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The application of the principle of critical-point universality to fluid mixtures near plait points is gen-

eralized to encompass crossover between the one-component vapor-liquid critical limit and the liquid-

liquid critical limit of incompressible liquid mixtures. This goal is accomplished by generalizing the
scaling fields to linear combinations of three physical field variables related to the temperature and the
chemical potentials of the two components. We show how one recovers from the general expressions for
the scaling fields the limiting critical behavior of dilute mixtures near the vapor-liquid critical point and

of weakly compressible liquid mixtures near the consolute point. In addition we elucidate the conse-

quences for the critical behavior in some special cases, namely, near an azeotropic critical point, near a
reentrant critical point, and when the critical temperature goes through a maximum or a minimum as a
function of concentration.

PACS number(s): 05.70.Jk, 51.90.+ r, 64.60.Fr

I. INTRODUCTION

Experiments have established that fluids near a critical
point belong to the universality class of Ising-like systems
[1—3]. The critical behavior in such Ising-like systems is
characterized by two relevant scaling fields, a strong or-
dering field associated with the order-parameter Auctua-
tions and a weak temperaturelike field associated with the
energy fiuctuations [4]. In a one-component fiuid asyinp-
totically close to the vapor-liquid critical point the order
parameter and the ordering field may be identified with
the density and the chemical potential [3—5].

The concept of critical-point universality can be ex-
tended to Quid mixtures provided one selects an appropri-
ate set of thermodynamic variables, two of them playing
the role of relevant scaling fields. Specifically, it has been
postulated that the thermodynamic behavior of binary
fiuid mixtures near plait points (i.e., vapor-liquid critical
points) is isomorphic with that of near-critical one-
component Auids, if the mixtures are not studied at con-
stant composition but with a field variable g kept con-
stant [6—8]. Near a critical point the mixtures then satis-
fy the same universal scaling laws as one-component
Auids near the critical point, while the system-dependent
amplitudes depend parametrically on the hidden (ir-
relevant) field g. In practice this hidden field g has been
related to the difference between the chemical potentials
of the two components [6,8]. As a consequence, the
order-parameter fluctuations are then identified with the
density fiuctuations at constant g [9]. This approach has
been used successfully to represent vapor-liquid equilibri-
um data [10,11] and to develop asymptotic scaled equa-
tions of state for such inixtures as He +He [12—15],
COz+C2H~ [16], CO2+C2H6 [17—19], and CH~+C2H6
[20]. More recently, the approach has even been extend-
ed to deal with the nonasymptotic critical behavior of

mixtures including crossover to regular thermodynamic
behavior far away from the critical point [21—23].

In the mixtures mentioned above, one is dealing ex-
clusively with vapor-liquid critical phenomena and the
vapor-liquid critical line smoothly connects the two criti-
cal points of the pure components as schematically indi-
cated in the pressure-temperature diagram shown in Fig.
1. On the other hand, Quid mixtures can exhibit another
kind of critical phenomenon, namely, when critical points
associated with liquid-liquid equilibria are encountered.
The simplest example is the case of two weakly compres-
sible partially miscible liquids that have critical mixing
points, also referred to as consolute points [24]. In binary
liquid mixtures near a consolute point the order parame-
ter is to be identified with the concentration and the
difference between the chemical potentials plays the role
of the ordering field conjugate to the order parameter [3];
as we shall see, the role of the hidden field is now played
by the chemical potential of one of the components con-
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FIG. 1. Schematic phase diagram of a mixture exhibiting

type-I phase behavior [25]. The solid curves indicate the
vapor-pressure curves of the two pure components. The dotted
curve represents the liquid-vapor (LV) critical line of the mix-
ture which connects the two critical points, CP& and CP&, of the
pure components (line of plait points).
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jugate to the total density. Hence, the ordering field and
the hidden field exchange their roles when, in a Auid mix-
ture, the plait point associated with vapor-liquid equilib-
rium is replaced with the consolute point associated with
liquid-liquid equilibrium.

Liquid mixtures are weakly compressible systems and a
mixture of two partially miscible incompressible liquids
exhibits the limiting behavior of liquid-liquid critical phe-
nomena just as a one-component Quid exhibits the limit-
ing behavior of vapor-liquid critical phenomena in mix-
tures. These two limits with isolated critical points
represent systems with two simple relevant scaling fields.

As elucidated by van Konynenburg and Scott in a sys-
tematic fashion, in general one can encounter in Quid
mixtures both vapor-liquid and liquid-liquid critical phe-
nomena [25]. In addition to a vapor-liquid critical line
between the critical points CP, and CP2 of the two pure
components, there may appear a liquid-liquid critical line
(line of consolute points) terminating in a critical end-
point CEP as indicated in Fig. 2. An example of a system
with this kind of phase behavior, commonly referred to
as type-II phase behavior [25,26], is the system carbon
dioxide +n-octane [27]. More interestingly, the line of
plait points, starting at the critical point CP2 of a pure
component, can transform smoothly into a line of conso-
lute points terminating at a critical endpoint CEP2, where
two critical liquid phases and a noncritical vapor phase
are in coexistence as indicated in Fig. 3. This behavior
has been referred to as type-V phase behavior [25,26] and
is, e.g., encountered in mixtures of n-alkanes with appre-
ciable size differences such as methane +n-hexane [28].
The line of plait points may also go off into a high-
pressure region forming a critical line of gas-gas equili-
bria as indicated in Fig. 4. An example of a system with
such behavior is the mixture neon+xenon [29].

The traditional way of implementing the isomorphism
formulation for critical phenomena needs to be general-
ized when one wants to deal with Quid mixtures that ex-
hibit both vapor-liquid and liquid-liquid critical phenom-
ena. In general one must expect that the ordering field
and the hidden field change continuously when the com-
position varies [30,31]. The difficulty can be illustrated

RCP
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FIG. 3. Schematic phase diagram of a mixture exhibiting
type-V phase behavior [25]. The solid curves indicate the
vapor-pressure curves of the two pure components. The dotted
curves indicate critical lines. The dashed curve between two
critical endpoints, CEP& and CEP2, indicates a three-phase line
where two liquid phases and a vapor phase are in coexistence.
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where 3 and V are the Helmholtz free energy and
volume taken per mole, x the mole fraction of component
2, designated as the solute, and T the temperature. At ei-
ther a vapor-liquid or a liquid-liquid critical point the
determinant (1.1) should vanish. Depending on the
choice of the density variable associated with the order
parameter, the molar density p = V ' or the composition
x, one can rewrite (1.1) in terms of two different inverse
susceptibilities:

av, av,
(a&/a v)2, „ &Q
(Bp/Bx)r ~

(1.2)

or

Bp
Bx

(BP/Bx )r v+ &Qax, (M /aI ),„ (1.3)

In these equations p=(BA/Bx)r v=p& —
p& is

difference between the chemical potentials of the two

by analyzing the stability criterion for binary mixtures
[26]:
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FIG. 2. Schematic phase diagram of a mixture exhibiting
type-II phase behavior [25]. The solid curves indicate the
vapor-pressure curves of the two pure components. The dotted
curves represent liquid-vapor (LV) and liquid-liquid (LL) criti-
cal lines. The dashed curve indicates a three-phase line where
two liquid phases and a vapor phase are in coexistence terrninat-
ing in a critical endpoint (CEP). The point at which
dP, /dT =0 is sometimes called a reentrant critical point (RCP).

FIG. 4. Schematic phase diagram of a mixture exhibiting
type-III phase behavior [25]. The solid curves indicate the
vapor-pressure curves of the two pure components. The dotted
curves indicate liquid-vapor (LV) and gas-gas (GG) critical
lines. The point where the critical line goes through a tempera-
ture minimum is called a double critical point (DCP).
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comPonents 1 and 2 and P = —(aA /aV)r„ is the Pres-
sure. In applying Eqs. (1.2) and (1.3) it may be noted that

(1.4)

While stability criterion (1.2) is a natural one for plait
points as a generalization of a one-component vapor-
liquid critical point, (aP /a V) r „cannot serve as the in-
verse susceptibility near the consolute point of an in-
compressible liquid mixture. Similarly, criterion (1.3) will
fail in the one-component limit where
(a'~/av')z. = —(aP/aV)z „vanishes.

It is the purpose of the present paper to develop a glo-
bal isomorphism approach for Quid mixtures which en-
compasses both vapor-liquid critical behavior of one-
component Auids and consolute critical behavior of in-
cornpressible liquid mixtures as natural limits. This goal
will be accomplished by introducing appropriately mixed
scaling fields. In this approach the physical intensive
variables, such as the temperature and the chemical po-
tentials, do not have a definite scaling dimensionality. In-
stead, linear combinations of the physical intensive vari-
ables will serve as the strong ordering field and the weak
scaling field. Thus no individual physical intensive vari-
able will serve as a "hidden" field and no individual phys-
ical density variable will serve as a "hidden" variable.
A11 fields and densities enter equally in this global isomor-
phisrn formulation and the approach to specific critical-
point limits will be controlled by the values of the corre-
sponding coefficients in the linear combinations that
serve as the relevant scaling fields.

II. SCALING FIELDS IN A NEAR-CRITICAL
ONE-COMPONENT FLUID

hi =(g —g, )/RT, ,

Pi =(p p. )lp.

(2.1)

(2.2)

where R is the molar gas constant. In this paper we fol-
low the usual convention in which the subscript or super-
script c denotes the value of a quantity at the critical
point. The weak field h2 and its corresponding density $2
are

h2 =r= ( T —T, )/T, ,

Pz=(s —s, )/Rp, ,

(2.3)

(2.4)

Originally, the principle of critical-point universality
was developed for systems with an isolated critical point
that is characterized by two relevant scaling fields, a
strong ordering field h

&
conjugate to the order parameter

Pi and a weak field hz [32]. For the Ising model, which
has served as the simplest prototype of such a system, the
ordering field is the magnetic field and the order parame-
ter is the magnetization [4]. The choice of the corre-
sponding variables for Quids has been guided by the prop-
erties of the lattice gas, where the chemical potential
difference g —g, plays the role of the magnetic field and
the density difference p —p, the role of the magnetization
[5,33]. In terms of dimensionless quantities [3]

where s is the entropy density, i.e., the entropy per unit
volume. In recent years it has become evident that in
dealing with nonasyrnptotic critical behavior it is more
advantageous to identify the weak field h 2 with
(T —T, )/T rather than with (T —T, )/T, [34,35]. The
corresponding density P2 is then to be identified with a
difference in the energy density u rather than the entropy
density s. However, in the present paper we are con-
cerned with the thermodynamic behavior in the near vi-
cinity of the critical point, where this difference becomes
unimportant.

The dependent field variable is the pressure P, which is
the density of the thermodynamic potential 0= —PV. It
satisfies the differential relation [5]

dP =s dT+pdg . (2.5)

To specify the thermodynamic behavior of the Quid near
the critical point, the pressure is decomposed as

P =bP(h „h2)+P"(T,g), (2.6)

bP/p, RT, =AP =h2 f (z),
with

(2.7)

z =h, /h~+~, (2.8)

and where f (z) is a universal scaling function. For
h 2 (0, h 2 is to be identified with

l
h 2 l

in the scaling laws.
The susceptibility pi=(api/ahi)i, exhibits a strong

singularity at the critical point. Specifically in the one-
phase region in zero field h

&

=0 the susceptibility
diverges as

0 2 0=I h ~=I
h2

(2.9)

The isochoric molar heat capacity Cz has a weak singu-
larity

(2.10)C~/R = = Aoh2 = Aoz
Bh2

The order parameter in zero field varies along the two
branches of the phase boundary below the critical tem-
perature as

(2.11)

Here a=0. 110, P=0.326, and y=1.238 are universal
critical exponents, while Ao Bo and I 0 are systern-
dependent amplitudes interrelated by the universal ampli-
tude ratio aAOI 0/BO =0.06 [36,39]. It should be noted
that in general the chemical potential at the critical iso-
chore p =p, is not a constant but a function of tempera-
ture which for the lattice gas is an analytic function

where P"(T,g) is a regular background term which is an
analytic function of its variables T and g [36,37]. In this
paper we use a superscript r to indicate regular contribu-
tions to thermodynamic properties. Near the critical
point the singular part bP (h „h2) satisfies a scaling law
of the form [3,4,38]
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go(T). Hence, in practice the ordering field (2.1) is gen-
eralized to [5,36]

h, = [g —go( T) ]/R T, , (2.12)

which does not lead to any modification of the thermo-
dynamic behavior near the critical point, since in first ap-
proximation the temperature dependence of g does not
affect any measurable physical quantity.

The simple Ising model, and consequently the lattice
gas, has a special symmetry with respect to the sign of
the ordering field A

&
~ As a result, the density Quctuations

and the fiuctuations 5s =s —(s ) in the entropy density,
or equivalently the fiuctuations 5u = u —( u ) in the ener-

gy density, are statistically independent on the critical
isochore, i.e., (5p 5u ) =0. Real fiuids, however, do not
possess the symmetry of the lattice gas, so that
(5p5u )%0 [38]. Thus in real fiuids the energy fiuctua-
tions have a strongly fluctuating component [40]. As a
consequence, the chemical potential and temperature
themselves have no definite scaling dimensionality and
one should identify the scaling fields with the linear com-
binations [38]

b)1
hp

p, RT, a&b&
—a2b2

2 hs
a]b] —a2b2

(2.17)

scaling field h2, as given by (2.14), differs from the scaling
field hz as given by (2.3). We note that the potential b,P
in (2.7) is a universal function of h i and h z except for two
system-dependent scale factors relating h, and h 2 to the
physical fields [3,5,36]. In principle, these scale factors
are represented by the coefficients a, and b, in (2.13) and
(2.14). If the choice (2.15) is made for a, and b„ then
two other scale factors need to be introduced into the
scaling function f (z) so as to reproduce the power laws
(2.9) and (2.11) with the actual amplitudes I 0 and Bo.

The densities conjugate to h
&

and hz are

h ) =a )Ag +a26T,
h2 —b ) hT+ b2hg,

(2.13)

(2.14)

where Ag =g —g, and AT=T —T„while a; and b; are
system-dependent coeKcients to be determined from a
comparison with experimental data. These scaling fields
are made dimensionless by taking a

&
and bz proportional

to 1/RT, and a2 and bi proportional to 1/T, . In the
one-component Quid limit we shall in practice normalize
the scaling fields by taking

aaP
Bh~ h,

=h 2 g(z)

a,
p, RT, a&b&

—a2bz

Ap
aib] —a~b2

1 1
ai =, bI =

RT, '
T,

(2.15) (2.18)

so as to remain consistent with (2.1) and (2.3).
The fact that the weak scaling field hz has a com-

ponent proportional to hg was originally noticed from an
analysis of the decorated lattice gas [41]. On comparing
(2.13) with (2.12) we note that the coefficient a2 is propor-
tional to —(Bg/BT)l, o. Since g, and (Bg/BT)l, o de-

1 1

pend on the choice of zero energy and zero entropy, the
coefficient a 2 in (2.13) is arbitrary. Specifically, the
values of (dg/BT)p= —S, where S is the molar entropy,
and of (Bg/BT)z o= —a2/ai at the critical point de-

1

pend on the choice of zero point of entropy. With the
path h, =0 chosen so as to coincide asymptotically with
the critical isochore p=p„ the difference

where f '(z) =df /dz and

1(t(z)=(2—a)f (z) —(P+y)zf'(z) . (2.19)

Hence, the densities P, and Pz conjugate to the scaling
fields are linear combinations of the physical densities
Ap=p —p, and hs =s —s, . Specifically, the order pa-
rameter P, is not simply proportional to bp but contains
a contribution proportional to As. As a consequence hp
along the two branches of the phase boundary varies
asymptotically as

(2.20)

S a2/a i =p (BP/BT)g —p (2.16)
with

Bo= (1 RT, a zb2 )~f '(0)— (2.21)
is well defined at the critical point. The coefficient b2 in
(2.14) is often referred to as the mixing parameter [36,41];
it has an important physical consequence, since it causes
a nonclassical behavior of the coexistence-curve diameter
as discussed below.

For real Quids the singular part of the field-dependent
potential P has the same dependence (2.7) on the fields h i

and h2 as that for the lattice gas, but the definition of the

and

Do=b2RT, (1 RT, azb2)' (2 ——a)f (0) . (2.22)

The second term in (2.20) causes singular asymptotic
behavior of the coexistence-curve diameter [42]. Associ-
ated with the densities P, and P2 we may define suscepti-
bilities y& and g2..
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Bh i

a 2

=h2 i'f"(z),

=h~ %(z),

(2.23)

(2.24)

+12
gy h)

with %(z)= ( 1 —a )g(z) —
(p+ y )z f'(z) and where

f"(z)=d2f /dz2 and f'(z)=dg/dz. In addition we may
define a cross susceptibility as

At the critical point
C C

Bg Bg
BT BT h, =0.P

a2
(2.32)

(p/p, )(Ci /R)—
p, R BT

(1 a2b—2/aibi) T, b i/2
1 + ( b 2 /a 1 ) X2X 1

For the isochoric heat capacity per unit volume in zero
field h

&
=0 in the one-phase region one obtains

+21

BA) h~

=h~2 '[Pf'(z) (P+y—)zf"(z)] . (2.25)

with coefficients [33]

7
—o'+ g 7~ —2a+

and

Ao=(1 RT, a2—b2) (2—a)(1—a)f (0)

(2.33)

(2.34)

Bp

Bg
p

aP

Bp=p +p, RT, (a ipi+b', y, +2aib2y»)
BP

For h, =0 and at hz )0 (above the critical point) the or-
der parameter P, is zero and yi2 vanishes in zero field in
the one-phase region. Using (2.17) and (2.18) we obtain
for the susceptibilities associated with the physical densi-
ties p and s:

(RT,b—, )'(1 RT'a—,b, )r '~+'(2 —~)'

X (I —iz)'f'(0)/f"(0) . (2.35)

The isothermal compressibility in zero field h, =0 in
the one-phase region behaves as

RT, =RT, +I v. r+t, r (2.36)
. T . T

with

and

(2.26)

and

I =(1 RT, ~b )
—rf"(0) (2.37)

cjs

BT
Bs

aT
~
+p, RT, (any, +b, y2+2a2b, X»),

(2.27)

l, =(RT,b2)2(l RT, a2b2) —(2—a)(1—a)f (0) .

(2.38)

It may be interesting to remark that the amplitudes
3o, Do, A &, and I

&
obey the simple universal relation

BspCv= T

Since

.P

Bs' aT.
Bg' aT

(2.28)
Bg

Bg
aT . P

Bp Bg
BT Bp

(2.29)

Bp
aT

~
+p, RT, (a ia2+i+bibi+2),Bp

BT
(2.30)

the expression for (Bg/BT) near the critical point be-
comes

where the superscript r here and hereafter denotes deriva-
tives of the regular part P" of the pressure in Eq. (2.6).

Using (2.26) and (2.27) we obtain for the isochoric heat
capacity per unit volume

(1—a) Do= AOI, = —A, I o . (2.39)

III. SCALING FIELDS IN BINARY MIXTURES

It is also worthy to note that the coefficients a2 and b2
cannot be determined from any experiment independent-
ly. The coefficients a2 and b2 enter the critical ampli-
tudes of the asymptotic power laws for physically
measurable quantities in such a way that they disappear
in any of the universal amplitude ratios such as AOI o/Bo
and Aol i/Do. The mixing of the field variables does not
affect the asymptotic critical scaling-law behavior and
does not violate the concept of asymptotic critical-point
universality. The only effect of the mixing is the appear-
ance of nonasymptotic corrections. However, as we shall
elucidate below, in binary mixtures the mixing of field
variables has more significant consequences, changing in
some cases the asymptotic critical behavior.

Bg
aT

a )a2y)+b)b2y2
a )y)+b2y2

(2.31) In binary mixtures the density —P =Q/V of the ther-
modynamic potential Q is a function of three field vari-
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ables, namely, the temperature T, the chemical potential

p, of the solvent, and the difference p=pz —p, between
the chemical potentials p& and p2 of the components:

= (a3$, +b 3/2)p, R T, , (3.7)
Bp p&, T

dP =s dT+p dp&+p2dp, (3.1) bs =s— =(a2$, +b, A)p, RT,0 0

P~P)
(3.8)

where p2=px is the partial density of the solute. Here p
is the molar density of the mixture and x the mole frac-
tion of the solute. The application of the principle of
critical-point universality implies that the thermodynam-
ic behavior of near-critical mixtures is still characterized
by two scaling fields h, and h2, so that the scaling law
(2.7) remains valid near any critical point [2]. However,
these scaling fields are now in general linear combinations
of the three physical field variables 6T = T —T„
Ap, =p, —p„, and bp=p —p, :

1 b]

p, RTo a&bi Q2b2 Qib, —a2b2

b2

(3.9)

In first approximation Ap=p —p„~p2=p2 —p~„and
bs =s —s, . Thus the relevant densities P, and P2 can be
expressed as linear combinations of any two of the three
physical densities Ap, hp2, and hs:

h, =a&hp&+a25T+a34p,

h2 =b] AT+b2hpi+b35p

(3.2)

(3.3)

b31 b2

a3bz —a&b3 a3bz —a~b3

(3.10)
It should be noted that all system-dependent parameters
in (3.2) and (3.3), namely, the coefficients a; and b; as well
as the critical parameters T„p&„and p„depend
parametrically on the actual position on the critical line.
This position can be specified by any of the three vari-
ables T„p&„orp, . An important difference between the
definitions of h& and h2 for mixtures as compared to
those for one-component Auids is that all coefficients a,.
and b; are system-dependent functions of the position on
the critical line. A representation of the two scaling fields
h, and hz for binary mixtures in the form of a linear
combination of the three physical field variables was first
proposed by Saam [7], who, however, considered vapor-
liquid critical phenomena only.

The pressure P can again be separated into a singular
and a regular part,

b31 Es-
p, RT, Q2b3 Q3b]

1

~pz
a2b3 —a3b&

(3.11)

1 QI

p, RT, a &bi a2b2

Q2
Ap

a&b&
—azb2

(3.12)

Q3ap

(3.13)

a&1 Q3

poRTo a3b2 a]b3 a3b2 —a, b3
~p — ~pz

1
4'2 =

0 o KP2 As
p, RT, a2b3 —

a3b& a2b3 —a3b]

P =bP(h &, h2)+P"(Tp„p), (3.4)
(3.14)

where the regular part P" is now an analytic function of
the three field variables T, p„and p. The singular part
hP satisfies a scaling law analogous to (2.7):

bP/P, RT, =bP=hz f (z), (3.5)

The susceptibilities g& and g2 and g&2 are again given by
Eqs. (2.23)—(2.25). Using (3.6) and (3.7) we obtain for the
response functions associated with the physical densities

p and p2.

=(a,p, +b2$2)P, RT, ,
0 0

Bpi
(3.6)

where p, and T, are the critical density and the critical
temperature of the pure solvent. Noting that
p=(BP/Bp, ) „, s =(BP/BT)„„, and p =(BP/Bp, )

and retaining the definitions P, = (Bb.P /Bh, )& and
2

Pz = ( Bb,P /Bh 2 )z, we obtain

Bp

Bp)
Bp

Bp
ap

+p, R T, (a,y, +b ~y2+ 2a, b2y, 2)

in analogy with Eq. (2.26), and

(3.15)

p~P Sr
Bx

Bp

~p2

~P S, T

+x a

~, T

+p, RT, [a3(a, —a, x)y, +b, (b, b2x)y~+ [b, (2a—, —a,x) —a3b2x]y, 2] . (3.16)
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In practice one does not measure experimentally (Bp2/Bp)p T but rather the osmotic compressibility (Bx/Bp)~ T,
which is directly related to the diffusion coefficient [3] and which near the consolute point is proportional to the intensi-
ty of scattered light [43]. To obtain the latter quantity from (3.16) we note that

with

Bp

I, T

Bp Bp
PX

BP Pl T BP
(3.17)

Bp Bp +p, RT, [a &a3+]+b3b3+2+(a]b3+a3bp)g]3] .0 0BP,T BP,T
(3.18)

From (3.16)—(3.18) we thus obtain

p =p +p, RT, [(a 3
—a&x) g&+(b3 b2x) —y2+2Ia3b3 —(a&b3+a3b2)x+a&b&x ]g&&] .Bx Bx 0 0 2 2 2

BP P T BP
(3.19)

At h
&
=0 and h2 )0, P& =0, so that the cross susceptibility y, z in the equations above vanishes in zero ordering field in

the one-phase region.
Other measurable quantities are (dp!dP ) T „,associated with the coefficient of the isothermal compressibility, and the

isochoric and isobaric heat capacities per unit volume at constant composition PCv and PC& „.
Bp
aP

Bp 1 Bp Bp
ap T p2 ap pT ax pT

(3.20)

BXBs
P V, x Bp

p~fM px ~ p T
r r

T BP Bpp, p
p, x T,x

From Eqs. (3.15), (3.17), and (3.20) we have in zero field in the one-phase region (g&3=0):

(3.21)

(3.22)

Bp

r

2a1X1 '
p0RT,'

pc BP PT
K2y2+ 1+ K1 +2 1 Bp

P BX pT

b2 1 OP

a, p, Bx

b3 —b2X

p0RT,'
1+

pe

' r —1

[a $1~ ]X]+(b3 b2X) X2]

(3.23)

where we have introduced quantities K, and K2 defined as

a3
X

a,
(3.24)

and

b2
(a3 —a, x)—(b3 —box) =a3b2/a, b3 . —

a,
(3.25)

Expression (3.21) for the isochoric molar heat capacity contains two quantities which are generally weakly divergent
and generally compensate each other at the critical point of a mixture:

Bs
aT

Bs
BT pp

2
BP ~I 1

BT PP BP T
(3.26)
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' 2
Bx Bx 1 Bp BP
BI T ap PT P2 aI PT ap T

(3.27)

From Eqs. (3.6) and (3.8) we have

Bp +P,RT, (a iaqXi+b ib2Xz),0 0

P~P)

Bp

) s

(3.28)

+p, RT, (a2X, +b, X~) .
P~Pl

Bs
(3.29)

clT p, p

Bs

aT
Bs
BT . p~p

2' r —10 0pcR Tc
P,RT,y1

P1+a2 + b2
. PP

2 P1
(aibi a2b2) X2+ ai $T . p~p

—1

Bp
ap +b»2Xi '

Pc

p', R T,'1+ Bp
Bp

(a iX, +b~X2)
Pc

(3.30)

and

Bx

Bp

Bp

p RT
—1

Bx
K2y2+ P,

Bp

p', RT,'1+
Pc

2 2
b2 b3 —b2XBx+K1 + P,

BP T ai
2a1+1 '

a1Pc

Bp (a 1X1+b 2X2)

(3.31)

From the expressions presented above one can see that all
second derivatives of the thermodynamic potential are in
general combinations of the strong and weak susceptibili-
ties, y, and y2, as is the case for one-component fluids.
While for one-component Auids only one of these suscep-
tibilities dominates the near-critical behavior, for mix-
tures the relative contributions from y, and y2 depend on
the values of the coefficients a; and b; as they vary along
the critical line.

h, =bi(p)&T(p)+b2(p)&p)(p), (4.2)

where all system-dependent parameters depend parame-
trically on the hidden field p. Specifically,
bp, (p)=pi —p„(p) and b, T(p)=T T, (p). On th—e
critical line we have pi=pi, (p) and T=T, (p) and the
scaling fields h, and h2 vanish. Now we consider the
scaling fields h1 and h 2 at a state where p =p, +Ap,
hp, =pi p„(p, +hp), an—d b, T=T —T, (p, +hp) near
an arbitrary point p, on the critical line. Expanding
around p =p, we obtain in first approximationIV. ONE-COMPONENT LIMIT

hi =a, (p, )bp, (p, )+a2(p, )b, T(p, )+a3(p, )bp, (4.3)

h2
——bi(p, )b T(p, )+b2(p, )dpi(p, )+b3(p, , )bp, (4.4)

We first consider the behavior of the scaling fields (3.2)
and (3.3) in the one-component limit x ~0. For a dilute
solution it is convenient to treat p as a hidden field [3].
Then

h, =a, (p)Api(p)+a&(p)hT(p), (4 1) with

Substituting (3.28) and (3.29) into (3.26), and (3.15), (3.17), and (3.19) into (3.27), respectively, we finally obtain in zero
field in the one-phase region
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dpi dT
a3= —a, +a~

dIJ dP

dTc d pic
b3 = — bl +b2

dp dp

(4.5)

(4.6)

lute solution

a 3
x dP, a2S—

po(R To)~ dx ' ' a
dT. +
dx RTQ

(4.13)

dT

dp

In a dilute solution [3]

dT dp
dx dx

—1

dTc x
dx RT,

(4.7)

and

dP,E1=
pQRTQ dx

c
Tc

aT p=p, h )
=Q dx

(4.14)

dpic
dp

dpi, dp,
dx dx

—1

dpic x
dx RT,

(4.8)

We note that in this paper total derivatives are always
taken along the critical line.

From (4.7) and (4.8) we conclude that both dT, /dp
and dp„/dp, and thus a3 and b3, vanish in the limit
x ~0. Thus the general expressions (3.2) and (3.3) reduce
to the expressions (2.13) and (2.14) for the one-component
solvent with p, =g. Obviously, the expressions (3.9) and
(3.12) for Pi and P2 become identical to the corresponding
expressions (2.17) and (2.18) for the pure solvent. The ex-
pressions (3.10) and (3.11) for P, and the expressions
(3.13) and (3.14) for P2 of dilute solutions become also
identical to (3.9) and (3.12), respectively.

Since the coefficients a, and b2 approach their values
for the pure solvent, we note from (3.15) and (2.26) that
the response function (Bbp/Bp, )„T=p(Bp/BP)„T will

behave like the response function (Bbp/Bg)T=p(Bp/
BP)T of the one-component fiuid. On the other hand,
both the singular part and the regular part of the osmotic
compressibility ( Bx /Bp )z T vanish as x —+0. The singular
part vanishes, since in (3.19) both a3 and b3 become pro-
portional to x in accordance with (4.5)—(4.8), while the
regular part in the dilute solution limit becomes [3]

The expression in square brackets in Eq. (4.14) has been
designated by Levelt Sengers as the Krichevskii parame-
ter [44]. Here (dP/dT)„' „q =o denotes the limiting

value of (BP/BT)„„h 0 at the critical point. In a di-

lute solution the derivative (BP/BT)„' „h o may be

identified with (BP/BT) at the critical point of the
C

solvent. A characteristic temperature ~1 may now be
defined as

vl=Xr ~1ry

with

r~X~=
(p, RT, )

dP,
dx

c
dT,

'
aT p=p, Q i

=Q dx

(4.15)

(4.16)

and where I Q is the amplitude of the asymptotic power
law yl I Q7

~ for the susceptibility in the one-phase re-
gion in zero field. Alternatively, the characteristic tem-
perature 71 can be associated with the behavior of
(Bp/dP)T„as given by (4.11). For r»r, (dp/BP)T
diverges strongly just like the compressibility of one-
component Auids. If we do not restrict ourselves to the
dilute-solution limit, the quantity Xz. in the definition
(4.15) of the crossover temperature ri can be generalized
to

ax

~, T

ax x
ap RT,

(4.9)

Since in the one-component limit ai =1/RT, in accor-
dance with (2.15), the expressions for the osmotic
compressibility and the isothermal compressibility reduce
to

r,
Xi- =

RT,'
with

=1K1=
pc

dpc
dx

ax
ap

2Kl, (4.17)

c
ap dT.
aT =,Q =Q dx

(1+x 'K y )
ap PT RTQ

(4.10) (4.18)

ap
ap

ap xl x '(R T,Ez )2yz+ 1

1+x 'Z2y,

A second characteristic temperature ~2 may be defined
as the temperature where

(4.11)

For dilute mixtures we can consider two characteristic
temperatures ri and v.

z [3]. The first is defined as the tem-
perature at which the contribution from the singular part
of (Bx/Bp)p T is comparable to that from the regular
part of (Bx/Bp), so that

(RT, )
X2y2-—1 .2

Since for a dilute solution Eq. (3.25) reduces to

dT x dT
E2=

T, dp R(T )~ dx

(4.19)

(4.20)

K 1+1—1 ~
2 (4.12) we obtain

Furthermore, it follows from (4.5) and (2.16) that in a di- & =X"+2 (4.21)
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with

(RT, K2)
X~ —Ap

2
dT

=Ap
( To)2 dx

(4.22)

limit the critical parameters T, and x, become insensitive
to changes in pressure and, hence, insensitive to changes
in p1. When the compressibility is small, but finite, we
treat p, as the hidden field, so that

where Ao is the amplitude (2.31) in the asymptotic power
law g2 Ap~ for the weak susceptibility. More gen-
erally

h 1 a2(P'1)~T(P1)+a3(P1)~P(Pl)

h2 bi(Pi)ET(P, )+b3(P1)bP(Pi),

(5.3)

(5.4)

pPRTP
Ap

Pc

r —1

Bx

Bp pT
(4.23)

h, =a, bp2+a2b T+(a3 —
a 1 )bp . (4.24)

For r ))r, the compressibility (dp/dP) r diverges
strongly as mentioned earlier, for r « 2.

2 (dp/rlP) T
diverges weakly as y2, while in the intermediate range
~, &~&~2 (dp/rlP)z „exhibits crossover from strongly
divergent to weakly divergent behavior. For ~&&~2,
where (r)P/r)T)T „diverges weakly, Ci, „diverges weakly
also, while C~ tends to a finite value. The characteristic
temperature ~z also determines the so-called Fisher re-
normalization of critical exponents I45]. Physical quanti-
ties measured as a function of temperature at constant
composition and constant density will satisfy for ~&&~&
the asymptotic power laws but with renormalized
critical-exponent values [3,4,45].

Thus far we have considered in this section the one-
component limit x ~0 corresponding to that of the pure
solvent. In addition one can consider the one-component
limit x ~1 corresponding to that of the pure solute. For
this limit it is convenient to rewrite Eq. (3.2) in the form

where AT(p, , )=T—T, (p, ) and bp(p, )=p p, (—p, ). We
consider the scaling fields h, and hz in a state where

p, =p„+Ap„AT =T —T, (p„+bp, ), and
bP=P —P, (P„+bP, ) near an arbitrary point P„on the
critical line. We then obtain in first approximation in
analogy to (4.3) and (4.4):

h 1 a2(P1 )~T(P1 )+a3(P1 )~P(P1 )+a 1(Pl )~Pl

(5.5)

with

h2 b1 (Pl )~T(P1 )+b3(P1 )~P(P1 )+b2(P1 )~Pl

with

dpca1= — a3 +a2
dP1 dP1

dpc
b2= — b3 +b1

dP1 dP1

(5.6)

(5.7)

(5.8)

In the incompressible limit d T, /d P 1
=0 and

dP, /dP1=(dP, /dx)(dx/dP) =0 and the coefficients a,
and b2 vanish. Thus the general expressions (3.2) and
(3.3) for the scaling fields now reduce to

lim (dp, /dx) '= lim(1 x)/RT, =0-,x~1 x —+1

we have from Eqs. (3.24) and (4.18)

h, =a2AT+a36p

h2=b, kT+b3AP .

(5.9)

(5.10)

a3

a1
(4.25)

V. LIMIT OF AN INCOMPRESSIBLE
LIQUID MIXTURE

The compressibility of liquids near a consolute point is
usually very small. Hence, we consider the limit of criti-
cal phase separation in an incompressible liquid mixture.
For this purpose we note that on the critical line

and the difference a3 —a, = —a, (1—x+K, ) vanishes in
the limit of the pure solute. This difference a3 —a, plays
in the pure-solute limit the same role as a3 plays in the
pure-solvent limit. Meanwhile the difference a3 —a&x
behaves symmetrically in both limits.

1 1

RT, ' ' T,
(5.11)

On comparing (5.9) and (5.10) with (2.13) and (2.14) we
conclude that the thermodynamic behavior near the con-
solute point in an incompressible liquid mixture is iso-
morphic with that of a one-component Quid near the
vapor-liquid critical point provided that the chemical po-
tential g is replaced with the chemical potential difference
P =P2 —P, . Specifically, the order parameter p, is now to
be identified with expression (3.11). Using techniques
similar to those employed for a dilute solution near the
solvent critical point, one can show that the expressions
(3.9) and (3.10) for $1 transform into (3.11) in this liquid-
liquid mixture limit. On comparing (5.9) and (5.10) with
(2.13) and (2.14) we note that the natural way of normal-
izing the scaling fields A1 and h2 in this limit is to take

dT

dP1

dT, dP,
dP dP1

dx, dx, dP,

dP1 dP dP1

(5.1)

(5.2)
~p2/p2c ++0 I rl~+Do

I rl ' (5.12)

In analogy to (2.20) b p2 at the phase boundary near the
consolute point now exhibits a singular coexistence-curve
diameter:

where dP, /dP, =p, is finite. Near the incompressible with
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0T0
Bo= (1 R—T, b3a2)~f '(0)

p2c Tc
(5.13)

d pc dxc

dx dpi

a3

K1 —X
(5.24)

and

Do= b3(1 R—T, b3a2) (2—a)f (0) .
p', RT,

P2c
(5.14)

where X, is again related to the Krichevskii parameter in
accordance with Eq. (4.14) and which becomes infinite in
the incompressible hquid-mixture limit. Assuming that
Ki »x in (5.24) and taking a3=1/RT, in accordance
with (5.11), we now define a characteristic temperature as

Since upon substituting (5.11) into (5.9) and (5.10)

" +a,aT,
c

AT
h2 = +b36P,

T.

(5.15)

(5.16)

& =x"~r
with

P, T, l 0X~=
p, RT,

Bp
aP

r —1

(5.25)

(5.26)

we have for the strong susceptibility in zero field

with

=I ~-~+r ~- +0 1 (5.17)

and

I o= (1—R T, a2b3 ) i'f "(0) (5.18)

I i=(RT,b3) (1 RT, a2—b3) (2 —a)(1—a)f (0) (5.19)

to be compared with (2.36). For the molar heat capacity

C~, /R =C „/R = Aor + A, r~ + . . (5.20)

with

Bp
BP

(5.27)

Thus

For ~ && ~1 the compressibility at constant p will exhibit a
strongly divergent behavior, while for v ))71 the
compressibility will behave regularly like that of an ordi-
nary weakly compressible liquid mixture. An order-of-
magnitude estimate of Xz may be obtained by taking
(BP/Bp)" „=(BP/Bp)", and dp, /dx =RT, /x (1—x).
It is interesting to note that the crossover temperature v,
defined by (4.15) for a dilute solution is proportional to
K i~i', while the crossover temperature ri defined by (5.25)
is inversely proportional to K, ~.

A second characteristic temperature ~2 can be deduced
from (3.23) as the temperature at which

2
K2

=RT,
1

Ao=(1 —RT, azb3) (2 —a)(1—a)f (0) (5.21)

with

1/a (5.28)

A, = —(RT, b ) (1 RT a2b3)~—

X(2—a) (1 —a) f (0)/f"(0) . (5.22)

In real liquid mixtures the compressibility is small but
not negligible. We can analyze the behavior of the
compressibility ( Bp/pB)iz „=p(Bp/BP)z „of a weakly
compressible liquid mixture in a manner analogous to the
analysis of the osmotic compressibility of a solution near
the one-component limit in the preceding section. From
(3.15) we estimate that the singular part of the compressi-
bility becomes comparable to its regular part when

Pc Bp
X RT QPPc c Tp

(5.23)

A description of the thermodynamic properties of mix-
tures is considerably simplified if one uses an approxima-
tion, referred to as the critical-line condition [9], which
amounts to special choices for the energy or entropy
along the critical line. Here we find it convenient to in-
troduce a critical-line condition in the form a2 =0, which
according to (2.16) implies S, =p, (BP/BT)„'
From (5.7) we then obtain

AoRT Bp
aP

r —1 ~ '2
2

0 —1

=Ao
Tc Qp

T
L

2
a3b2 —a1b3

a3 —a1x
(5.29)

Using (5.1), (5.7), (5.8), and (5.11) one may conclude

X&=Ao RT p R
T, ' BP

(5.30)

r —1

RTo ~P
c gp

T,p

2 BxE2y2—- K1+P,
Bp

r 2

(5.31)

For z«~2 both the isothermal compressibility at con-
stant composition and the osmotic compressibility at con-
stant density diverges weakly. For r»r, (Bp/BP)z „

It is worthwhile to note that Eq. (5.30) resembles Eq.
(4.23) with Kz given by (4.20) for the corresponding
quantity X„ for dilute solutions: (Bp/BP)z „serves as
(Bx /Bp) p z and dT, /dP serves as dT, /d p, .

Essentially the same expressions for X„can. be ob-
tained from Eq. (3.31) by considering the condition at
which
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does not diverge and in the intermediate range ~z & ~ &7,
(Bp/BP)z exhibits crossover behavior. The osmotic
compressibility at constant density diverges weakly for
~«~2 and it diverges strongly for ~))~&, while exhibit-
ing crossover behavior in the range ~2 & ~ & 7, . For

both Cp and Cv diverge weakly; for ~ &&7z
Cp remains weakly divergent, while Cv tends to a
finite value.

so that the strong scaling field h &, given by (3.2), becomes

h, =a, (bp, +xbp)+a2b, T . (6.4)

Noting that p& =g —px, where g is the molar Gibbs free
energy of the mixture, we have Ap&=kg —xAp —pox,
while Ag = —SAT+ VAP+phx, where S and Vare the
molar entropy and the molar volume, respectively. As a
consequence,

VI. SPECIAL CRITICAL PQINTS
IN A PHASE DIAGRAM

h ) =a, hg0+a2AT

with

(6.5)

On the critical locus of binary mixtures one may en-
counter peculiar points that are of special interest. Ex-
amples are points on the critical locus where dT, /dx =0,
dP, /dT=0, or dT, /dP =0 or where the critical line
meets an azeotrope. In this section we shall show how
the specific thermodynamic critical behavior near such
points can be deduced from the generalized isomorphism
developed in Sec. III.

A. Critical azeotropy

dP,
dT

aP
aT ...

C

(6.1)

From Eqs. (4.14) and (6.1) we note that
C

An azeotropic liquid mixture evaporates like a one-
component Quid, since the coexisting vapor and liquid
phases have identical composition. A phase diagram of a
mixture with a critical azeotrope is shown in Fig. 5. At
the azeotropic critical point [26]

Ag0= —SAT+ VAP . (6.6)

The term Ag0 represents the Gibbs-free-energy di6'erence
of a quasi-one-component fIuid with fixed composition.
On comparing (6.5) with (2.13) we conclude that the scal-
ing field h

&
has the same form as that of a one-component

fluid. As a consequence, the isothermal compressibility
diverges as the strong susceptibility g&, as it also does in a
one-component fiuid. This can be seen if one substitutes
K& =0 into Eq. (3.23) and neglects less singular terms. It
can also be seen from the expression (4.17) for Xr, where
K

&

=0 implies Xz =0. The osmotic compressibility
(ax/ap) p z now diverges weakly as can be seen by substi-
tuting a3 —a,x =0 into Eq. (3.19). The isobaric molar
heat capacity C~ ~ (dp/dP) z „which diverges as y, .

On the other hand the weak scaling field h2 still retains
a mixturelike form as given by Eq. (3.3). Hence, the iso-
choric specific heat capacity Cv will again ultimately
reach a finite value at the critical point as it does general-
ly in mixtures.

B. Maximum or minimum critical temperature

dp,
dx

C

BP dT ==0.
BT p=p, Q) =0 dx

(6.2)

a3=a&x, (6.3)

CP)

It thus follows from (3.24) that at the azeotropic critical
point

Another special case is encountered when the locus of
critical temperatures as a function of the concentration
goes through a maximum or minimum. An example of a
mixture for which the critical temperature T, (x) goes
through a minimum is the system carbon
dioxide+ethane [46]. At this mimmum dT, /dx =0, but
dP, /dx %0. Hence, the quantities K, and X„now
remain finite in accordance with (4.14) and (4.16). The
condition dT, /dx =0 implies dT, /dp=O, so that from
(4.5) and (4.6) a3 = —a&dp&, /dp and b3= b, dT, /dp. —
Substitution of these results into Eq. (3.25) shows that in
this case

K2=0 . (6.7)

FIG. 5. Schematic phase diagram of a system with an azeo-
trope critical point (ACP). The solid curves indicate the vapor-
pressure curves of the two pure components. The dotted curve
indicates the liquid-vapor (LV) critical line connecting with the
critical points CP& and CP2 of the pure components. The dash-
dotted curve indicates a line of azeotropic conditions meeting
the critical line at the ACP with a common tangent.

=T
Cp, x Cv, x

P

BP Bp
aT BP

(6.&)

and ( Bp /BP ) r „remains finite, C~ „diverges weakly just

Hence, it follows from (3.23) and (3.31) that (dp/dP)z „
and (Bx/Bp) z now remain finite at the critical point.
Because (Bx/Bp) z remains finite, it can no longer com-
pensate for the weakly divergent behavior of (Bs/BT)
in Eq. (3.21), so that C~„diverges asymptotically as Xz.
Because
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as Cz . The same observations have been made by
Griffiths and Wheeler [6] and by Saam [7]. It is also im-
plied by the crossover model developed by Jin, Tang, and
Sengers for mixtures of carbon dioxide and ethane [21].

If the critical isobar corresponds to the point where
dP, /dT =0, then b T = b, T, in first approximation. Sub-
stitution of (6.12) and (6.14) into the expressions (6.9) and
(6.10) for the scaling fields yields

C. Reentrant critical point dPc dP lc' dT dT (6.15)

h, =a, (T)bp, (T)+a3(T)hp(T)

dP lc dPc=a, bp, +a3hp —a, +a3 AT
dT dT

(6.9)

h2 =b2(T)bp)(T)+b3(T)by(T)
r

dPle dPe—b2kpl +b36p b2 +63 6T
dT dT

(6.10)

where hT, is the difference of two values of T, on the
critical line. In linear approximation

AP =p, hp, +p,S,ET+p2, hp . (6.1 1)

On a path of constant pressure P, i.e., along an isobar, re-
lation (6.11)becomes

bp, = (S,b, T+x,bp) . — (6.12)

We can consider hp as a function of T, P, and x. Again
in linear approximation

AT+
T,x

gp + Bp
Bx

(6.13)

Since (Bp/Bx )~ z =0 at the critical point, we have along
the critical isobar

bT.
P, x

(6.14)

A different special point is encountered when
dP, /dT =0. Such a point on the critical line, as indicat-
ed in Figs. 2 and 3, may be called a reentrant critical
point (RCP) according to a nomenclature adopted in
liquid-crystal phase transitions [47]. Below the reentrant
critical pressure the one-phase (disordered phase) returns
upon lowering the temperature at constant pressure. At
such a reentrant critical point nothing special happens
with the isochoric molar heat capacity Cv, which has a
finite limiting value, nor with the isothermal compressi-
bility which asymptotically diverges weakly as in the gen-
eral case. Since at the reentrant critical point
(dP/BT)v„=dP, /dT=0, the isobaric molar heat capa-
city CP „remains finite.

Near points of extremum pressure or extremum tern-
perature one observes a doubling of the critical-exponent
values along certain thermodynamic paths depending on
the character of the extremum [48—56]. To elucidate the
origin of this exponent doubling we treat the temperature
T as the hidden field in the vicinity of the point where
dP, /dT=O, so that

dPc dPle
(6.16)

On the other hand it follows from Eq. (3.1) that the con-
dition dP, /dT =0 implies

dPc dP lc

dT dT
(6.17)

Upon substitution of (6.17) into (6.15) and (6.16) we see
that the linear terms in the expressions for the scaling
fields vanish near the critical reentrant point and the
leading asymptotic scaling-field behavior is determined
by the quadratic terms arising from an expansion of the
coefficients in Eq. (6.9) and (6.10) and leading to the
phenomenon of exponent doubling. For example, the
strong susceptibility y, near the point dP, /dT=O will
vary along the critical isobar as

(6.18)

Similarly all other critical exponents in the power laws
along the critical isobar are doubled.

D. Double critical point

A double critical point is a point where a line of lower
critical points and a line of upper critical points merge.
The definition of a double critical point is not unique
[57]. It can manifest itself in the phase diagram either as
a reentrant critical point where dP, /dT =0 or as a criti-
cal point corresponding to a temperature minimum as in
Fig. 4. The first case, also referred to as a hypercritical
point [3,54] is characteristic for closed-loop consolute
phase diagrams and a doubling of the critical exponents
occurs along the path P =const [49—56]. The second
case, also referred to as a double plait point dividing the
vapor-liquid critical line and the gas-gas critical line,
leads to a doubling of the critical exponents along the
path T =const [48]. Therefore, the two cases reduce to
those considered above.

VII. CROSSOVER FROM THE ONE-COMPONENT
VAPOR-LIQUID CRITICAL LIMIT

TO THE MIXTURE
LIQUID-LIQUID CRITICAL LIMIT

We consider here the case that the critical locus is a
continuous line which starts at the vapor-liquid critical
point of the solvent and which terminates in a consolute
critical endpoint as indicated in Fig. 3. The physical
fields in expressions (3.2) and (3.3) exchange their roles:
Ap plays the role of hidden field in dilute solutions, but of
the ordering field in "incompressible" liquid mixtures,
while hp& does the same in the opposite cases. The varia-
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tion of the coeffi.cients a
&

and a3 along the critical locus
results in the transformation of the order parameter P,
from density to concentration, while the variation of the
coeffi.cients b2 and b3 is responsible for the transforma-
tion of the origin of the nonasymptotic corrections [cf.
Eqs. (2.22) and (5.14)]. Such an exchange occurs in both
scaling fields h

&
and h 2 which are controlled by the varia-

tion of the coefficients a, and a3 and of b2 and b3 along
the critical line.

The coefficient a, in units of (RT, ) will vary con-
tinuously from unity in accordance with Eq. (2.15) to
zero in the incompressible liquid-mixture limit. Qn the
other hand, the coe%cient a3 will vary from zero to one
in the same units. To make this variation explicit, it is
convenient to express the coe%cients a& and a3 in terms
of polar coordinates [31,58],
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a, = r (x)cosP,

a 3
=r (x)sing,

(7.1)

(7.2)

where the angle P varies from /=0 in the pure solvent
limit (x~0) and from P=m/4 in the pure solute limit
(x~1) to P=m/2 in the incompressible liquid-mixture
limit. Hence

FIG. 6. Variation of the coeKcient a& (curve 1) and of
a 3 a

&
x (curve 2) in units of R T, along the critical line as a

function of the concentration according to Eqs. (7.4) and (7.7)
with a simple approximation (7.8) for E&. The limits x =0 and
x =1 correspond to the critical points of the pure components
(CP, and CP2 in Fig. 3); x =x& =0.2 corresponds to CEP, in
Fig. 3 and x =x2=0.5 corresponds to CEP& in Fig. 3. The
dashed curves between x& and xz correspond to a miscibility
gap, where the critical line does not exist.

=x —K, =tang . (7.3)

I
ai =r(x) +1+(x —K, )

(7.4)

1

a~ =r (x)
Ql+(x K,)—

with a radius

x(x —xz)
1/2

r(x)= 1+
RT, (x) 1 —xz

(7.5)

(7.6)

Based on this approach we may suggest simple interpola-
tion formulas for the coefBcients a

&
and a3 that are expli-

cit functions of the concentration x and which incorpo-
rate the two limits on the critical line:

in Fig. 3; x =x
&

and x =x2, for which we have arbitrari-
ly adopted the values x& =0.2 and xz=0. 5 correspond to
CEP, and CEP2 in Fig. 3. The interval x, &x &x2 corre-
sponds to a miscibility gap where the critical line does
not exist.

The behavior of Ki as given by Eq. (7.8) assumes that
there are no special points on the critical line except the
one-component limits and the incompressible liquid-
mixture limit. The possible existence of special points,
such as an azeotropic critical point or points of ex-
tremum of T, (x) and P, (x) as a function of x will change
the behavior of K, (x) s a function of x and, hence, will
lead to a corresponding change of the crossover behavior
of the coefficients a, and a3 through Eqs. (7.4) and (7.5).

1
a3 —aix = —a,K, = —r(x) +1+(x —Ki )

(7.7)

In Fig. 6 we show the variation of the a, and a3 —a,x
according to Eqs. (7.4) and (7.7), if we assume for simpli-
city that the behavior of K& along the critical line can be
represented by

x(1—x)
fx —x, f

(7.8)

The limits x =0 and x =1 correspond to the critical
points of the pure components, indicated by CP& and CP2

where x2 is the value of the concentration x in the in-
compressible liquid-mixture limit, which is assumed to
correspond to CEP2 in Fig. 3, while K, is given by Eq.
(4.18). The difference a3 —a,x is then given by

VIII. DISCUSSION

Most accurate experiments on near-critical binary
liquid mixtures have been performed in the immediate vi-
cinity of consolute end points, where the experimental
variables T —T, and x —x, at constant pressure are very
close to the isomorphic variables hz and P, . One then
finds indeed the asymptotic universal critical behavior of
such properties as the osmotic compressibility [59—66],
the isobaric specific heat [67,68], and the coexistence
curve [69—72]. Asymmetric corrections due to a
difference between T —T, and h2 and between x —x, and

P, are difficult to detect experimentally in the commonly
used temperature range (T—'1, )/T, varying from 10
to 10

There are some investigations of the isochoric specific
heat capacity C& in liquid mixtures near the consolute
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point under nonisomorphic experimental conditions, i.e.,
at constant x and p [3,73,74]. The results of these studies
confirm the conclusion of Sec. V that for liquid Inixtures
with a weak dependence of the critical temperature T, on
the pressure the temperature range v'2 where a renormal-
ization of the critical exponent for Cz occurs is very
small. In the case of a mixture of liquid methanol and cy-
clohexane, for which the essential parameter entering in
(5.30) pR (dT, /dP) =0.03, one observes a weak but no-
ticeable depression of the critical behavior of Cz, as
compared to the singular behavior of C~„[74]. In the
case of a mixture of liquid iso-octane and nitroethane, for
which pR (dT, /dP) is lower by an order of magnitude,
both Cz and Cz exhibit identical singular behavior
[3,73].

In contrast to liquid mixtures near consolute points,
the asymptotic thermodynamic behavior of fiuid mixtures
near vapor-liquid critical loci have not been investigated
so extensively with the exception of such simple mixtures
as He+ He [15] and COz+C2H6 [22,75,76]. For fluid
mixtures in which the critical points of the one-
component limits are smoothly connected by a vapor-
liquid critical line, i.e., mixtures exhibiting type-I phase
behavior, one commonly applies the isomorphism princi-
ple in the simplified form where the scaling fields h, and
h2 are related to two physical fields Ap and AT only,
while p, or equivalently g=e

"~ /(1+e "~ ), is treated
as the hidden field [9,10,22]. The critical parameters and
the coefficients a „a2 and b „b2 in Eqs. (3.2) and (3.3) de-
pend parametrically on the hidden field g, while a3 and
b3 are taken to zero. However, even in the case of Auid
mixtures with type-I phase behavior we expect that the
introduction of the more general expressions (3.2) and
(3.3) for the scaling fields with a3%0 and b3%0 will be-
come necessary when the difference between the critical
temperatures of the two pure Quid components becomes
large.

Some studies of the critical behavior of dilute solutions
have been reported. For instance, in dilute solutions of
n-heptane in ethane, in which the concentration depen-
dence of T, is very steep, the renormalization of the criti-
cal exponent of the isochoric specific heat capacity has
been observed [76]; for a solution with a n-heptane mole
fraction x =0.03, the crossover temperature ~2 defined by
(4.21) is between 10 and 10, and the apparent critical
exponent a is indeed renormalized at T(v2.

Studies of the isochoric specific heat capacity of mix-
tures of CO2+C2H6 near the azeotropic critical point
[76] and of the osmotic compressibility of fiuid mixtures
near double critical points of two kinds, namely, near a
double plait point which corresponds to a temperature
minimum on the critical line [48] and near a liquid-liquid
hypercritical point [56] also show agreement with the
behavior implied by our general isomorphism approach.
In particular the doubling of the exponent y and the

crossover from the universal value of y to its doubled
value has been observed for a mixture of polystyrene and
acetone [56] and for a pseudobinary mixture of guaiacol
and glycerol-water [77].

Unfortunately, experimental studies of the actual
crossover of the thermodynamic properties of fiuid mix-
tures along the critical line from vapor-liquid behavior to
liquid-liquid behavior are not yet available. The present
paper yields some quantitative predictions of such a
crossover behavior which can be tested experimentally.
Promising systems for such a study would be mixtures of
hydrocarbons with widely different molecular masses
such as, e.g. , methane and n-hexane.

IX. CONCLUSION

We have formulated a general procedure for imple-
menting the principle of critical-point universality to
specify the critical thermodynamic behavior of fiuid mix-
tures. The approach goes beyond the original work of
Griffiths and Wheeler [6], of Saam [7], and of Anisimov,
Voronel, and Gorodetskii [8] in that it incorporates the
continuous crossover transition of relevant scaling fields
to hidden fields and vice versa. We recover the known
critical thermodynamic behavior in the vicinity of critical
points where special conditions are satisfied.

In addition, we have proposed general crossover ex-
pressions (7.4) and (7.5) for the coefficients that are re-
sponsible for the transformation of the strong scaling
field and of the order parameter as one moves along the
critical line. These expressions contain only one system-
dependent parameter IC& as defined by Eq. (4.18) and they
include all general and special critical behavior, such as
the one-component limits, the "incompressible" conso-
lute limit, the azeotropic critical point, and the points of
extremum of T, and P, as a function of x, depending on
the actual value of K, . The approach can also be used to
elucidate the critical behavior of transport properties of
fiuid mixtures and can be generalized to deal with critical
behavior of multicomponent mixtures as well.
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