that
of the highly elongated spheroid.

range of o, 's, and finding which solution represents the
global energy minimum is quite cumbersome. One limit,
however, is easily examined: Consider splitting the drop
into one large droplet and m = n —1 smaller drops. In the
limit of n —+ oo, a n/n, and b = 1; the total volume,
area, and electrostatic energy of the charged droplets,
vanishes, while they, nevertheless, carry all the charge of
the system. Thus the energy of the system is reduced to
E(0), i.e. , the energy of the uncharged original drop.

We next consider the insulating uniformly charged
drop. If such a drop is split in two, the charge of
each droplet will be proportional to its volume, i.e. ,
q; = QR, /R . Using the energy of a single sphere in
Eq. (B6), the total energy of a pair of infinitely sepa-
rated spherical droplets is obtained as
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