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Retrapping and velocity inversion in jump diKusion
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A method for the solution of the Kramers problem in periodic potentials is proposed in the general
case of a tilted periodic potential. The method is then applied to the Fokker-Planck equation with a
cosine potential without tilt, and the results for the jump-length probability distribution are compared to
simulation data concerning the lengths crossed by a hopping particle before its first velocity inversion. It
is shown that, at high dissipation, the diffusing particle thermalizes in most cases in the cell where it in-
verts the velocity for the first time. On the contrary, at low dissipation the actual length of the jurnp and
the length crossed before the first velocity inversion display significant differences, showing that the first
velocity inversion is not a good criterion for the length of the jump, just in the case where long jumps are
more important.

PACS number(s): 05.40.+j, 82.20.Db, 05.20.Dd, 05.60.+w

I. INTRODUCTION

A common feature of noise-assisted dynamics of multi-
stable, spatially periodic classical systems is the jump
character of the long-time motion when the potential bar-
riers (E, ) between nearest-neighbor sites of local stability
are sufficiently high. This can be understood in terms of
some typical time scales. For instance, in the case of
Brownian motion of a single classical particle subjected
to thermal, Gaussian white noise [Fokker-Planck (FP)
dynamics] in a one-dimensional (1D) cosine potential [1],
at least three different time scales must be taken into ac-
count: the period of small oscillations at the well bottom
(r„,), the time needed to cross a unit cell traveling at the
thermal energy (r,h), and the inverse friction or velocity
relaxation time (r, ). Different ratios between these time
scales lead to different dynamical regimes [2,3]. In par-
ticular a localization (or high-barrier) condition is
7 ( 7 th,

' in this regime the particle spends most of its
time by performing a damped or oscillatory damped
motion around a well bottom, rarely escapes, and it is
finally retrapped in another well, not necessarily in a
nearest-neighbor cell. Jumps longer than a unit lattice
spacing (in the following referred to as multiple jumps)
are only possible at low friction where the dissipation
over the unit cell is small, i.e., when ~, is longer than ~„,
and ~,h. Thus, while at high barriers and strong friction
the long-time dynamics can be characterized as a discre-
tized random walk between adjacent lattice cells and the
only quantity to be calculated is the jump rate r, in the
underdamped limit jumps of any discretized length are al-
lowed and also the complete jump-length probability dis-
tribution (JLPD) must be evaluated [2,4]. Therefore the
low-friction jump problem is a multibarrier crossing
problem [5,6]. In the extreme case of vanishing friction
the particle gets activated very rarely (r vanishes linearly
with the friction) but once it has escaped from the well
jumps of all lengths are allowed with practically the same
probabilities; in this limit jumps of a single lattice spacing
have a vanishing probability and all the hopping events

are multiple jumps. This can be seen by considering the
1D diffusion coeKcient D in the jump regime:

D =
—,'r, (l')

where ( I ) is the mean-square jump length. As the fric-
tion g vanishes, r shows the usual Kramers behavior
[2,4,7] r ~il, but D diverges as 1 jul [1,8,9], with the
consequence that ( l ) must diverge [2,9] as I/g .

The previous picture of the hopping mechanism is
based on the solution of the jurnp problem in the case of
the FP dynamics with 1D cosine potential [2—4], but
essentially holds also for a linearized Boltzmann equation
[9] and (with the differences due to the symmetry of the
problem) for FP dynamics in a fourfold potential with cy-
clic boundary conditions [6] and in a tilted periodic po-
tential [5,10].

The increasing attention recently devoted to the jump
problem is mainly connected to two topics: the Kramers
problem in periodic potentials [2,4,5, 11] (theory of multi-
barrier crossing) and the dynamical theory of adatom
diffusion on crystal surfaces [2,3,12—14]. A phenomeno-
logical jump description [15] is not at all a novelty in sur-
face diffusion [16]; however, the phenomenological ap-
proach is essentially kinetic as the time evolution is calcu-
lated assuming the validity of some discrete master equa-
tion where the entering quantities, r and the JLPD, are
free parameters. %'hat is new in the FP approach is the
possibility to obtain a quantitative characterization (both
at short and long times [3,12]) of the motion of the ada-
tom, starting from the underlying FP dynamics [17,18].
In fact, in the latter case, r and the JLPD are not free
parameters, but they can be computed starting from the
knowledge of the static and dynamical couplings (adia-
batic potential and friction coefficient, respectively) be-
tween the diffusing particle and the thermal bath, i.e., the
substrate.

Recent experiments [19—22] and molecular dynamics
(MD) simulations [23—25] have demonstrated the impor-
tance of long jumps in the mass transport on many
different Aat surfaces and along surface steps.
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In a recent Letter, Pollak et al. [13] perform a simula-
tion of diffusion in a 1D cosine potential based on a
Langevin equation with white noise, which, as it is well
known [1], is fully equivalent to a FP equation. In this
simulation they compute the number of lattice cells that
are crossed by the diffusing particle before its first veloci-
ty inversion. With decreasing the dissipation on the lat-
tice cell 5 (which is proportional to the friction and to
the square root of the potential barrier), the diffusing par-
ticle crosses a larger number of cells before inverting its
velocity. This is clearly evidence for long jumps. Howev-
er, as we will show in the following, the number of cells
crossed before the first velocity inversion is in general not
the same thing as the length of the jump, ' once the parti-
cle has inverted its velocity for the first time over a given
cell, it may thermalize in that cell or Ay in the opposite
direction and finally (maybe after many other velocity in-
versions) get trapped in another cell. The purpose of this
paper is to determine if the first velocity inversion can be
used as an estimate of the length of the jump; this will be
achieved by comparing the results of the Langevin simu-
lations [13] with the exact numerical solution of the
jump-length problem [2,4] in the corresponding Fokker-
Planck equation (FPE).

In Sec. II the exact numerical method for the solution
of the Kramers problem is generalized to the case of a
tilted periodic potential; in Sec. III the method is applied
to the FPE in the case of zero tilt and cosine potential
and the results for the jurnp lengths are compared to
those concerning the first velocity inversion. In Sec. IV
the conclusions are outlined.

After solving the master equation X, results in the
form

X, (q, t}=exp[—f (q)t] . (6)

Re[f (q) j =r g vr„[1—cos(naq)],
n(XO)

(8)

Im[ f (q}j =r g m „sin(naq) .
n(%0)

(9)

From Eqs. (6) and (7) an expression for the Laplace trans-
form S,(q, z) of X, can be obtained; at z =ice the result is

h (q)
iso+f (q)

If S, is calculated by solving the kinetic equation of the
continuous model (for instance, the FPE [2,4]), f (q) can
be extracted by

(10)

S, (q, O)f (q) = lim ice —1

S, (q, co)

The jump rate r and the jump probabilities m„are ob-
tained by inverting Eqs. (8) and (9), i.e., by the Fourier
analysis off (q):

In the presence of a tilt the function f (q) contains also an
imaginary part

f (q) =Re[f (q) j+i Im[f (q) j,
with

II. GENERAL METHOD FOR THE SOLUTION
OF THE KRAMERS PROBLEM

Let us consider a particle in a tilted periodic potential
with local minima in the positions . . . , —a, O, a, . . . .
At sus. ciently high barriers the characteristic function
x, (q, t),

r =—f Re[f(q)jdq,

7T
~r

+ J 'Im[f (q) jsin(naq)dq
0

—J 'Re[f (q) jcos(naq)dq
0

(12)

(13)

X, (q, t) = (exp [iq [x (t) —x (0)]j ), (2)

can be factorized by separating intracell and intercell
motion [2], i.e., by setting

x(t) =al (t)+x, (t), (3)

where the cell index l is integer and —a/2(x, (a/2.
At times larger than 1/g, the intracell motion relaxes
and X, can be written as

X,(q, t) = ii (q)X, (q, t), (4)

where X, is related to the motion in the discretized lat-
tice:

X, (q, t)=(exp[iqa [l(t) l( )0]j ) . —

X, can be obtained by solving a proper master equation
on the lattice [2]. In a tilted periodic potential, the parti-
cle can hop from the lth cell with a rate r to any other
cell in the position (I + n }a, with n integer and n WO, with
a probability m.„, in general vr„Wm „, as the tilt favors
hopping towards one direction.

These formulas show that the jump rate and the jump-
length distribution can be extracted from the analysis of
the complex dynamic structure factor S, even in the pres-
ence of a tilt; from this point of view this method is com-
pletely equivalent to that by Jung and Berne [5], based on
the Fourier analysis of the lowest-lying eigenvalue band.
In fact, at high barriers, f (q) and the lowest-lying eigen-
value band coincide.

Finally, at zero tilt (the case which will be considered
in the following section), the periodic potential is sym-
metric and therefore the probability P„of a jump of
length

~
n~ a satisfies P„=2m„=2m„; from this f.act it fol-

lows that Im[f (q}j =0 and the formulas (11)—(13) reduce
to those of Refs. [2,4] [where S,(q, co) =Re[S,(q, iso) j /m. ].
At zero tilt and high barriers, f (q) is equal to the half-
width at half maximum of the quasielastic peak of S, [4].

III. FIRST VELOCITY INVERSION
AND RETRAPPING

The general method outlined in Sec. II is applied here
to the Langevin equation with Gaussian white noise.
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This equation is completely equivalent to the FPE for the
probability density in the phase space of the particle.
The case of zero tilt is of interest, for instance, in the ap-
plications to surface diffusion [2,4, 12,13]. The FPE can
be numerically solved by the matrix-continued-fraction
method [1] and S calculated. A detailed account of the
method applied to the computation of S may be found,
for instance, in Ref. [3]. From S,f (q) and then the jump
rate and the jump probabilities P„are extracted as ex-
plained in Sec. II.

As stated in the Introduction, P„ is the probability that
the particle, starting from the cell in n =0, will be re-
trapped in the nth cell, where it will spend a time which
is much longer with respect to the characteristic times ~„
~,h, and ~„,. This definition of the jump probabilities is
that of the jump-di6'usion theory which is usually em-
ployed in the interpretation of the experimental data
[19,20]. The probabilities P„can be compared with the
probabilities P(n), as defined in Ref. [13]. We recall that
there P(n) is defined as the probability that an activated
particle crossing barrier 0 (which is, for instance, the bar-
rier on the right of the cell 0, i.e., the cell of departure)
will reverse its velocity for the first time while traveling
from barrier n to barrier n +1. Thus the probability of
inverting the velocity for the first time on the first cell is
P (0). This has to be compared with the probability of re-
trapping in the nearest-neighbor cell, which is P„' in gen-
eral P„ is to be compared to P (n —1).

Let us consider a cosine potential U(x):

U(x)= —A cc,~ (14)

In this case the solutions of the FPE depend on the cou-
ple of dimensionless parameters (y, g) [2,3):

1/2

'g~ g = (15)
B

a my=
2~ kBT

y is the normahzed friction.
Another parameter which is of particular significance

at high barriers (g ) 1) is the dissipation b, on the lattice
cell, defined by

f +2m [ UM —U (x ) ]dx,
kB T —a/2

(16)

PMJ 1 P1 (18)

is plotted as a function of log, o(b, ) in two cases corre-
sponding to different g:g =1.25 (black dots) and g =4

where U~ is the maximum value of the potential
[ UM = A for the potential of Eq. (14)]; in our case 5 is re-
lated to y and g simply by

6=8y&2g

In fact, at large g, the solutions of the FPE tend to be
functions of b, only and not of y and g separately [10].
This fact can be seen in Fig. 1. In this figure the proba-
bility of multiple jumps PMi (i.e., the probability of being
retrapped in a cell which is not a nearest-neighbor of the
cell of departure),
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FIG. 1. Probability of multiple jump PMJ as a function of the

dissipation b, [see Eqs. (16) and (17)]. The black dots and the
open circles refer to potential barriers of 5k~T (g =1.25) and
16k~ T (g =4), respectively.

(open circles). From these results it is evident that PMi
depends on two parameters, which can be chosen in the
triplet (y, g, b, ); the same happens for all the P„. Howev-
er, if the couple (h, g) is chosen (as in the figure), the
dependence on g at fixed 6 is weak at g & 1.

In general PMJ tends to 0 at b —+ ao and to 1 at 5~0.
Clearly, at high dissipation, the probability of crossing
the first cell without being trapped becomes vanishingly
small; this holds essentially for 6 & 10. At vanishing dis-
sipation the reverse happens: longer and longer jumps
become important; all the P„ tend to become equal and
small and therefore P1 —+0. This fact may be understood
by comparing the average energy of the particle (denoted
as (E ) ) when it exits from the cell of departure and the
dissipation on the first cell. At low friction [26],
(E ) ~ q'~, but the dissipation b, is proportional to g;
therefore the ratio between (E) and the dissipation on
the first cell behaves as g

' . A smaller and smaller
fraction of the initial energy is thus dissipated on the first
cell as the friction vanishes and therefore the probability
of being retrapped in that cell tends to zero; correspond-
ingly PMi tends to unity [10].

The comparison between P„(black dots) and P(n —1)
(open squares) is shown in Figs. 2 and 3. The P„are ob-
tained by the method outlined in Sec. II, applied to the
FPE with a cosine potential; the P (n —1) are taken from
Ref. [13]where a Langevin simulation of the same model
has been performed. In Fig. 2 the case of g =1.25 and
y=3. 162X10 ', corresponding to 6=4, is considered;
in Fig. 3 we show the case of g = 1.25 with
y =3. 162 X 10, which gives a very low dissipation
(6=4X 10 ).

At high dissipation, both the retrapping probabilities
and the first velocity inversion probabilities behave as
perfect exponentials depending on n. Figure 2 shows that
P„and P (n —1) practically coincide, at least in the range
where simulation data are available (n ~ 6). This means
that, at high dissipation, a particle is always trapped in
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FIG. 2. Logarithmic plot of the jump-length probabilities P„
(black dots) in the case of g =1.25 and y =3.162X 10 ', corre-
sponding to 5=4. The open squares are the simulation data for
the probability P(n —1) of having the 6rst velocity inversion in
the nth cell. The simulation data are taken from Ref. [13].

FIG. 3. The same as in Fig. 2, but with g =1.25 and

y =3. 162 X 10, corresponding to the very low dissipation
6=4X10 '. Notice the clear deviation from the exponential
behavior of both the P„and the P (n —1).

(1')=a' y n'P
n=1

(19)

An evaluation of (1 ) by the sum a g n P(n —1) may
lead to a very large underestimation of D at low dissipa-

the cell where it inverts the velocity for the first time; in
this parameter range, which has a lower limit around
b.=2 (as may be seen by comparing Fig. 1 here with Fig.
1 in Ref. [13]), the first velocity inversion on a given cell
is a good criterion for an actual thermalization in that
cell. However, we remark that in this parameter range
long jumps are not very important: at 5=2,PMJ is about
0.3 and at 6=4 it is less than 0.2.

On the contrary, at low dissipation (see Fig. 3), the
quantitative difference between P„and P(n —1) is ap-
parent. From the Langevin simulation data [13] it results
that the probability P(0) of inverting the velocity for the
first time on the first cell is considerably larger than the
probability P& of thermalizing in that cell. This means
that a particle which changes direction for the first time
on the first cell has a large probability of spending a short
time there, being finally retrapped in another cell. The
decrease of the P (n —1) with n is steeper than that of the
P„; in Fig. 3 the two plots cross around n = 10 [at large n

P (n —1)(P„because of the normalization of probabili-
ties].

In the jump-diffusion regime, the diffusion coefticient D
is related to the jump probabilities by Eq. (1), where the
mean-square jump length ( l ) is given by

tion, as P(n —1))P„ for short jumps and P(n —1)(P„
for long jumps. Rather low dissipations have been found
in a molecular-dynamics simulation of diffusion of CO on
Ni(111) [23]; at a temperature of 200 K a barrier corre-
sponding to g = 1.5 and a friction corresponding to
y =0.05 have been calculated. Those values give 6=0.7,
i.e., a dissipation regime where already there are some
quantitative discrepancies between P„and P (n —1).

IV. CONCLUSIONS

In this paper we have shown that the length crossed by
a particle without inverting its motion and the actual
length of the jump become more and more different as
the dissipation decreases, i.e., when long jumps become
really important. The computation of the diffusion
coefBcient by means of the mean-square length crossed
before the first velocity inversion may lead to a severe un-
derestimation. Therefore the evaluation of jurnp lengths
in simulations cannot in general be obtained with
simplified criteria, especially at dissipations 6 much
lower than unity. The motion of the particle has to be
completely followed from its departure to its first
thermalization. In fact, many velocity inversions may
happen before retrapping. The cell where the retrapping
occurs may be identified by requiring the particle to
spend in that cell a time longer than the characteristic
times ~„~,h, and ~„,. In fact, only a clear separation of
time scales can indicate that the diffusing particle has at-
tained local equilibrium in a metastable potential well.
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