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Kinetics of phase ordering in uniaxial and biaxial nen1atjc fiin1s
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The phase ordering process following a quench to both the uniaxial and biaxial nematic phases of
a quasi-two-dimensional nematic liquid crystal is investigated numerically. The time dependences of
the correlation function, structure factor, energy density, and number densities of topological defects
are computed. It is found that the correlation function and the structure factor apparently collapse
on to scaling curves over a wide range of times. The correlation length L, ,(t) is found to grow as
a power law in the time since the quench t, with a growth exponent of P o, = 0.407 + 0.005. The
growth exponents of the characteristic length scales obtained from the energy length (P,„)and the
defect number densities (Pz, f), however, are found to difFer from P, , The discrepancy between P, ,
and Ps, f indicates a violation of dynamical scaling, a violation that is not apparent from our data for
the correlation function alone. The observation that all the measured growth exponents are smaller
than 0.5 (i.e., the value expected from dimensional analysis) is addressed in terms of properties of
point defects in two dimensions, and the annihilation process of an isolated defect pair in a uniaxial
nematic phase is investigated. Following the quench to the biaxial nematic phase, there are four
topologically distinct defect species present in the system, the populations of which are studied in
detail. It is found that only two types of defects are observed in large numbers at late times, and a
mechanism for the selection of the prevailing defect species is proposed.

PACS number(s): 64.60.Cn, 61.30.Jf, 82.20.Mj, 05.70.Fh

I. INTRODUCTION

When a system is quenched kom a high-temperature
equilibrium phase, it undergoes a phase ordering pro-
cess in which the highly nonequilibrium state, gener-
ated during the quench, slowly evolves towards the low-
temperature phase. The process of phase ordering fol-
lowing the quench has been extensively studied for sys-
tems described by a scalar order parameter [1],and, more
recently, also for systems with continuous symmetries.
Many of the analytical [2] and numerical [3,4] investi-
gations of the continuous-symmetry cases have concen-
trated on phase ordering in the O(N)-symmetric vector
model. Very recently, nematic liquid crystals have proven
to be useful for experimental investigations of phase or-
dering [5—7], triggering several theoretical investigations
[8—10].

In many experimental and numerical studies it has
been observed that dynamical scaling holds for the static
correlation function at late stages of phase ordering in
a variety of systems, some with discrete symmetry [11]
and some with continuous symmetry [4,7]. These ob-
servations suggest the validity of the dynamical scaling
hypothesis, according to which there is, at late times t,
a single characteristic length scale I (t) that controls the
statistical properties of the system. This length can be
obtained as the rescaling factor needed to collapse the
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correlation function and the structure factor. In systems
with topological defects, L(t) is also assumed to deter-
mine the average separation of defects. Typically, L(t)
is found to obey a power law in time: L(t) = t4' All.
presently available analytical treatments of late stages
of phase ordering either assume the validity of dynam-
ical scaling (e.g. , Ref. [12]), or obtain results consistent
with dynamical scaling only after making uncontrolled
approximations (e.g. , Ref. [13]).

The validity of dynamical scaling, however, has re-
peatedly been questioned [14,3] for the case of the two-
dimensional (2D) O(2) vector model [i.e. , the O(2) vec-
tor model in two spatial dimensions]. In particular, it has
been observed that the correlation length (i.e. , the length
scale required to cause the collapse of the static correla-
tion function) and the defect separation length appear to
grow in time with distinct power laws.

In systems where topologically stable defects exist,
many of the universal characteristics of the late stages
of phase ordering can be obtained by considering the
properties of the defects and their interactions alone. In
O(N) vector systems, uniaxial nematic systems and bi-
axial nematic systems, these properties are distinct &om
one another [15], and thus one might anticipate differ-
ences between the phase ordering of such systems. The
study of ordering in systems described by a nematic order
parameter is therefore of considerable theoretical inter-
est, and should provide insight into the dependence of
the ordering process on the details of order parameter
symmetry.

The purpose of this paper is to report results from a
cell-dynamical scheme (CDS) simulation of phase order-
ing in two-dimensional samples of uniaxial and biaxial
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nematic liquid crystals. By a two-dimensional sample,
we mean a film with thickness that is smaller than the
equilibrium correlation length prior to the quench. We
emphasize that, while the system has two spatial dimen-
sions, the molecules are allowed to point in any direction
in three-dimensional space and, correspondingly, the or-
der parameter is a three-dimensional (rank-2 symmetric
traceless) tensor. We compute the time dependence of
the correlation function, structure factor, energy density,
and number densities of the topologically distinct defect
species. In common with the 2D O(2) vector model, the
system supports point defects, and thus the question of
the validity of dynamical scaling is also expected to be
relevant here. In the case of a biaxial nematic system, we
also study the additional features arising from the fact
that the system supports four topologically nonequiva-
lent defect species, and make predictions that should be
verifiable experimentally by direct optical visualization
of the defects.

This paper is organized as follows. Following the In-
troduction, we present, in Sec. II, the details of our CDS
approach. In Sec. III, we give results for the evolution
of the static nematic correlation function, the correla-
tion length, and the energy density, and discuss their
implications. In Sec. IV, we review the topological clas-
sification of defects in uniaxial and biaxial nematic sys-
tems, give algorithms for finding and identifying defects,
and illustrate the combination laws among defects using
events &om our simulation. In Sec. VA, we present re-
sults for the time dependence of the density of defects
after quenching to the uniaxial nematic phase, and give
a detailed discussion of the effective growth exponent for
the average defect separation. Defects in biaxial nematic
systems have properties qualitatively diferent &om those
of Uniaxial nematic systems: there are four topologically
distinct species of defects, and their combination laws
are non-Abelian. In Sec. VB, we present results for the
time dependence of the populations of the four topologi-
cally stable species, and discuss the physical mechanism
that causes certain species to dominate at late times. In
Sec. VI, we make some concluding remarks.

We end this Introduction with a summary of our re-
sults. We find that the static correlation function and
structure factor appear to collapse to scaling curves over a
wide range of times. In the uniaxial quench case, the cor-
relation length L, , (t) required to achieve collapse grows
approximately as a power law in time, L, ,(t)
with an exponent P, , = 0.407+0.005. The average sepa-
ration between defects, Lg,f(t), also grows as a power law,
Lg f (t) t~&.&, with an exponent Qg, f = 0.374 + 0.007,
distinctly lower than P, , As we discuss in Sec. V A, the
discrepancy between P, , and PQ f is inconsistent with
the strict collapse of the correlation function, and thus
indicates a violation of dynamical scaling —a violation
that is not apparent &om our results for the correlation
function alone. The length characterizing the decay of
the energy density, L,„(t) t&, has the effective growth
exponent P,„=0.320 + 0.007. As we show in Sec. IIID,
the discrepancy between P,„andP, , does not, in fact,
indicate the violation of dynamical scaling. The efFective
growth exponents P, „Pgf and P,„aresignificantly

smaller than the value of 0.5, suggested by naive scaling
arguments [16]. A similar reduction of Pg, f has been ob-
served in simulations of the 2D O(2) vector model [3,14].
This has been attributed to logarithmic corrections to
the true asymptotic power-law growth of the separation
of defects, which was motivated by an analysis of the mu-
tual annihilation of an isolated defect-antidefect pair [17].
In order to check the relevance of the two-defect problem
for scaling properties in ordering of large nematic sys-
tems, we have performed simulations of the annihilation
process of an isolated pair of uniaxial nematic defects.
We find that the distance between the defects decays
as a power law in the time remaining until annihilation
with the growth exponent of 0.375 + 0.007, consistent
with the value of Pg, f given above. The reduced value
of the growth exponent in the two-defect problem can be
explained by arguments analogous to those used in the
treatment of the defect-antidefect annihilation process in
Ref. [17].

For the case of biaxial nematic systems, of the four
topologically distinct species of defects only two are
present in large numbers at late times, giving growth
laws with powers of 0.391+0.007 and 0.366 + 0.007. We
characterize the diferent stages of ordering in the biaxial
system in terms of the dominant defect-defect reactions.
As in the uniaxial case, we observe a discrepancy between
P, , and the growth exponents of the defect separations
for each species, indicating a violation of dynamical scal-
ing.

Biaxial nematic media provide perhaps the simplest
example of an ordered medium with a non-Abelian fun-
damental homotopy group [15]. To the best of our knowl-
edge, phase ordering in such systems has not been pre-
viously studied. While the physical efFects of the non-
commutative nature of the fundamental homotopy group
are expected to be more profound in three spatial dimen-
sions [18],some consequences are already apparent in the
present work.

II. CELL-DYNAMICAL SCHEME FOR THE
ENTIRE NEMATIC ORDER PARAMETER

We adopt the standard characterization [19] of the ne-
matic order in the vicinity of the position r at time t in
terms of the order parameter field Q p(r, t). This or-
der parameter is a traceless symmetric second rank ten-
sor, with Cartesian indices (with n, P, ... = 1, 2, 3). The
eigenvalue of Q p largest in absolute magnitude gives
the degree of orientation in the preferred direction, the
corresponding eigenvector identifying the preferred direc-
tion u (i.e. , the so-called director, in the uniaxial nematic
case). The difference between the remaining two eigen-
values characterizes the degree of biaxiality, with the bi-
axiality axis b specified by the eigenvector corresponding
to the second largest eigenvalue [20].

Before the quench, the local value of the order param-
eter (coarse grained on the scale of the equilibrium cor-
relation length prior to the quench) is zero. After the
quench, the eigenvalues of Q p start to grow locally, and
the eigenvectors start to become correlated spatially. We
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describe the time evolution of the order parameter using
the time-dependent Ginzburg-Landau equation appropri-
ate for a nonconserved order parameter:

|9 b—Q p(r, t) = — F[Q)

(in which it is understood that only the traceless sym-
metric part of the right-hand side is retained), where
F[Q) = f d x&(Q) and W(Q) is the appropriate free en-
ergy density.

A homogeneous part of W(Q) adequate for the de-
scription of the isotropic-nematic phase transition can
be taken to be [21]

Wh (Q) = A Tr Q2 + BTr Qs + C (Tr Q2) + F. (T Qs)

(2)

U X

FIG. 2. Fixed-point diagram for the evolution of the order
parameter magnitudes x and y following a biaxial quench.
The fiow is directed towards the stable biaxial fixed point
H with the help of the two uniaxial saddle fixed points U
and S.

with C ) 0, and the quench corresponds to a change in
A, from large and positive in the isotropic phase to neg-
ative in the nematic phase. For F = 0, Eq. (2) describes
a uniaxial nematic system; for E ) 0, it describes a biax-
ial nematic system. To construct an effective numerical
scheme for the evolution governed by Eq. (1), we use the
CDS approach (see below), in which one must find the
fixed points of Eq. (1) and Eq. (2) must be ascertained.
When diagonalized, Q p can be parametrized (up to a
relabeling of axes) as

(2x 0
Q=~ 0 —x —y(0 o

0
—x+y)

with x & 0 and 0 & y & 3x. (Then 2x is the leading
eigenvalue if x ( y, 2x corresponds to the "degree of
ordering" S, as usually de6.ned for uniaxial nematic sys-
tems [19], and y characterizes the degree of biaxiality. )
The scalar density Wh (Q) can be expressed as a function
of x and y.

Finding and characterizing the stationary points of
Xi, (x, y) yields the fixed point diagrams shown in Fig. 1
and Fig. 2. For a uniaxial quench (F = 0), one finds

an unstable fixed point at the origin (x = 0, y = 0),
corresponding to the unstable isotropic phase, and a sta-
ble fixed point on the uniaxial line y = 0, corresponding
to the stable uniaxial nematic phase. Furthermore, one
Ands a saddle Axed point on the line y = 3x. The line
y = 3x corresponds to a uruaxial phase [two of the eigen-
values in Eq. (3) being equal]; however, the eigenvalue
largest in absolute value is —4x, and is therefore negative.
This indicates "discotic" nematic ordering —for needle-
like molecules, it would mean that the long axis of each
molecule lies, on average, perpendicular to the "director"
(see Fig. 3). Analysis of Xi, (x, y) shows that the fixed
point on the y = 3x axis is always present, being stable
in the discotic uniaxial direction (along y = 3x), and un-
stable in the biaxial direction (perpendicular to y = 3x).
The implication of this fixed-point structure is that the
time evolution, determined by Eqs. (1) and (2), of the
order parameter magnitudes x and y is as schematically
indicated in Fig. 1. Similar conclusions were reached in
Ref. [10].

I
I

s

I l/
t

U X

FIG. I. Fixed-point diagram for the evolution of the order
parameter magnitudes x and y following a uniaxial quench.
Here I is the unstable fixed point corresponding to the
isotropic phase, 8 is the saddle 6xed point on the "discotic"
uniaxial axis y = 3x, and U is the Axed point corresponding
to the stable uniaxial phase.

(b)
FIG. 3. Two types of uniaxial nematic ordering resulting in

the same overall preferred direction of orientation (the direc-
tor). (a) In needlelike ordering, the long axis of each molecule
lies, on average, parallel to the director. (b) In discotic or-
dering, the long axes of the molecules lie, on average, in the
plane perpendicular to the director, with random orientations
within the plane.
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For the biaxial quench (E ) 0), the stable fixed point
on the uniaxial y = 0 axis changes to a saddle fixed
point, and redirects the flow towards the stable biaxial
fixed point, which is located at x ) 0 and 0 & y ( 3x
(see Fig. 2). The primary difference between the uniaxial
quench and the biaxial quench thus lies in the different
structure of the fixed points.

In addition to the homogeneous contribution to the free
energy, there is also a contribution that couples the value
of the order parameter in diAerent spatial regions. In a
nematic system, this elastic energy has three indepen-
dent contributions, one each from splay, bend, and twist
[19]. To simplify calculations, the three corresponding
independent elastic constants are commonly taken to be
equal (i.e., the so-called one-constant approximation is
often made). In this case, the free energy of a nematic
phase takes the form

where f and g are arbitrary (scalar) functions of the two
independent scalars Tr Q i& and Tr Q &&, and Q
Q2 —

s Il Tr Q (where I is the unit matrix) is the traceless
part of Q2.

The choice of the functions f and g is motivated by
the form of the homogeneous free energy, Eq. (2). As
the asymptotic dynamics of the order parameter is gov-
erned by the fixed-point structure of Eqs. (1) and (2),
we are free to choose f and g in any (computation-
ally efficient) way, as long as the map, Eq. (5), has
the fixed-point structure of Fig. 1 or Fig. 2. (One
can pass from the independent scalars Tr Q2 and Tr Qs
to x and y, as defined above, by using the identities

c = -Trqscos(sarccos)sr6TrQ /)TrQ ) & ]) acd

y =
2 Tr Q2 —3x2.) The numerical results in the re-

mainder of this paper have been obtained using the choice

&(Q) = &~(Q) + M(~-Q~~) (~-Q~~) (4)

in which Xh is given by Eq. (2) and M is the (single)
elastic constant. The functional derivative SI'/bQ then
yields a term V' Q p in the equation of motion, Eq. (1),
and thus the intercell coupling has a purely diffusive char-
acter.

We simulate the dynamics of the order parameter
Q p(r, t) using the CDS technique [11]. The CDS
method has proven effective for simulating phase order-
ing in systems with O(%) vector order parameters (both
nonconserved and conserved; see Refs. [3,4]). Recently,
ordering of uniaxial nematic systems in two and three
spatial dimensions has been studied using CDS tech-
niques [8,9]. In the case of biaxial nematic systems, we
encounter a situation in which more than one scalar (i.e. ,

the two independent eigenvalues of the tensor Q p) can
be constructed from the order parameter (an additional
complication is that a linear constraint, Tr Q = 0, is im-
posed on the order parameter components). We shall see
below that the CDS approach can be straightforwardly
generalized to the present case.

In the CDS approach, the system is divided into cells
of the size of the equilibrium correlation length before
the quench, and each cell is characterized by a value of
the order parameter Q p. As we are concerned with a
quench &om a high temperature, immediately after the
quench the values of Q p in each cell are independent
(i.e. , spatially uncorrelated), identically distributed ran-
dom variables. Each time step of the evolution of the
Q p field is divided into two substeps: single-cell evolu-
tion, and intercell coupling.

In the single-cell evolution step, which reflects the ho-
Inogeneous contribution to the free energy, we must as-
sign a new value Q„ to the order parameter in a given
cell as a function of the old value in that cell Q )g. By
using symmetry arguments one can show that the most
general symmetric traceless function Q„, of a symmetric
traceless tensor Q )g can be written as

f(x, y) = 1.3tanh(x)/x —xg(x, y),
g(x, y) = 1/4

(6a)
(6b)

in the case of a uniaxial quench, and

f (x, y) = 1.3 tanh(x) /x —x g (x, y),
g (x, y) = —1/4 + b y

(7a)
(7b)

q.. =@as+&(Q-is —((Q)))

in the case of the biaxial quench. The parameter b

controls the strength of biaxiality. It is straightfor-
ward to check that the choices reflected in Eqs. (6) and
(7) give the fixed-point structure of Fig. 1 and Fig. 2,
respectively, with fixed-point locations (x, y) at (0, 0),
(0.977, 0), (0.337, 1.011) (in the biaxial case, the location
of the third fixed point depends on the parameter b), and
(for the biaxial quench only) at (0.977, 1/4b) The res.ults
presented in the remainder of this paper were obtained
using the choice b = 1, with the exception of the data in
Fig. 6(b), where the value b = 0.5 was used.

Note that Eqs. (3) and (5) imply that x' = x If (x, y) +
xg(x, y) —

s y g(x, y), where x and y are calculated from
Q )g, and x' is calculated from Q„,. Our choices of
f and g (for both the uniaxial [Eqs. (6)] and biaxial
[Eqs. (7)] quench) therefore ensure that x' = 1.3tanh(x)
for y = 0 that is, the evolution of the degree x of uniax-
ial ordering is (in the absence of biaxiality) given by the
standard CDS choice (see, e.g. , Ref. [11])for the evolution
of the order parameter magnitude. We find Eqs. (6b) and
(7b) to be the simplest computationally efficient choices
for g(x, y) ensuring the correct properties of the flow in
the biaxiality-strength (y) direction.

The intercell coupling contribution to the CDS evolu-
tion resulting from the elastic contribution to the free
energy in Eq. (4) can be expressed as

q-- = f(~Q'.is ~Cia) 9-is

+~ old & old old
dc

(5)

Here, Q„, is the value of Q in a certain cell after the
update, D is a parameter reflecting the elastic coupling,
and the term ((Q)), defined by
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1 - 1
«Q» -=—,).Q+ —„):Q,

NN NNN

of the efFective growth exponents, mentioned in the fol-
lowing section) .

arises from a discretization of the Laplacian that retains
nearest (NN) and next nearest (NNN) neighbor terms
[11].

The quenches that we are considering are envisaged
to start at high temperatures, at which the equilibrium
phase is the disordered, isotropic phase. We take as
the initial condition for our CDS simulation a configu-
ration representative of this phase, in which Q is zero
in each cell, apart &om small, uncorrelated, isotropically
distributed, random fluctuations. Specifically, the ran-
dom initial order parameter in each cell was obtained
by generating three random numbers that add to zero
(i.e. , three eigenvalues of Q) from a uniform distribu-
tion of width 0.2, and then rotating the resulting diag-
onal matrix using random Euler angles. To summarize
the scheme, we start with a random initial configuration
(satisfying periodic boundary conditions), and then re-
peatedly apply the steps specified in Eqs. (5) and (8),
using the appropriate map, i.e. , Eq. (6) or (7).

The results presented in the remainder of this paper
were obtained in runs using a variety of choices of the
diffusion constant D (in the range D = 0.1—0.5). Higher
values of D were found to be more advantageous for ac-
cessing the asymptotic regime in a given number of time
steps. It was, however, necessary to use lower values of D
in the detailed investigation of the evolution of the pop-
ulations of the topological defects because, at the early
stages of ordering, values of D 0.5 lead to the pres-
ence of a number of cells where the eigenvalue largest
in absolute value is negative (that is, the corresponding
points in Figs. 1 and 2 lie above the line y = x), which in-
validates the notion of a topologically stable defect (see
Sec. IV A). We found that by "hardening" the random
initial configuration (i.e. , allowing it to evolve for a small
number of time steps with D set to zero, so that the or-
der parameter magnitudes x and y approach the fixed
point without afFecting the orientation of the order pa-
rameter), and subsequently using the value D = 0.1 to
evolve the system, we were able both to ensure that the
topological defects are well defined. even at the earliest
stages of ordering and to access the asymptotic late time
regime.

We are concerned with quenches to zero temperature,
so that thermal fluctuations play no role in the dynam-
ics. It was, however, commonly observed in previous nu-
merical investigations of zero-temperature quenches that
freezing into metastable configurations can occur (e.g. ,
Ref. [17]). Therefore, to test whether freezing effects
were influencing our simulation, we performed a limited
number of runs in the presence of noise (i.e. , a small-
amplitude random configuration was added to the order
parameter at each time step). The results were observed
to be insensitive to noise, up to noise strengths capable
of spontaneously generating numerous defect pairs. All
results in the asymptotic regime were observed to be in-
depend. ent of the chosen value of D and the system size
(with the exception of the transition in the rate of change

III. CORRELATION FUNCTION) STRUCTURE
FACTOR, AND ENERGY DENSITY

A. Collapse of the correlation function
and the structure factor

In its usual formulation, the dynamical scaling hy-
pothesis [1,12] states that at late times of phase order-
ing there is a single time-dependent characteristic length
scale L(t) that controls the statistical properties of the
system. Stated another way, the system is statistically
self-similar at successive times, up to a rescaling deter-
mined by L(t). It will be crucial in the detailed anal-
ysis of the data &om our simulation to distinguish two
statements which are often taken to be consequences of
dynamical scaling.

(a) The correlation function C(r, t) at different times
t can be collapsed on to a single curve by using the char-
acteristic length scale L, ,(t):

C(r, t) = I'(r jL,,(t)) (10)

Tr Ot rt
C(r, t) =

Tr O, t ~

where I'(y) is a scaling function.
(b) The length scale L, , (t) used to obtain the collapse

of the correlation function determines the characteristic
length scale of all time-dependent macroscopic quantities
in the system. Thus the energy d.ensity of the system as
well as the number density of point defects present decay
as L, ,(t), where d is the spatial dimensionality of the
system.

We shall see in our simulations of the 2D nematic sys-
tem that statement (a) is apparently very well satisfied
over a wide range of times, but that statement (b) is
rather strongly violated. A detailed discussion of whether
this indicates a breakdown of dynamical scaling will be
given in Secs. IIID and V A.

The characteristic length scale L, ,(t) is usually as-
sumed to grow asymptotically as a power law of time,
L, ,(t) t~-' for t large. It should be noted that such
an assumption does not, in principle, follow &om the
dynamical scaling hypothesis. The length scales investi-
gated in our simulation grow as approximate power laws
at late times. However, the growth exponents for these
length scales differ and, moreover, are significantly lower
than the value P, , = 0.5, which is usually observed in
experiments on phase ordering in systems with noncon-
served order parameters. The latter issue is discussed in
detail in Sec. VA.

We now present the results for the correlation func-
tion and the structure factor &om our simulation. For
the tensorial nematic order parameter Q p(r, t), a scalar
correlation function can be defined by
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where (. . .) denotes averaging over the positions (i.e. , 0),
and over the orientations of r. The correlation function is
normalized so that C(0, t) = 1. We define the correlation
length L, ,(t) at time t through

0.8

C(r, t) = I/2.
~=L...(t) (12)

Figure 4 shows the correlation functions C(r, t) ob-
tained &om our simulation of ordering in a biaxial system
at a sequence of times. In Fig. 5, data from Fig. 4 are
rescaled using the correlation length defined by Eq. (12).
We see that a good collapse of the correlation function
is obtained in the range of times 200 & t ( 5000. A
collapse of similar quality is also obtained for the cor-
relation function in the uniaxial system. %'e have, in
addition, calculated the structure factor S(k, t) [i.e. , the
spatial Fourier transform of C(r, t)], and used the corre-
lation length defined by Eq. (12) to check the validity of
the scaling form

Or6
+

o

0.4

02

Q Q~ %a/

t=l98
tWl4
tM97
i=787
t=l247
t=1976
&=3131
tW962

r p4
r 4r4 4.

10 100 1000

I

2
r/L(t)

3 4

FIG. 5. Collapse of the data for C(r, t) from Fig. 3. Inset:
time dependence of the correlation length L, „defined by
C(r) t)~. r... (,l

= 1/2.

S(k, t) = L2., (t)g] kL..., (t)
~

. (13)

The resulting scaling functions g(kL, ,(t)) for the uni-
axial and biaxial quenches are plotted in Figs. 6(a) and
6(b). [The "tail" of g(y), i.e. , the asymptotic behavior of
g(y) in the y )& I region, will be discussed in more detail
in Sec. III D.] The quality of the collapse of our data for
both the correlation function and the structure factor is
entirely comparable to the quality of collapse obtained
in simulations of ordering in systems where the validity
of dynamical scaling has not been questioned (see, e.g. ,
Ref. [11] for the Ising system in two spatial dimensions,
or Ref. [14] for the O(3) vector model in three dimen-
sions). In this sense, our data are consistent with the
validity of the statement (a), given above.
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FIG. 4. Correlation function C(r, t) at specified values of
time t following the biaxial quench. The data were obtained
by averaging over 68 configurations of a 256 x 256 system,
with difFusion constant D = 0.1.

FIG. 6. The collapsed structure factor scaling function
g(kL, ,) = S(k, t)/L, ,(t) for (a) uniaxial and (b) biaxial
quenches. In both cases, the average was performed over 100
configurations of a 100 x 100 system, with the di8'usion con-
stant D = 0.1. A straight line with slope —4 is plotted in
both (a) and (b) to demonstrate the validity of the Porod
law, g(y) ~ y for y large (see Sec. III C).
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B. EfFective growth exponents for the correlation
length and energy length

We now consider the time dependence of the correla-
tion length and the energy density. The inset in Fig. 5
shows the growth of the correlation length L, ,(t). This
log-log plot indicates a crossover from a non-power-law
growth of L, ,(t) at small t to an approximate power-
law growth at t & 200, the later range of times corre-
sponding to times where the good collapse of the corre-
lation function is observed. The slope of the best-fitting
straight line, giving the growth exponent, is P, , = 0.41.
In Fig. 7, we plot the elastic free energy of the system,
f(0 Qp~)(8 Qp~)d2x, as a function of time. Asymp-
totically, the elastic Bee energy decays approximately as
t ', giving power-law growth for the energy length
scale L,„(t)(defined as the inverse square root of the
elastic &ee energy) with exponent P,„=0.32.

To determine the value of the growth exponent for both
cases in a more reliable way, we calculate the effective
grotvth exponent P(t), defined as

0 44

0.42

p 0.40 - ++
+

X +0.38 -+
+

O 0.36

0.34

0.32

0.30

0.28 ~ I I ~ I ~ I ~

0.000 0.001 0.002 0.003 0.004 0.005
1t

I'IG. 8. Effective growth exponents for the correlation
length (upper curve) and the energy length (lower curve) in
the biaxial quench case, plotted to fit the extrapolation for-
mula (15b).

d ln L(t)
d ln(t)

(14) I.(t) = ——+ bt~ (16a)

with P, a, and A constant. The validity of relation (15a)
would imply that

in the considered time range [with L(t) taken to be ei-
ther L, ,(t) or L,„(t)j.The true (asymptotic) power-law
exponent P is obtained by extrapolating the effective ex-
ponent P(t) to very large values of t or, equivalently, to
very large values of L(t). We have attempted to match
our data for P(t) on to two candidate extrapolation for-
mulas:

p(t) = p+

L(t) = ct~ exp (
—A/t) (16b)

(where b and c are arbitrary constants).
We find that our data for the efFective growth ex-

ponents of both the correlation length and the energy
length fit Eq. (15b) significantly better than Eq. (15a)
(see Figs. 8 and 9). As t )) 1 in the considered time
range, we can rewrite Eq. (16b) as

throughout the considered time range, while the relation
(15b) would imply that

W(t) =4+ —, , (15b) I.(t) = ct
i
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FIG. 7. Log-log plot of the elastic free energy per cell E,~(t)
versus time t (averaged over 68 configurations of a 256 x 256
system).
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FIG. 9. EfFective growth exponent P, ,(t) for the correla-
tion length in the biaxial case, plotted to fit the extrapolation
formula (15a).
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FIG. 10. Effective growth exponents for the correlation
length (upper curve) and energy length (lower curve) in the
uniaxial quench case, plotted to fit the extrapolation formula
(15b). The system size is 256 x 256, and averaging was per-
formed over 35 configurations.

which (by analogy with critical phenomena having a
"critical point" at t = oo) corresponds to a power-law
behavior together with the leading analytic correction.
The extrapolation formula (15b) is thus perhaps inore
natural than (15a).

The effective exponents P, ,(t) and P,„(t)are plotted
as a function of 1/t in Fig. 8 (for the biaxial quench case)
and in Fig. 10 (for the uniaxial quench case). The figures
show a sharp transition in the rate of change of both ef-
fective exponents at the time t 2000. (The transition
is less sharp in the uniaxial quench data, because the
average was performed over a smaller number of con6g-
urations than for the biaxial case. ) We found that in a
system of smaller size, i.e. , 100 x 100, a similar transition
occurred at a lower value of t [and therefore L(t)], indi-
cating a connection between this transition and Bnite-size
eÃects. At the same time, increasing the diBusion con-
stant D in the CDS to values larger than D = 0.1 seemed
partially to suppress the transition, indicating that the
rapid lowering of the growth exponents may be due to
the onset of freezing. (The likelihood of freezing at late
times was observed to depend on the value of the diffusion
constant in CDS simulations for scalar systems [11].) To
determine the asymptotic growth exponents we therefore
used data only &om the time range 200 & t & 2000.

In the biaxial quench case, the extrapolation formula
(15b) yields (see Fig. 8) the asymptotic exponent values

P, , = 0.403 + 0.003 for the correlation length and P,„=
0.320 + 0.005 for the energy length. A similar analysis
for the uniaxial quench (see Fig. 10) gives P, , = 0.407+
0.005 and P,„=0.325+0.007, consistent with the biaxial
values. Statement (b) in Sec. III A (i.e. , the presence of a
single characteristic length scale) is therefore violated in
the considered time range. We are thus con&onted with
two questions: (i) why is P,„significantly lower than
P, „.and (ii) why are both P, , and P,„different from
the value 0.5, suggested by the diffusive character of the
equation of motion (1) and by scaling arguments [16]'?
The second question can be most naturally addressed by

investigating in detail the process of annihilation of a
pair of defects, as will be discussed in Sec. V A. The first
question is addressed below. First, however, we need to
discuss in some detail the form of the structure factor
scaling function g(y).

C. The "tail" of the structure factor

We see in Figs. 6(a) and 6(b) that the function g(y),
obtained by collapsing the structure factor using the cor-
relation length [see Eq. (13)], decays asymptotically as
y at large y. This is readily understood by generaliz-
ing the arguments leading to the "Porod law tail, " i.e.,

g(y) y ( +") in the case of the O(K) vector model in
d dimensions [22,23]. For y = kL, , (t) )) 1, the struc-
ture factor S(k, t) probes the order parameter configura-
tions at length scale 1/k = L, ,(t)/y much smaller than
the separation between defects, which is of the order of
L, ,(t) (see the note [24]). Substantial variations of the
order parameter over a length scale of L, ,(t)/y occur
only in the vicinity of the defect cores, and are not re-
lated to interdefect correlations. It is therefore possible
to calculate the value of S(k, t) for kL(t) )) 1 from the
order parameter configuration close to the core of an iso-
lated defect. This implies that

S(k, t) = puef(t) u(k) [for kL, , (t) )) 1], (18)

where p~, r is the density of defects in the system and u(k)
is a function of k only. Let us assume for now [25] that
the separation between defects scales as the correlation
length L, ,(t), so that pg, r oc L, , (t) " ', where s is
the dimensionality of the defect. Then the validity of the
scaling form (13) implies that

g(y) —~y [~+(~ 8)j— —

i.e. , the scaling function g(y) decays asymptotically as a
power law, with the exponent given by the sum of the
dimension of space d and the codimension of the defect
(d —s). In the case of the d-dimensional O(K) vector
model, the dimensionality of the defects is 8 = d —N,
and we recover the result g(y) oc y ("+~) of [22,23]. In
our 2D nematic system, which has point defects, the co-
dimension is 2 —0 = 2, yielding g(y) y 4, in agreement
with the results of our simulations [see Figs. 6(a) and
6(b)].

It is of interest to note that at lower values of y [i.e. ,
values less than y = kL, ,(t) 5], the scaling functions
in Figs. 6 deviate from the y law, seeming instead to
decay with a higher power of y. Similar behavior was
observed in simulations [8] and experiments [7] (see also
Ref. [10]) of phase ordering in three-dimensional uniaxial
nematic systems, where a final Porod law decay exponent
of 5 (corresponding to line defects in three dimensions)
was approached from above. It was speculated that the
transient value higher than 5 was due to the inQuence of
point defects (which in three dimensions give a Porod law
exponent of 6); in our ttvo-dimensional simulation, how
ever, no defects (even transient) that would contribute



1224 ZAPOTOCKY, GOLDBART, AND GOLDENFELD 51

a Porod law exponent higher than 4 occur, and it must
therefore be concluded that the faster decay of g(y) at
intermediate values of y is associated with interdefect
correlations. This is further indicated by the fact that
deviations from the asymptotic Porod law start to occur
at values of y 5 (see Figs. 6), corresponding to correla-
tions probed on the scale of —L, ,(t) L, ,(t), i.e. , the
order of the interdefect distance.

d(ln E,~) d[ln L, ,(t)] d(ln E,~)

d(ln t) d(ln t) d(ln L, ,)

= ~-'~'~ ( '+
&~{r...,g) ) (22)

Therefore, the effective growth exponent P,„(t)for the
characteristic energy length is depressed with respect to
the correlation length exponent P, ,(t), according to

D. The energy length growth exponent (23)

Ee] — d x 0~ pp 0~ pp

dkk Sk, t

d2k kL... g 2g ki, , g (20)

We are now in a position to discuss why it is that the
growth exponent P,„wasfound to be significantly lower
than P, , in our numerical results. To do this, we derive a
formula relating the instantaneous exponents P,„(t)and

P, ,(t). A similar argument was given in a qualitative
form for the O(2) vector order parameter case in Ref. [23].

We start by noting that

In Fig. 11 we compare the prediction of Eq. (23) to the
measured value (see Fig. 4) of the effective exponent

P,„(t),for the plausible value of the core size ( = 0.5
lattice spacings (direct inspection of the order parame-
ter magnitudes in the vicinity of defect locations in our
simulation shows that the core size is less than, but of
the order of, one lattice spacing). Considering the crude-
ness of the argument leading to (23), the agreement of
Eq. (23) with our data is quite satisfactory.

IV. PROPERTIES OF TOPOLOGICAL DEFECTS
IN UNIAXIAL AND BIAXIAL

NEMATIC SYSTEMS

This implies that
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FIG. 11. Comparison of the measured values of the energy
length growth exponent P, (t) (shown as o) to the values pre-
dicted by formula (23) (shown as Cl); the measured values of
the correlation length growth exponent P, ,(t), used in for-
mula (23), are shown as crosses (+, upper curve).

where we used statement (a) of the scaling hypothesis in
the form of Eq. (13). Next, we use the Porod law form,
Eq. (19), for g(y) in the range of distances L, , (t)
r & (, where ( is the core size of the defects. (The
contribution to the integral in Eq. (20) from the range
of distances oo & r & j, , (t) scales as [L, ,(t)], and is
subdominant for large L, ,(t).) By integrating Eq. (20)
from ( to L(t), we obtain the asymptotic [large L, , (t)]
expression for the free energy

E,) oc L. ,(t) ' 1n[L. ,(t)/(] .

A. Topological classification of nematic defects

Certain features of the late stages of phase ordering
may be understood in terms of the properties of topo-
logical defects present in the system [26]: the exponent
and amplitude of the asymptotic power-law decay of the
structure factor can be calculated from the configura-
tion of the order parameter around a single defect [22];
in systems for which dynamical scaling holds, the time-
dependent characteristic length scale is given by the sep-
aration of defects; and logarithmic corrections to power-
law scaling of the average defect separation can be at-
tributed to the form of the interdefect forces [17]. It is
therefore important to understand in detail the proper-
ties of topological defects in the system at hand. In this
subsection, we review the main consequences of the clas-
sification of topologically stable defects in uniaxial and
biaxial nematic systems [15]. In Sec. IVC we illustrate
these consequences with data from our simulation. The
time evolution of the number densities of defects during
phase ordering in our system will be analyzed in detail
in Sec. V.

For the unambiguous topological classification of order
parameter configuration, it is necessary that the invari-
ants constructed from the order parameter avoid certain
values. In the O(N) vector model, this amounts to avoid-
ing zeros in the magnitude of the vector. In the context of
the nematic order parameter, it is furthermore necessary
that the order parameter magnitudes 2: and y (defined
in Sec. II) are restricted to lie either in the region x & y
[needlelike ordering, Fig. 3(a)] or in the region x ( y [dis-
cotic ordering, Fig. 3(b)]. In order to develop the topolog-
ical classification, it is suKcient to impose the condition
that throughout the system the values of the order pa-
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rameter magnitudes x and y are appropriate constants.
What remain are orientational degrees of freedom, two
for the uniaxial case (as specified by a three-dimensional
"headless" unit vector, i.e. , the director) and three for the
biaxial case. In our simulations, we ensure the applica-
bility of the topological classification, even at the earliest
stages after the quench, as discussed at the end of Sec. II.

We first discuss defects in the uniaxial nematic sys-
tems. Consider the order parameter configuration in a
2D system in which the director rotates by 360' around a
central point [Fig. 12(a)]. Such a configuration is singular
(in the sense that the Bee energy density diverges at its
center), but it is not topologi cally stable: by continuously
rotating the director out of the plane (i.e. , by "escaping
into the third dimension") we can arrive at the nonsin-
gular (i.e. , finite free energy density) configuration, as
shown in Fig. 12(b). The singular configuration in Fig. 13
(in which the director rotates by 180 ) is, however, topo-
logically stable: in the process of attempting to escape
into the third dimension, an even more singular config-
uration with a (semi-)infinite line defect would be gen-
erated. More generally, any configuration in which the
director rotates by an even multiple of 180 can be contin-
uously deformed into the trivial configuration, shown in
Fig. 12(b), in contrast with configurations having a rota-
tion of an odd multiple of 180, which can be deformed
into the configuration in Fig. 13. Note, in particular,
that configurations with rotations of +180' (clockwise)
and —180 (counterclockwise) can be deformed into each
other. Thus, for the 2D uniaxial nematic system there
exists only one class of topologically stable point defects,
exemplified by the order parameter configuration shown

)( //y

FIG. 13. A configuration of the director corresponding to
the 180 defect in a uniaxial nematic phase. An attempt to
escape from such a configuration by rotating the director at
each location out of the page inevitably results in a singular
line extending from the defect center to in6nity, separating
regions where the director rotates out of the page in opposing
directions.

in Fig. 13. (This class contains all defects obtainable
by continuous distortions, including those in which the
director is rotated out of the plane. )

The combination law for two stable defects is also read-
ily obtained: colliding two +180 configurations results
in a configuration with either 360 or 0 rotation, both
of which are topologically trivial. Therefore any two sta-
ble defects can mutually annihilate upon colliding. In
more formal language, the properties discussed above are
a consequence of the fact that the first homotopy group of
the uniaxial nematic order parameter space is the two-
element group Z2 ——[(0,1) under addition modulo 2].
The elements 0 and 1 correspond to the topologically
trivial class of configurations and to the stable defect
class, respectively. The defects combine according to a
law given by the group operation 1 + 1 = 0.

Next, we discuss defects in biaxial nematic systems, for
which the situation is more complicated. Here, the first
homotopy group of the order parameter space Ili (giving
the classification of point defects in a 2D system) is the
non-Abelian eight-element group of quaternions, which
can be represented as

Ili: (1& 11 ZCT&1 Zo'&& ZtTyl ZO'yl ZOzl Zo'z) (24)

(b)

where o A. are the Pauli matrices, and the group operation
corresponds to matrix multiplication. For a non-Abelian
IIi, the classes of topologically nonequivalent defects are
given by the corzjugacy classes of IIi (see, e.g. , [15] for a
detailed discussion). The quaternion group Eq. (24) has
five conjugacy classes:

~ I~ 4

Cp = (1),
Cp ——(—1),
C =(io, —io ),
Cy: (io.y io.y)
C, = (io„—io, ).

(25a)
(25b)
(25c)
(25d)
(25e)

FIG. 12. (a) A configuration of the director corresponding
to the 360' defect in a uniaxial nematic phase. (b) By ro-
tating the director at each location out of the page, one can
smoothly deform the configuration in (a) to the defect-free
configuration in (b), with the director everywhere perpendic-
ular to the page.

Thus there is a topologically trivial defect class (Cp), and
four nontrivial defect classes (Cp, C,C„,C, ). These are
characterized by the winding numbers of the uniaxial axis
u and the biaxial axis b of the order parameter tensor:
in Cp defects, either ii or b (or both) rotate by 360; in

defects, u rotates by +180 and b does not rotate;
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TABLE I. Combination laws for the four distinct classes
(C, C„,C„and Co) of pointlike topological defects in a
two-dimensional biaxial nematic system. Cp represents a
topologically trivial configuration; Cp + Cp indicates that the
resulting configuration can be either in class Co or in Co (we
omit the multiplicities of classes). Table taken from Ref. [15].

Cp

Cp
C
Cy
C

Cp

Cp

Cp
C
C„
C

Cp

Cp
Cp
C
C„
C

C
C

Cp+ Cp
C
C„

Cy

Cy
Cy
C

Cp+ Cp
C

C
C
C„
C

Cp+ Cp

in C„defects, u does not rotate and b rotates by +180;
and in C defects, both u and b rotate by +180 .

The group operation laws of the quaternion group,
Eq. (24), imply multiplication laws for its classes, as sum-
marized in Table I. These give the combination laws for
the four nontrivial defect types: thus, combining a C„
defect and a C defect yields a C defect, while combin-
ing a C„defect with Co results in a configuration that
remains in the C„class.Two C„defectscan either mutu-
ally annihilate or combine to give a Co defect; the result
depends on the details of the order parameter configura-
tion, in particular, on the winding of the path of approach
of the two C„defects among other defects present in the
system. (This complication is a consequence of the non-
commutative nature of our homotopy group IIi [27].)

The validity of the results of the topological classifica-
tion presented above was directly confirmed experimen-
tally in three spatial dimensions by De'Neve et al. [28].
In 3D, the fundamental homotopy group, Eq. (24), clas-
sifies tine defects. In Ref. [28], four inequivalent types
of disclination, corresponding to the four nontrivial con-
jugacy classes in Eq. (25), were observed experimentally
in a biaxial nematic system; their combination laws were
found to be in agreement with those in Table I. We are
not aware of any published experimental work on defects
in electively two-dimensional biaxial nematic systems.

trace a loop around the center of any topologically un-
stable singular configuration [e.g. , as in Fig. 12~ail we)

generate a contractible loop in the order parameter space
[Fig. 14(a)]. In the case of a topologically stable can-
figuration (e.g. , Fig. 13), we generate a noncontractible
loop in the projective plane [Fig. 14(b)], connecting two
antipodal points on the sphere. Thus we arrive at the fol-
lowing algorithm for deciding whether a (uniaxial) stable
defect is located inside the region spanned by the cells
with coordinates (x, y), (x+ 1,y), (x+ 1,y+ 1), (x, y+ 1):
we find the uniaxial direction in the cell (x, y) and choose
as our starting point one of its intersections with the or-
der parameter sphere (Fig. 15). The uniaxial direction
in the cell (x + 1, y) has two intersections with the order
parameter sphere; we choose the point that is closer to
the starting point as the next point of the loop in the or-
der parameter space. This amounts to assuming that the
new uniaxial direction was reached by rotating through
the smallest possible angle, so' as to minimize the cost
in free energy. We continue with the cells (x + 1 y + 1))

and (x, y+ 1), again choosing the point on the order pa-
rameter sphere closer to the previous point. We close the
path by again looking at the two intersection points in
the cell (x, y): if the original starting point is closer to
the point assigned to the cell (x, y + 1) then we classify
the configuration as not topologically stable; if the an-
tipodal point is closer then we classify the configuration
as having a stable defect located at the intersection of
the cell boundaries. In a previous work on phase order-

RP~

B. Defect-Bnding algorithms P

To keep track of the evolution of the large popula-
tions of defects present during phase ordering (and to

istinguish the four species of defect in biaxial nematic
systems), an effective defect-finding algorithm based on
the topological properties of the defects is needed. Be-
fore illustrating the defect properties discussed above (as
we do in Sec. IV C), we present the defect-finding algo-
rithms used in our simulation. This can also serve to
illuminate further the topological classification scheme.
The present subsection may be skipped by the reader in-
terested primarily in the results without impairing the
understanding of the remainder of the paper.

Consider first the case of the uniaxial nematic system.
The order parameter coset space is a sphere with antipo-
dal points identified (refiecting the inversion symm tmme ry
o the director), i.e. , the projective plane RP2. If we

P

FIG. 14. Contractible (a) and noncontractible (b) loops
connecting two identical points (P and P') in the uniaxial
nematic order parameter space RP2.



51 KINETICS OF PHASE ORDERING IN UNIAXIAL AND. . . 1227

A

A'

FIG. 15. The algorithm for 6nding defects in a uniaxial
nematic (see Sec. IVB for details). The diameters AA', BR',
CC', and DD' correspond to the uniaxial directions of the
order parameter in cells (x, y), (z + 1,y), (a + 1, y + 1), and
(x, y + 1), respectively.

FIG. 16. A typical configuration of the uniaxial or biaxial
direction of the order parameter in the 4 x 4 array with a Co
defect in the center. Notice that no C, C„,or C defects are
present in the array.

ing in uniaxial nematic systems [9], vortices were sought
by considering whether the total angle of rotation of the
uniaxial direction projected on to one of the three per-
pendicular planes was 180 . For a configuration in which
the director in all cells lies in one plane, as in the case of
an isolated defect (as in Fig. 12), the two algorithms are
equivalent; for other configurations, however, the "pro-
jection" algorithm can be unreliable. We find that our
"topological" algorithm can consistently identify all de-
fects, even when the interdefect separation is of the order
of one lattice spacing.

For biaxial nematic systems, we can distinguish the
three 180 defect classes by applying the uniaxial algo-
rithm twice, once to the uniaxial direction u and once
to the biaxial direction b: e.g. , the C„defect will give a
u loop that returns to the starting point and a b loop
that ends at the antipodal point. The 360' defect (class
Co) cannot be found using this algorithm. This is a con-
sequence of the fact that the biaxial nematic order pa-
rameter coset space is not simply a direct product of two
projective planes. Thus, for this case, we use the "pro-
jection" algorithm on a 4 x 4 array of cells: if the total
rotation of the projection (on at least two planes) of two
of the u, b, and u x b directions in the 12 boundary
cells is +360, and if no 180 defects are found inside the
4 x 4 array, then we identify the center of the array as
a Co defect (see Fig. 16). Note that to consider a 2 x 2

array would be inadequate because the total rotation in
a 4-cell path is, by definition, at most 180; a 3 x 3 array
cannot be used, because the 360 rotation is in that case
tied to the existence of two 180 defects inside the array.
The algorithm that we use for finding the Co defect is
thus less robust than that which we use for finding the
other defect types. As we shall see in the next section,
however, the Co defect is present at late times only in
very small numbers, and its influence is not important
for our primary conclusions.

C. Results illustrating the topological classification
scheme

We now illustrate the properties of defects in uniax-
ial and biaxial nematic systems that we discussed in

pq ——(n + n„)mod 2,
p2 ——(n„+n, ) mod 2,
ps ——(n + n, ) mod 2,

(26a)
(26b)
(26c)

are conserved during all reactions among defects. Here
n, n„,and n respectively denote the number of defects
from classes C, C„,and C„as(pq+p2+ps) mod 2 = 0,
only two of the three parities are independent. In our
simulations the parities, Eqs. (26), were observed to be
conserved in all reactions, regardless of the number of

Sec. IVA using results &om our simulation. Defects in
nematic films can be observed experimentally via bire-
&ingence patterns in light transmitted through films situ-
ated between crossed polarizers (i.e. , Schlieren patterns).
The intensity of transmitted light is minimal when the
projection of the director on to the polarization plane is
parallel to the transmission axis of either polarizer; the
180' (360') defects are therefore identified as intersec-
tions of two (four) dark brushes in the transmitted pat-
tern [19]. In Figs. 17(a)—17(c), we show the Schlieren pat-
terns obtained for configurations generated in our simu-
lations at a sequence of times after a uniaxial quench
[29]. As these figures show, the process of ordering oc-
curs through the mutual annihilation of the numerous
180 defects.

In Figs. 18(a)—18(e), we exhibit the locations of de-
fects, found using the defect-finding algorithms discussed
above, in a typical sequence of configurations follow-
ing a biaxial quench in a small system. Defects &om
each of the four topologically stable classes are present
in the system. The observed two-defect events confirm
the topological combination laws given in Table I (as de-
scribed in the captions to Figs. 18). Occasionally, "many-
defect" events, where a number of neighboring defects
interact in a way not uniquely separable into two-defect
events, are observed; the &equency of these events can be
decreased by reducing the diQ'usion constant in the CDS
map to values below D = 0.1.

It can be seen from Table I that the defect number
paHties pq, p2, and p3, defined by
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t
0
5

10
20
40

100
200
399
795

1585
2819
5012

n(C )
14925
10093
6393
2758

589
25

1
2

0
0
2
0

n(C„)
11503
12787
12949
10542
6157
2495
1439

840
514
326
200
130

n(C, )
15039
14577
12141
8866
5357
2359
1235
676
394
244
146
116

n(Cs)
0
1
5

13
14
24

9
3
?
5
1
6

The number of Co defects which can be found at early times
is reduced due to the high density of the 180' defects —see
Sec. IV C.

participating defects. In addition, the parities obtained
from the tota/ numbers of defects present in the whole
system must be even, as we have adopted periodic bound-
ary conditions. The reason for this is that opposite
edges of the boundary of the system map on to iden-

TABLE II. Numbers of defects in the C, C„,C, and Co
classes at time t after the quench to the biaxial nematic phase
in a 256 x 256 system (the value of D = 0.1 was used in the
simulation).

tical (closed) curves in the order parameter coset space,
but are traversed in opposite senses; the loop consist-
ing of the boundary of the system therefore maps into a
contractible loop in the coset space. Thus the configu-
ration of the system, as a whole, is topologically trivial,
which for the nematic system implies that the parities,
Eqs. (26), are even. This property of the global parities
is con6rmed in Table II, which gives the numbers of C,
C„,and C defects found during a typical run in a system
of size 256 x 256.

V. EVOLUTION OF THE DEFECT
POP ULATIONS

In this section, we present results for the time evolution
of the total number of defects in each of the topologically
inequivalent defect classes.

A. Results for the uniaxial quench; growth law for
the separation between defects

In uniaxial nematic systems there is only one class
of stable defects. In Fig. 19 we show the number of
such defects as a function of time since the uniaxial
quench, in a system of size 256 x 256, averaged over

a) t =500 b) 4 = 1000 FIG. 17. Intensity of light transmit ted
through a uniaxial nematic film situated be-
tween crossed polarizers (the Schlieren pat-
tern). We show a system of size 100 x 100 at
times t = 500, t = 1000, and t = 2000 after
the quench. The defects appear in the pic-
tures as the intersections of two bright and
two dark lines.

c) t = 2000
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35 sets of initial configurations. In the inset we plot
the effective growth exponent Pd, f(t) for the average
interdefect distance Lg,t(t) versus 1/t, in the interval
where the correlation function collapses. The intercept
with the Pg, f axis gives the asymptotic growth exponent

f —0.374 6 0.005 [see formula (15b) and the discus-
sion in Sec. IIIB]. The growth exponent obtained &om
the number of defects difFers &om the exponents obtained
from the correlation function and the energy density (see
Sec. IIIA), giving another indication of the violation of
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e) t=46
FIG. 18. Defect configurations in a biaxial system of size 10 x 10 at specified times since the quench. The symbols ~, *,

+, and o correspond to defects from classes C, C„,C, and CI), respectively. In the following description of the figures, we
refer to the horizontal coordinate as x, and to the vertical coordinate as y, both starting from the left bottom corner of each
figure (thus x,y = 1, ... , 10). Note that the boundary conditions are periodic. The diff'usion constant value of D = 0.1 was used
in this simulation. (a) The configuration at t=17 time steps since the quench. The system contains four type C defects, 16
type C„defects, and 14 type C, defects. (b) The configuration at the next time step (t=18). The C, defect at (z, y) = (1,5)
annihilated with the neighboring C defect. Two C„defects in the center region combined to produce a Co defect. The C
defect at (x, y) = (5, 8) and the C defect at (x, y) = (6, 8) cambined to a C„defect. (c) The configuration at t=44 All the.
C defects have decayed fram the system. (d) At the next time step (t=45), the C defect at (x, y) = (9, 10) disintegrates into
the C defect and the C„defect at the neighboring site (z, y) = (9, 1). (e) Configuration at the next time step (t=46). The C
defect immediately recombines with the C„defect at (x, y) = (9, 1). The net result of the last two reactions is a C -mediated
jump of the C, defect from the site (x, y) = (9, 10) to the neighboring site (x, y) = (9, 1). The C, defect at (T, y) = (9, 1)
undergoes aniuhilatian with the C, defect at (x, y) = (8, 1) at a later time.
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FIG. 19. I.og-log plot of the number of defects in a uniaxial
system (size 256 x 256, averaged over 35 configurations) as
a function of time t since the quench. Inset: the effective
growth exponent Pq, r(t) of the average separation between
the defects, plotted to fit the extrapolation formula (15b).

statement (b) of the dynamical scaling hypothesis, at
least over the range of times studied.

It has been found in all published numerical stud-
ies of phase ordering in 2D systems with point defects
(e.g. , Refs. [3,8,9,14]) that both the correlation length
and (where studied) the separation of defects grow more
8lomly than the t ~ power growth law that is suggested
by dimensional analysis [16]. This issue was addressed
theoretically for the O(2) vector model in Ref. [17], by
starting from the equation of motion for an isolated
defect-antidefect pair, which follows from equating the
attractive and frictional forces acting on each defect. The
elastic attractive force was taken to be I' t oc —1/17,
where P is the separation of the defect pair. The fric-
tional force was taken to be Fr, oc v in(A/(), where R is
the size of a defect, ( is the size of its core, and v =

z z
is its velocity. For an isolated defect-antidefect pair,
B P. By equating E q and Fg, Yurke et al. obtained
an implicit formula for the dependence of the separation
'V on the time remaining before annihilation w:

17(r) = const x
ln 'D(r)/( —1/2

(27)

Lg,t(t) = const x
ln Lg,r(t)/( —1/2

- j/2

(28)

Equation (28) implies that Ld, r grows asymptotically

Yurke et al. then argued that the same expressions
for the elastic and frictional forces acting in an isolated
defect-antidefect pair may be used in a modification of
the arguments in Ref. [16] to obtain an expression, iden-
tical to Eq. (27), for the growth of the average separation
between defects in a system undergoing phase ordering.
In this scenario, r is (up to an undetermined, but small,
additive constant) the time elapsed since the quench, and
D is the average separation of defects, Ld, g, so that one
obtains

as t ~, but that the effective growth exponent PQ f
din Lg r/dint approaches the value 1/2 only slowly and
from below, due to the logarithmic term. It was in-
deed observed in the numerical simulations reported in
Ref. [17] that, both for the annihilation of an isolated
defect-antidefect pair and for phase ordering of a large
system after a quench, Pq, r(t) was signiflcantly smaller
than 1/2, and tended to increase with increasing separa-
tion of defects.

It is important to recall that in the system investigated
in our simulations namely, the 2D (uniaxial) nematic
system the director can point in any direction in the
three-dimensional space, in contrast to the restriction on
the order parameter of the 2D O(2) vector model to lie in
the plane. The late time features of phase ordering, how-
ever, are governed primarily by the point defects mov-
ing in two-dimensional space, which are present in both
models. For this reason, it is appropriate to compare our
results to the conclusions of Ref. [17]. (We note, paren-
thetically, that the 2D O(3) vector model does not sup-
port any topologically stable singular configurations, and
its phase ordering exhibits features [30] strongly different
from the phase ordering in the 2D nematic system. )

Equation (28) implies that the effective growth expo-
nent for the average defect separation is given by

d ln Lg,r(t) t const
d ln t

Lief�(t)

2 In[Lief(t)/(]
(29)

Due to the unknown constant in Eq. (29), it is not pos-
sible (even with the knowledge of the core size, ( 0.5
lattice spacings, &om Sec. III) to compare the numerical
value of the effective growth exponent Pg, r 0.374 in our
simulation to the expression (29). Although Eq. (28) pre-
dicts an increasing effective exponent P~,g(t), the value
obtained from our data is essentially constant over the
interval during which collapse of the correlation function
occurs (Fig. 19).

A crucial assumption made in deriving Eq. (28) is that
the average separation of the numerous defects during
the phase ordering of a large system is determined solely
by the forces acting in the two-defect problem. In order
to address the validity of this assumption, we simulated
the annihilation process of two isolated uniaxial nematic
defects (see Fig. 20). During this simulation, we found it
advantageous (in order to be able to reduce the influence
of the discrete character of the lattice by averaging over
multiple runs) to add a random order parameter config-
uratio of reduced amplitude (up to 10%%up of the full order
parameter magnitude) at each time step. We stress that
this noise was added solely to obtain a meaningful av-
eraging procedure; no pinning eKects were observed in
the studied time range upon eliminating the noise. The
measured distance between the two defects 'V is shown in
Fig. 21 as a function of time remaining to annihilation,
t. The power law 'V oc t is observed over the range
of distances 2 & D & 10, corresponding to the range in
which the effective exponent P~,r 0.375 was observed
in the phase ordering simulation (Fig. 19). We therefore
reach the conclusion that the time dependence of the dis-
tance between two isolated annihilating defects does in-
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&) & = 3265 b) ~=465

FIG. 20. Schlieren pat terns showing
two approaching uniaxial defects at times
t=3265, t=465, and t=30 before annihilation,
and one time step after annihilation. The
system size was 100 x 100; the value of the
di8'usion constant was D = 0.3; weak noise
(10% of the order parameter magnitude) was
added at each time step.

c) 7-=3o

deed determine the growth rate of the average separation
between defects during phase ordering.

Around an isolated pair of uniaxial nematic defects, it
is energetically advantageous for the director to lie in a
single plane. The treatment of the annihilation process of
two defects is then identical to the treatment for the 2D
A Y model case in Ref. [17] [with the constant in Eq. (27)
divided by 4, due to the change in the winding number
of the defects]. Our data (Fig. 21) do not, however, show
the increase of the effective exponent Pg, f(t), with in-
creasing D, predicted by Eq. (27). This increase should
be visible even in the comparatively narrow range of 'V

covered in our simulation. This we take as an indication
that the forces acting on the defects in our simulation are
not completely described by the forces Eg, oc v 1n(17/()
and I" t oc 1/27, assumed in the derivation. of (27). In
particular, the influence of a weak pinning potential at
the centers of the cells would become more pronounced
with increasing 'V, since the interaction energy of two vor-
tices decreases with increasing distance. The presence of
a pinning force would therefore tend to decrease the ef-
fective growth exponent PQ f with increasing 'D, possibly
offsetting the increase of Pg, g predicted by Eq. (27).

It should be noted that the arguments leading to
Eq. (29) do not make any assumptions about the corre-
lation function —in particular, our ending that the cor-
relation length (as de6ned in Sec. IIIA) and the aver-

age separation of defects scale in a different way (P, , =
0.407+0.005 versus Pg, g = 0.374 +0.007) does not inval-
idate Eq. (29).

We now discuss the implications of the observed in-
equality P, , ) Pg, r. This inequality is, strictly speaking,

4r

r
~ 4

1
4 ~ 1 ~ ~ ~ ~ I

1 10 100 1000 10000

FIG. 21. The distance 17(t) between two annihilating uni-
axial defects as a function of time t remaining till annihilation.
A weak value of noise (10% of the order parameter magnitude)
was used to permit averaging over 20 events. The value of the
diR'usion constant was D = 0.3.
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ince e iaxiai quench
(averaged over 68 configurations of a 256 x 256 system

incompatible with the collapse of the correlation function
and structure factor [i.e. , statement (a) in Sec. III A]. The

e ec 8 pg f appearsreason is that the number density of defects
in oro 's law, Eq. (18), which is valid independently
of the collapse of the structure factor. The density pp, f
must decay as the (square of the) separation between de-
fects (and not any other length such as I ). I d
that E . &13&~

as corb&n or er
a q. y13~, expressing the collapse of the structure

factor, be compatible with Eq. (18) it is therefore neces-
sary that the lengths L, , and Ld f have a common time
dependence. We have not been able to identify why L
and ~ d ff

e oi eniyw y
nd g,f differ. However, it is plausible that the origin of

the discrepancy lies in the relevance of additional degrees
of &eedom beyond the defect positions.

Recall that earlier, in Sec. III, we exhibited the good
collapse of the correlation function and structure factor in
our simulation. It is thus seen that the direct comparison
of the efFective growth exponents P d ~~Qef an ~,~, presents
a more sensitive diagnostic of the validity of dynamical
scaling than do the apparent collapse of the correlation
function and structure factor.

We remind the reader that the discrepancy between
P, , and the energy length growth exponent P,„doesnot
necessarily indicate the breakdown of d 1 1n o ynamica scaling,
as we have explained in Sec. III. On the other hand,
the expression for the difFerence between P, , and P,„,
Eq. (23), was derived in Sec. III D under the assumption
that the structure factor collapses. Given the quality of
t e apparent collapse and the smallness of the difference

etween + and ~~, , and tyQ f we anticipate only small correc-t ~

The discrepancy between the growth exponents of the
correlation length and of the defect separation was re-
cently observed (Ref. [14]) also in the two-dimensional

( ) vector model. It is interesting to note that the re-
sults obtained in Ref. [14], P, , = 0.42 and Pd, r = 0.37,
are numerically very close to the results obtained by us
in the nematic order parameter case.

B. Results for the biaxial quench. selection
of the prevailing defect species

In the biaxialxial nematic case, we monitor separately the
populations of the four inequivalent defect classes in-
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FIG. 23.3. EHective growth exponents for the separation be-
tween C„defects (shown as o) and between C defects (shown
as +), analyzed using the extrapolation formula (15b).

troduced in Sec. IV. Figure 22 shows the results aver-
aged over 68 initial configurations of a 256 x 256 sys-
tem. Immediately following the quench, defects &om the
classes C C an~nd C are present in large numbers.

the initial stages of ordering, and disappears Rom the
system at the time approximately corresponding to the
onset of the regime in which there is apparent collapse of
the correlation function. The C„and C, defects subse-
quently remain in the system in roughly equal numbers,
and determine the properties of the asymptotic regime.
The effective growth exponent for the C„and C defect
separation is analyzed in Fig. 23 using the method de-
scribed in Sec. III A; we obtain Pg, r = 0.366 + 0.005 and
QQef —0.391 k 0.005, respectively.

The evolution of the Co (i.e. , 360 ) defect population
requires further clarification. Our d f t-fi d'ur e ec — n ing algo-
rithm (see Sec. IV B) is able to identify a Co defect within
any given 4 x 4 array of cells only if there are no 180
defects within the array; at the initial stages of ordering,

the high density of C, C„,and C defects. Accordingly
the dee etected number of Co is very small at early times

e ec s. ccordingly,

a ter t e quench (see Fig. 22), and becomes a reliable
e ec s in a real sys-measure of the proportion of 360 def t

tern only at late times, when the separation between 180
defects is much larger than the 1 tt . Ae a ice spacing. A more
meaningful quantity, perhaps, is the ratio of the num-
ber of Co defects to the number of the "available" 4 x 4
arrays; this ratio is plotted in F' 24. Thig. . e population
of Co defects appears to decay slightly faster than both
t e C& and C defect populations at the late times' note,) )

however, that our statistics for the Co defects are rather
poor.

We nowe now suggest an explanation of the observed ra id
decay of the C opopulation, and the presence, in compa-

e o serve rapi

rable numbers, of the C„and C defects in the late time

defects ~ ~ ~ec s can annihilate to give a topologically trivial con-
guration. These processes indeed froccur equent y in
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FIG. 24. The ratio of the number of Co defects to the num-
ber of 4 x 4 arrays of cells with no 180' defects, plotted as a
function of time. The slope of the straight line is —1.10.

the simulation (see Fig. 18). After the system takes ad-
vantage of these "decay channels, " however, two nearby
defects of the same species are &equently "screened" by
a defect of a different species located between them. The
system can then reduce the number of defects through
the reactions

the C defects disappeared &om the system. The num-
bers of Cy and C defects are thus locked at late times;
the explanation of the slight difference in the efFective ex-
ponents describing their decay with time would require a
more detailed knowledge of the energetics of the processes
involved, including the reactions involving the catalyst
C . Thus far, we have not included in our discussion the
influence of the Co (360') defects. These were present
only in small numbers, even at the later times, when the
Cp defect-counting algorithm overcomes the problem dis-
cussed earlier in this section. It is also clear from Table I
that the events involving the Cp defects cannot change
the mechanism of the C„and C species selection, dis-
cussed above. The tendency of the Cp defect population
to decay at a rate similar to the decay rate of the C„and
C defect populations at late times is readily understood:
the process Cp+ Cp + Cp has a low probability, because
the number density of the Cp defects is very low. Instead,
the decay channels Cp + Cy + Cy and Cp + C~
occurring at rates tied to the number densities of the C„
and C defects, will prevail.

We end by noting that the main points of the discus-
sion of the (C,C„,C, ) system presented in this section.
should be relevant to any three- (or more-) component
system exhibiting "cyclic"reactions such as (30a)—(30c).

C. +C„~C. , (30a)
VI. SUMMARY AND CONCLUSIONS

C +C, —+Cy, (30b)

Cy+C, mC (30c)

Reactions (30a) and (30b) were observed frequently in
the simulation; the inverse reactions C -+ C~ + Cy and
Cy ~ C + C, were observed only occasionally, and
were always followed by the annihilation of the gener-
ated C defect, through reactions (30b), (30a), or the
inverse of the reaction (30c), i.e. , C -+ C„+C, . This
leads us to conclude that the reactions C~ + Cy ~ C,
and C + C ~ C„are exoergic, while the reaction
Cy+C, ~ C is endoergic. The system therefore tends to
annihilate the C defect whenever another defect is found
in its vicinity, while the production of the C defect is
always energetically disadvantageous, which explains the
rapid annihilation of the C population. It is interest-
ing to note that the C defects appear in the system
in small numbers even at very late times (see Table II);
the apparent reason is that a Cy or C, defect can use a
short-lived creation of the C defect to move through the
system [see Figs. 18(c)—18(e)] in order to take part in the
Cy + Cy M Cp and C~ + C~ M Cp reactions, which are
the dominant decay channels in the late time regime.

No decay channel in which the number of Cy defects
is reduced without producing a C, defect (or vice versa)
is available, except for the mutual annihilation of two
Cy or C defects; these occur with a probability propor-
tional to the square of the number density of the Cy or C
species, which remain approximately equal, because the
two species were present at roughly equal numbers when

Detailed analysis of our results showed that dynami-
cal scaling is violated throughout the studied time range.
To reach this conclusion, we had to compare the growth
laws for the correlation length and for the average sepa-
ration between topological defects. Studying the corre-
lation function alone does not indicate the violation of
dynamical scaling. We also showed that the observed
discrepancy between the growth exponents of the corre-
lation length and of the characteristic length determined
&om the energy density does not necessarily indicate a
violation of dynamical scaling.

In order to explain why the growth exponents observed
in our simulations were significantly lower than 0.5, we
studied the annihilation process of an isolated pair of
uniaxial nematic defects. Our results show that the low-
ered value of the effective growth exponent Pd, r for the
average separation of defects may be understood by ana-
lyzing the forces acting on the point defects, similarly to
the treatment of phase ordering in the O(2) vector model
in [17].

The analysis discussed in the preceding paragraph sug-
gests that the effective growth exponent Pg, r should ap-
proach the value of 0.5 in the regime where the average
separation between defects becomes much larger than the
size of the defect cores. In this regime we expect that
the growth exponent for the correlation length, P, „also
reaches the value of 0.5, and the correlation function truly
collapses. The difference between P, , and the growth ex-
ponent for the energy length (P,„),analyzed in Sec. III D,
is predicted to vanish in this regime [see Eq. (23)]. We
therefore expect that in the late stages of the phase or-
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dering of a sufficiently large nematic system, dynamical
scaling will hold, and that all characteristic length scales
in the system will grow as a power law of time with the
growth exponent equal to 0.5. Due to the logarithmic
corrections to the true asymptotic values of the growth
exponents, studied in Secs. IIID and. V A, however, it is
not presently possible to access the true scaling regime
in computer simulations.

An important ingredient missing from the analysis of
the behavior of the growth exponents is an explanation of
the discrepancy between the growth exponents for the av-
erage separation of defects and for the correlation length.
An analytical and numerical analysis of the role of de-
grees of freedom other than the defect coordinates in the
phase ordering process is currently in progress [18].

In Secs. IV and VB, we studied the properties of the
four topologically distinct species of defects present in
a biaxial nematic system during the phase ordering pro-
cess. The topological character of the defects and the de-
fect interactions observed in our simulations agree with
the predictions of the topological classification scheme.
Of the four allowed defect species, only two were ob-
served in large numbers at late stages of the ordering
process. We proposed a mechanism for the selection of
the prevailing defect species, based on the combination
laws following from the topological classification scheme.

It would be interesting to test these predictions experi-
mentally.

Note added in proof W. e recently learned of the work
of C. Kobdaj and S. Thomas [Nucl. Phys. B413, 689
(1994)], which investigates the energies and interaction
potentials of non-Abelian defects in two dimensions that
are topologically equivalent to the biaxial nematic de-
fects investigated in Secs. IV and VB of the present
paper. Kobdaj and Thomas show that the C defect
(corresponding to the Ci, defect in their notation) is en-
ergetically unstable towards the dissociation into a C„
defect plus a C defect. This directly explains the rapid
decay of the C population observed in our phase or-
dering simulation, and confirms the mechanism of the
selection of defect species proposed in Sec. V B.
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