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Intermittent flow behavior of random foams: A computer experiment on foam rheology
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A computer experiment on foam rheology is performed with a simplified model in which the viscous
dissipation in the liquid phase is taken into account. The simulation is carried out under the sheared
boundary condition with a small shear rate. It is observed that violent fiow like that of an avalanche
occurs intermittently in the large strain regime. The distribution of energy released during avalanches
and the power spectrum of the time series of energy exhibit power-law behavior. These results imply
that the foam How is understood as a self-organized critical phenomenon.

PACS number(s): 05.40.+j, 83.90.+s, 83.70.Hq

I. INTRODUCTION

Random foam systems, which have random cellular
structures, exhibit a complex mechanical response known
as viscoplasticity, which differs from that of a simple
solid or liquid. Due to their structural complexity,
analytical study of the mechanical properties, especially
of the dynamical or rheological behavior of the foam sys-
tems, can hardly be performed. There are several numer-
ical models taking cell level structures into account.
Several authors have devoted much effort to obtaining
the constitutive equations based upon the so-called
Princen-Prud'homme model and its variants [1]. These
models, however, include no randomness in their struc-
tures; that is, ordered hexagonal cells are assumed in two
dimensions. Weaire and co-workers studied mechanical
behavior of disorder foams [2—4], and found some in-
teresting features on the relation between the pattern and
mechanical response [5,6]. However, their model was re-
stricted to studying the static response. Recently,
Kawasaki and co-workers [7—9] proposed a dynamic
model in which the structural randomness was fully tak-
en into account. They carried out the dynamic simula-
tion under a homogeneous shear and obtained some re-
sults that are characteristic of foam rheology, that is, the
existence of finite yield stress and Bingham plasticity [9].

So far most of our attention has been directed toward
studying the rheological response to homogeneous defor-
mations in stationary states where the average Aow field
is externally given. Detailed Aow behavior induced by a
given boundary condition has never been discussed
enough. We cannot, in general, expect that the homo-
geneous flow is always realized in a stationary state. As
we will see later, such a Aow Geld is never stationary and
homogeneous. It is intermittently disordered. This
dynamical behavior can be understood in a general con-
cept of the self-organized criticality (SOC), which has
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been proposed by Bak, Tang, and Wisenfeld (BTW)
[10,11] and which has attracted much attention over the
last few years. In this paper we present the results of our
computer simulation on foam rheology and illustrate the
self-organized critical phenomena in our model.

II. MODEL

We use here the so-called vertex model that was pro-
posed by Kawasaki et al. [12,13] to simulate coarsening
of cellular patterns. In the vertex model a cellular system
is described by a set of position vectors {r, ] of vertices
with indices Ii ]. Each of the vertices is connected to
three neighbor vertices by straight edges. Time evolution
of the system is determined by a set of equations of
motion of vertices supplemented by the elementary topo-
logical processes (see below). The vertex equations of
motion are derived from the following equations of the
variational form:

+ =0 (i =1, . . . , Xi ),
Bv; Br,.

where v,. is the velocity of the vertex i, R is the dissipa-
tion function associated with the vertex motion, H is the
interfacial free energy, and Xz is the total number of ver-
tices. For the coarsening problem R takes the quadratic
form of {v;] and H is proportional to the total edge
length. Equation (1) is a force balance equation between
the frictional force (the first term) and the potential force
(the second term). This equation describes the slow evo-
lution of the system for a given topology of the network
of a all boundaries. In order to complete the description
of the whole evolution of the system, it must be supple-
rnented by two kinds of elementary topological
processes —the so-called T1 and T2 processes. When the
length of an edge becomes smaller than a small cutoff
length 5, neighbor switching (Tl process) or annihilation
of a triangular cell (T2 process) occurs. These topologi-
cal processes are important for the dynamics of random
cellular systems [14].

A foam system, which we are concerned with here,
consists of continuous (liquid) phase, the dispersed (gas)
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phase, and the interfaces separating these two phases.
The continuous phase forms a network of liquid films
when the volume fraction P of the dispersed phase is
large (/= 1). In such a situation most of the continuous
phase concentrates on the junction regions of the liquid
films, the so-called Plateau borders, due to the thinning
property of the liquid film [15]. Bolton and Weaire [5]
studied the mechanical response of a disordered two-
dimensional foam with a finite fraction of the liquid phase
and found that as P decreases the system loses its rigidity
at $, =0.84, which is almost the same as the random
packing fraction of hard disks. However, here we restrict
ourselves to studying the case / =1. In this case, each of
the Plateau borders can be regarded as a vertex in our
model.

In the previous study [9] we modified the vertex model
to investigate the rheological behavior of foams where
the viscous dissipation in the liquid phase must be taken
into account. Since the dispersed phase is assumed to be
filled with inviscid and incompressible gas, the viscous
dissipation arises from the continuous phase, which is a
viscous liquid having the shear viscosity p. Moreover,
according to the lubrication theory [16],the viscous dissi-
pation mainly occurs near the Plateau borders. The ener-
gy dissipation rate N, which is associated with the ex-
tracting process of a liquid film from the Plateau border
with speed U, is given by [16]

4=6p U I/(3Ca) '

where I is a numerical constant having the value [17,18]
I, —= 1.2215 or I, =1.1866 for U) 0 or U(0, respective-
ly, and Ca—=p~ U~/o. is the capillary number. Here o is
the surface tension of single layers and is assumed to be
constant over all layers and during the whole dynamical
process. Using this result the dissipation function Rp as-
sociated with the viscous Quid motion is written as

BRp + g 2cr~r,"~ —g A, 2
vi ri (p' j)

=0,

BRp =0
uij

(7)

for every pair of vertices ij connected by an edge. From
this condition u; is self-consistently determined. Since
u,"=u;, Eq. (7) yields the following simple relation:

u;. = —,'(v;+vJ) . (8)

Equations (3)—(6) and (7) or (8) determine the vertex
motion, except for the topology changes of the network
structure [43].

In our previous study [9] we carried out the simulation
in the case of the homogeneous shear imposed by the
macroscopic velocity field u(r) at position r=(x,y) in-
stead of u; in Eq. (4); that is,

U, = [v, —u(r; )].r,",
where u(r) is externally imposed and given by

where the first and second sums are taken over every edge
( ij ) and every cell a, respectively, and A, is the
Lagrange multiplier for cell a whose area is A . The
second and third terms in Eq. (5) are the interfacial ten-
sion and the constraint force, respectively. The Lagrange
multipliers are determined from the conditions

=0 (a= 1, . . . , Xc),d
(6)

dt

where Xc is the total number of cells.
The velocity u; in Eq. (4) still remains unknown, and

some additional conditions are needed to determine u;-.
It is reasonable to choose u;, which minimizes the dissi-
pation rate for given [v; ]; that is,

—6 i /3( 3 )2/3
p
—50 T3'

u(r) =
() (10)

(0
x g g ~ v,, ~'/3[v, e(v,, )+s, e( v,, )], —(3)

with

U;J—= (v; —u; ) r,", (4)

where the first sum in Eq. (3) is taken over the all ver-
tices, the second sum (g") is over the three vertices j
directly connected to i, e(x) is the step function which is
equal to 1 or 0 for positive or negative x, respectively, u;.
is the velocity of the Quid well inside the film, or edge,
(ij ), far from r, , and r;J —= r~ /~r~ ~, r~ =r; —rJ.

Since the time scale characteristic of the rheological
behavior is much shorter than that which is characteris-
tic of the coarsening of the pattern [7], a change of cell
area due to the coarsening can hardly take place during a
time in which rheological behavior is observed. Hence
we assume that each cell area does not change in time.
This condition gives rise to the constraint force terms to
the vertex equations of motion in the form

for the constant shear rate y. In the present model all
the vertex velocities are self-consistently determined un-
der the condition (8). Therefore, in order to simulate the
How behavior of the system, the deformations must be
imposed through boundary conditions. However, we do
not introduce any explicit walls at boundaries to avoid
taking another dynamics between the wall and foam [1]
into consideration. Here we use the following boundary
conditions, which are similar to the so-called Lees-
Edwards boundary conditions [19], except for the ab-
sence of the external velocity field in our model: A point
r inside the system is identified with points r' at time t
given by

r'=r+I (t).m .

In this equation m represents the position of a unit sys-
tem specified by a pair of integers m and m as follows:

m L
m L
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where L„and L are the dimensions of the unit system
along the x and y axes, respectively. I (t) is the shear de-
formation tensor which is given by

1
r(r)= 0 (13)

Therefore, the velocity v(r) of the vertex located at r
satisfies the condition:

v(r')=v(r)+I .m
with

(14)

0 y
I = (15)

III. SIMULATION AND RESULTS

In order to carry out the numerical simulation using
the model described in the preceding section, we write
the equations of motion of vertices (5)—(7) in a dimen-
sionless form. Here we choose r,„and r„p lo as the unit
of length and time, respectively, where r,„=(A/N )'c
is the average linear size of cells (A is the total area of the
system). In these units the equations of motion (5) and (6)
are explicitly written as

(i) (i) (i)

g I;1( U, )
~ r,"= —g r; —

—,
' g A, z X r k

J J a

Since the vertex equations of motion (5) and (6) with
Eqs. (4) and (8) are Galilean invariant, that is, they are
not changed by replacing v; with v;+u* with fixed u*,
there is an ambiguity up to a constant velocity for every
vertex. In order to avoid this ambiguity we choose the
velocity [v;] to satisfy the condition g;v, 0 by subtract-
ing the mean velocity of the vertices.

Intuitively, we can imagine from these boundary condi-
tions that the two adjacent systems, which have speeds
differing by yL in the x direction, are in contact with
each other. Hence the boundary conditions can intro-
duce another length scale L, namely, the system size in
the y direction. Indeed, in actual numerical simulations,
the initial flow field contains discontinuities at
y = myLy These discontinuities, however, disappear
after a short time and the homogeneous shear appears.

FIG. 1. Arrangement of the vertices i, j, and k belonging to

the cell a. (i,j,k) are arranged in a counterclockwise manner. z
is the unit vector normal to the plane of cells.

tices belonging to the cell a.
We numerically solve Eqs. (16)—(18) with the self-

consistent condition (8) under the boundary condition
(11) or (14). The numerical technique used here is the
same as that used in the previous study [9]. Initial states
are obtained by the following procedure. First, we
choose a cellular pattern in the scaling regime obtained
by the original vertex model for the coarsening problem.
Next, we relax it for enough time using the model equa-
tions described above with y=0. Cellular patterns thus
obtained can be expected to reproduce actual random
foams. We create five initial states by the method given
above. The system thus obtained contain 1053, 1056,
1053, 1071, and 1064 cells. One of these initial patterns is
presented in Fig. 2(a). We perform five runs with the
shear rate y =10,which is much smaller than the typi-
cal relaxation rate [20]. The time integrations are taken
over 1.5 X 10 time steps that cover the range 0 & y t & 6.0
[21]. A snapshot of the pattern during the deformation is
shown in Fig. 2(b).

In order to characterize the physical state of the sys-
tem at time t, we define the average density of interfacial
energy, E(t), and the average stress tensor r(t) in the fol-
lowing:

(i =1, . . . , Nr), (16)

with

(a=1, . . . , Nc), (17)

I;1 =—3 [I,8( U;J ) I,O( —U„. )], — (18)

where the sum in the second term on the right-hand side
of Eq. (16) is taken over the cells that share the vertex i,
z is the unit vector perpendicular to the plane of cells,
and j and k designate vertices of the cell a bonded to the
vertex i such that (ijk) are arranged in a counterclock-
wise manner (Fig. 1). The sum in Eq. (17) is over the ver-

(b)

FICs. 2. Snapshots of the cellular partner. (a) The initial state
at j't=0. {b) The deformed pattern at yt=2. 0. The system
contains 1053 cells.



51

1E(t)= ~ X3 (;q&

RANDOM FOAMS:HAVIOR OF RINTERMITTENT FLo

I0.3
(19)

0.2

1249

1
1;J' rijrij

A (j)
E(t) is»so ex-t e s stem.where ~ is the total area o t

that these quantities aare mea-
d4E( ) hed i it o /, v.

1 .of h1 un as functiosinge r

h'1 f h 1

in re ime (yt
rainase in time, w i e

e. Inime (yt Ri
' ~ 1) these quantities s r

(or stress is inin re ime the energy intermit-
of the net-

this large stra g

Mwor s [ o].
sl accumu ate

s ish.
olo

In
p y

These processes are irrechanges.
d release process,each aceumu lation an r

Gelds o cef lls are observed, pres ective-disordered velocity
f the velocity field

'
in the

In thes figures dot
e sna shots o e

ts andr e
' ' eareshown. n

velocity
g

hem indicate t e p
ell cx is

h b
vertices

vertices. The velocity

tures o e
vectors of cells, r

them
p

d th
'

di 1 t
t). Dots an in

vee-p
4

1 4 g
'

el . Figure
me t ug.

0 We observe that t eht =0.8X1

0.1

0

0

(t), which isf the shear stress 'T
yFIG. 4. The t me evolution o e

f nction of shear strain y w'
Plotted as a function

nd as bt increases, thelike structures and, as
nt vectorf h d' 1tial structure

U fot tl,
1 t t ofth

e

with other phenomena o is
22 .

havior described above se should beThe dynamical behavior es

1 e e ~

~ a ~ e ~~ a

~ a ~ a ~ ~
~ ~ ~

~ ~ ~~ ~ ~ ~ a ~ a '~ a
~ a ~ ~

a ~~ e see a aa
, a ~

~ a ~

~ a
~ ~ a as 4 a ~~ ~ ~

~ ~
~ ~ ~ ~

e 44 a ~ ~
a ae ~ aa ~~ a ~

~ ~ ~ a
~ ~

~ ~
~ ~ ~ ~

a

'~ ee ~ eg a ~~ ~~taa e ~ ~

~ ~ ~~ ~ ~t
~ ~ ~

~ a
a

1.85—

0
I

2

~— ««a- ~~-

a as a a a'~. a ~.«4«
~ ~ ~

'~
~ ee

a a ~
~ ~~ ~ ~

~ ~~ ~ ~ ~ ~~ ~ I ~
~

~ e ~ ~.
~

e ~ ~

~ ~ ~ ~
~ 'fr e

~ ~ ~ e ~~e
~ e v e

~ ~ ~

aa ~ ~a s ~ aa ~ ~
~ ~

'~ ~
~ ~ ~

e
~ ~~ ~

~ ~ ~ ~
~ ~ ~ ~

~
~

~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~

~
~ f ~ ~

~ ~ ~~ '~ ~ ~ ~ ~ ~ ~ ~ ~

'~ a ~ ~ he ~ ~

~ ~

~ ~ ~
~ ~

' ~ 'a ~
~ ~ ~ ~ ~ ~

~ ~

~ ~
~ ~ ~ ~ ~ ~ ~ ~

'~ ~ ea ~ ea~ ~
~ ~ ~~ ~ ~ 'I e ~4 ~

' '- ~

~ ~ a ~
~ V ~ ~ ~

a ~ ~
~ ~ ~ ~

~ ~

~ ~ ~ '~
e ~

~
~~ ~

~ ~
~ a~ ~ ~ I ~

V v '~ e

~ aa ~ ~ ~

~
~ ~ '~ ~ ~ ~ ea~ ~

~ v vv'e~ e aeVa

VV
a

-v~~ —e -e

a

~
a

~ a a ~ v
a ae f ba ~ ~ ~ ~

a
e a ~ ~ ~ ~ ~

P )
~ '~ ~

e

y

t)ner density E(t). E(t
'hgy

f h ar strain yt w yas a function o s e
fluctuates an t e

p

of thelo changes oergy is
'

is intermltten ytl release o
network structure.

()
of cells at y t =2.0 (a);

D t dl tt h d
~ ~

h '=10 . osa
cells

(); . (), y-

is seen toTh 1o 't fi ld
1 hott' ' t 1change drastically in a s or im



1250 TOHRU OKUZONO AND KYOZI KAWASAKI 51

~ te ~ ~ ~ re e ««t ~ ~ ~ ~
~ ~ ee ~ ~ e « ~~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ e ~~ ~ ~ ~ ~ ~ ~ e ~ e h ~ e ~ ~ ~ ~

~ ~ ~ e ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ C~ ~ ~ ~ ~ ~~ e ~ ~ ~ ~ he e ~

~ ~
ee ~ f e e ~ ~ e ~ ~ ~ e ~ e~ ~ ~ ~ ~ $ ~ ~ ~ ~ ~ ~ ~e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e re ~

e ~ ~ ~ ~ ~ r ~ ~ ~ ~ ~ ~ ~ ~ ~ re ~e r ~ ~ e e ~ ~ ee ~ ~ r«e ~ ~ e ~ \ee e ~
e ~ e «err re'e.

~ ~ e
~ ~ ~ ~

ter ee 0r ~

]olio S

FIG. 7. Doubly logarithmic plot of the probability density
P (s) of the avalanche size. Avalanche size s is defined as the to-
tal energy released during an avalanche divided by the system
volume. P (s) appears to obey a power law. The dashed line has
the slope —z, which is the mean-field value.

P(s)-s' (23)

FIG. 6. Displacement vectors of cells. Dots and lines at-
tached to them indicate the positions of the cells and their dis-
placement vectors defined as Ar =—r (t+At) —r (t) for the cell
a, respectively. (The scale of the displacement vectors is the
same as that of spatial coordinates. In these figures the posi-
tions of cells and their displacement vectors, which cross the
system boundaries, are now drawn. ) These figures are shown for
t =2X10 and At=0«4X10 (a), and 0«8X10 (b). As ht in-
creases, the observed spatial scales of the displacement vector
field increase.

hx„&0 for n, (n & n, ,

Ax„)hx„(0, Ax„)hx„+0,
S S

(21)

(22)

where hx„=—x„+&—x„. Avalanche size s is defined as the
total energy density released during an avalanche, that is,
s =E(t„)—E(t„). In —Fig. 7 the doubly logarithmic plot
of the probability density P(s} of the avalanche size is
shown. The data are obtained from 9343 avalanches that
occur in the large strain regime 2.0 & y t & 6.0 with
y=1.0X10 through five runs. The avalanche size
obeys a power-law distribution

compared with a stick-slip process of the earthquake
models [23,24] or nonconservative cellular-automaton
models [25,26] that exhibit self-organized criticality. In
these models the magnitude of earthquakes or the
avalanche size obey power-law behavior in the critical
state [27].

Here we analyze the time series of E(t) and r (t) in
the large strain regime. We define an avalanche in a time
series [x„] as follows, where x„ is E(t„) or r„(t„)at a
discretized time t„. An avalanche is an event that starts
at t =t„and ends at t = t„satisfying

S„(m)= lim (X~(m)(~),
2'

+~oo T
1 T/2

Xr(co) = x(t)e ' 'dt,
2& —T/2

(24)

(25)

The exponent ~ is close to the mean-field value —,
' for the

sandpile model [28—30]. The dashed line in Fig. 7 indi-
cates the slope ——', . The same exponent is obtained in
the random-neighbor model [31] for the dynamics of
two-dimensional magnetic-domain patterns [32], al-
though it shows subcritical behavior. This result should
also be compared with the Gutenberg-Richter law for the
size distribution of earthquakes, which says that the dis-
tribution of energy released during earthquakes obeys a
power law of the Eq. (23) type with 2.25 & r & 2. 5 [33].

Feder and Feder [25] analyzed the stick-slip process in
pulling sandpaper across a carpet and showed that the
distribution of force jumping exerts on the sandpaper ex-
hibits a power law. In the present case we can define a
similar quantity s, which is the difference between the
shear stress at the starting and ending points of an
avalanche, that is, s'=~„(t„} r„~(t„—}. As we can see

e S

in Fig. 8, the probability density P(s') also shows a
power-law behavior with almost the same exponent as
that of P(s). Since in our model the vertex motions
effectively exert long-range interactions due to the in-
compressibility of the dispersed phase, we may say that
the mean-field-like behavior of this power-law distribu-
tion originates from this long-range interaction.

Next, we carry out a spectral analysis for the time
series E(t) and r (t). In the self-organized critical phe-
nomena it is believed that the power spectrum $(co) of
the system, which responds to a small white-noise pertur-
bation, follows a power law with the exponent y; that is,
$(co)-co ~. The power spectrum $„(co) of the time
series x (t) is defined as follows:
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10gip 8

FIG. 8. Doubly logarithmic plot of the probability density
P (s') of the stress jump in an avalanche, P (s') appears to obey
a power law with almost the same exponent as that of P (s). The
dashed line has the slope —2.

where ( ) is the ensemble average and T is a time period
in which x(t) is observed. In actual observation T is
finite. In our present simulation, we have the time series
E(t) and r„~(t) for 2.0X10 ~ t ~6.0X10 . The ensem-
ble average is taken over five runs. The power spectrum
SE(co) of the time series E (t) is shown in Fig. 9. We also
show the power spectrum S, (co) of the time series r„~(t)

xy

in Fig. 10. Both spectra exhibit power-law behavior and
appear to have the same exponent y =2 in contrast to the
experimental value y=1 by Feder and Feder. This spec-
trum with y =2, which is the spectrum of a Markov pro-
cess, is observed in the experimental study of the mass
fiuctuations of a sandpile [34] and in the simulations of
the BTW-type sandpile model [35,36]. Recently,
Christensen, Olami, and Bak [37] have shown that the ex-
ponent y depends on the level of conservation in the
BTW-type model. Note that the value of y in our simu-
lation fluctuates around 2 by changing the time period T
or the initial configuration. We need many runs and long
time simulations to obtain definitive results.

I
1

I
1 1 IV. DISCUSSION AND SUMMARY

-10 I g I i I, I

~ogip ~
FIG. 9. Power spectrum SE{m) of the time series E{t}.

SE(co) appears to show a power-law behavior, i.e., SE(co)-co
The value of the exponent y is close to 2. The dashed line has

the slope —2.

In our simulation presented in the preceding section,
the shear rate y is fixed at 10 . However, the avalanche
size distribution P (s) or the power spectrum S (co)
should depend on the shear rate y. They should also de-
pend on the system size L, defined as A '~ (=NC~2). To
examine the shear rate or system size dependence of these
quantities, we have carried out additional runs for the
systems which have the parameters (y, Nc)=(5X10
1053),(2 X 10,1053),(1 X 10,2067).

Since in the BTW-type sandpile model the avalanche
size is bounded by the system size L, the average
avalanche size diverges as L ~~ in the critical state
[38]. In the present case the shear rate y also restricts
the avalanche size, since the avalanches cannot include
all the relaxation modes slower than y. Here, it is ap-
propriate to use the net energy s, instead of the density,
released during an avalanche as the site of avalanche;
that is, s =Ls. The ave—rage size (s ) is defined by

0—
I I

I I
I

I (s )—:f sP(s;y, L )ds,
0

(26)

-10 I i I i I i I

10gip M

FIG. 10. Power spectrum S, (co} of the time series 7.„~(t).
xy

S {~)appears to show a power-law behavior. The dashed line
xy

has the slope —2.

where P(s;y, L) is the probability density of s for fixed y
and L. We have calculated (s ) for each run, but we
could not deduce a definitive result about the dependence
of (s ) on y and L, because the data are rather scattered.
However, we have not observed any significant changes
in the power-law behavior of P (s) and S (co). We believe
that these power-law behaviors are essential features in
our model. We conjecture that the critical state is real-
ized in the limits y —+0 and L ~ Oo.

It is noteworthy that our model is rather realistic com-
pared with other cellular automaton models or earth-
quake models used to study SOC, since it is based on the
realistic analysis of a specific system, namely a foam un-
der steady shear. It is interesting to determine whether
real foam systems exhibit a self-organized critical
behavior and how the criticality is rejected in macro-
scopic rheological properties. Although our model is
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two-dimensional, we expect that three-dimensional sys-
tems will show at least some trace of SOC-like behavior.

Recently, an interesting experiment on pattern forma-
tion in the immiscible displacement of foam was per-
formed by Park and Durian [39]. According to them, the
pattern morphology is intimately related to rheology of
foams. Here we cannot directly compare their experi-
ment with our simulation. However, they suggest that
avalanchelike rearrangement events of bubbles occur dur-
ing the release of stress. This convinces us of the argu-
ment that the avalanchelike events are relevant to the
rheological properties of foams. Moreover, it is hopeful
that these events can be observed by means of di6using-
wave spectroscopy [40—42], because it will make quanti-
tative discussions possible in the future.

In summary, we have carried out a computer simula-
tion of two-dimensional foam Aow under a steady shear
by using the vertex model in which the viscous dissipa-
tion in the continuous phase is taken into account and
the velocities of quid motion in the liquid films are self-
consistently determined. We have observed that a violent
How like that of an avalanche occurs intermittently fol-

lowing topology changes of the network structure. We
have shown that the probability density of the avalanche
size obeys a power law with approximately the same ex-
ponent as the mean field value ~= —', . We have also shown
that the power spectrum of the time series of accumulat-
ed energy exhibits a power-law behavior with the ex-
ponent y=2. These results give rise to the possibility
that some aspects of the rheological behavior of foams
can be understood with the concept of self-organized cri-
ticality.
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