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Pattern selection in an anisotropic Hele-Shaw cell
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The selection of steady-state viscous 6ngers has been measured in Hele-Shaw cells that are per-
turbed by having rectangular and square lattices etched on one of their plates. The strength of the
perturbation was varied by varying the cell gap, and over a wide range of observable tip velocities
this local perturbation was also made microscopic in the sense that the capillary length of the How

was large in comparison to the cell size of the underlying lattice. Above threshold the microscopic
perturbation results in the selection of wider fingers than those selected in the unperturbed Bow
for all channel orientations in the experiment. All observed solutions are symmetric, centered in
the channel, and have the relation between tip curvature and 6nger width expected of members of
the Saffman-Taylor family of solutions. Selected solutions narrow again at tip velocities where the
perturbations can no longer be considered microscopic.

PACS number(s): 47.20.—k 68.10.—m

INTRODUCTION

Safl'man-Taylor (ST) flow, the motion of an interface
between immiscible fluids in a rectangular Hele-Shaw
cell, is a particularly simple example of a nonlinear,
pattern-forming system. The steady-state viscous fin-
ger formed in such a system, whose selection &om a
family of possible solutions has only recently been ex-
plained [1—3], has been studied in detail [4—7]. Using
this steady-state finger as a starting point, it should
be possible to learn more about nonlinear growth laws
by perturbing the system in a well-controlled fashion.
Recently, there have been a number of experiments in-
volving perturbed flows in both rectangular and radial
Hele-Shaw cells. Most of these have involved placing
wires, grooves, or bubbles near the tip of a growing fin-
ger [8—15]. Most available results on flow over a lattice
have used the radial Hele-Shaw geometry [16—18], gaining
richness in the patterns observed but sacrificing the sim-
plicity of the steady state, which is unique to the chan-
nel geometry. In the channel geometry, the experiments
performed so far have all involved macroscopic perturba-
tions in the sense that the imposed length scale of the
perturbation is greater than the capillary length of the
flow [8, 11, 12, 14, 19—21]. In most of these cases, the
selected finger tends to be narrower and much more sta-
ble than the unperturbed solution. The available theo-
retical work also tends to favor the selection of narrow
fingers in the case of general anisotropy added by the
imposed perturbation [21—32] . One interesting experi-
mental exception involves high-velocity flow over a lattice
[19, 21], a flow which exhibits very unstable diffusion-
limited-aggregation (DLA)-like fingers, which reflect the
symmetry of the underlying lattice. Averaging over a
large number of such unstable flows produces an average
finger, which has the general shape of a ST finger, but is
sometimes wider than the corresponding ST finger should
be [19,21]. In this paper, we present results from an ex-
periment involving stable flow in the channel geometry
over a lattice whose cell size is, in general, much smaller
than the capillary length of the interfacial flow.

EXPERIMENTAL PROCEDURES
AND DATA PRESENTATION

TABLE I. The dimensions of the etched lattices are shown
here.

Lattice

Square
Rectangle

Depth
(p,m)

90+5
90+5

Groove width
(pm)

200+13
200+13

Center to center
(pm)

400+3 x 400+3
400+3 x 800+3

The experimental cells were 50 cm long, with a channel
width set by the placement of Teflon spacers which also
set the gap, 6, between the plates of the cell. The channel
width, m, varied from 2 to 5 cm, with most of the data
taken at a channel width of 3 cm. Four different values
of the gap, 6, were used, ranging from 0.37 mm to 1.60
mm. The bottom plate of the cell consisted of a 0.5 inch
thick piece of very uniform float glass. The top plate was
a 0.5 inch thick piece of glass with a very precise lattice
etched into it. Two etched top plates were used, one with
a square lattice, and the other with a rectangular lattice.
Some calibration data were also measured using a smooth
top plate. Lattice specifications are listed in Table I. A
flow realization involved injecting nitrogen gas into the
cell after filling the cell with heavy paraffin oil (viscosity,
p = 180 cP and surface tension, T=35.4 dye jcm). Only
flows with a very constant areal injection rate (varia-
tion less than 5% over a 15 cm finger-tip advance) were
accepted and analyzed. Each flow was recorded from
above using a CCD camera and a medical-grade VCR,
and the images were analyzed digitally. Measurements
were made of the tip velocities, v, tip curvatures, fin-
ger widths, Am, and limits of stability as a function of
the cell gap, the lattice geometry, and the angle, 0, be-
tween the direction of flow and the symmetry axis of the
lattice. While all measured quantities for one flow re-
alization could be established very accurately, repeated
measurements showed that the finger width was repro-
ducible to within +5% and the stability limit to within
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1 B= 12p viv

Tb2 (2)

We arbitrarily set the gap, b, to be the gap set by the
Tefion spacers plus 1/2 the etching depth of the lattice.
The range of uncertainty in the gap introduced by the
ambiguity in how much of the etching depth to include
in 1/B introduces an absolute uncertainty in 1/B of as
much as 20%%uo, but this is small in comparision to the
large efFects discussed below. Only relative uncertainty
is included in the error bars, and this is negligibly small
in 1/B. Since the oil completely wets the glass plates of

+15'%%uo of the dimensionless control parameter, 1/B (de-
fined below). Several general features of the fingers were
robustly reproducible: (1) The fingers were always sym-
metric and centered in the channel; (2) even in the cases
(to be presented below) where the finger width was much
different from the normal ST (unperturbed) finger, the
relation between finger width and tip curvature was that
expected of a member of the ST family of solutions. That
is, the fingers could be fit to the modified zero surface
tension ST relation found by Pitts [33],

1
x = —ln —[1 + cos(~y/A)],

7r 2

with good precision. In this relation y is the position in
the direction of the fmow channel, x is the position across
the channel, we have normalized the half width zv/2 of
the cell to unit length, and the origin is located at the
finger tip. This relation is known to fit fingers in the
range 0.5 & A & 0.8 well [33]; (3) at large gaps, the
fingers were indistinguishable from normal ST fingers in
all respects (width and tip curvature); (4) at low veloci-
ties and large gaps, standard velocity-dependent wetting
corrections brought the finger into good agreement with
previously published results [34]; (5) the limits of sta-
bility with large gaps were always comparable to those
observed in smooth (no lattice) cells. Below, we present
finger widths, A (fraction of cell width, iv, occupied by
the fingers), as functions of the dimensionless number,

the cell, the curvature-dependent pressure jump across
the interface in an unperturbed cell can be expressed as
a power series in the velocity [35]. For 1/B' & 200, this
power series can be truncated to one nontrivial term,
which Tabeling and Libchaber [36] have incorporated
into a correction to the surface tension. In this case,
the wetting corrected dimensionless number is

12pvvj
T*b2 (3)

where

T* = T[sr/4+ namur/b(pv/T)2~s],

and o. is a constant which, if set to the reasonable value of
1.3, brings our smooth plate and large gap data into very
close agreement with the data of Tabeling and Libchaber
[36]. While this wetting correction was useful for compar-
ing our low-velocity large-gap data with previously pub-
lished results and showing that, at large gaps, the lattices
have no observable efFect on the ST finger, much of the
range of data to be discussed below involved tip velocities
too high for this correction to be useful. Accordingly, we

present results below in the uncorrected form 1/B. For
smaller cell gaps, changes in the finger width and stability
from the ST values are observable. The most dramatic
changes are observed with the smallest gap, b=0.37 mm.
The behavior of the finger width with increasing 1/B has
several features, which appear in all cases at 6=0.37 mm.
These features can be illustrated by Figs. 1 and 2 where
the finger width, A, is shown vs 1/B for the rectangular
lattice (Fig. 1) with the fiow channel oriented at three
diferent angles to the symmetry axis of the lattice, and
for the square lattice (Fig. 2) with two difFerent channel
orientations to the lattice's symmetry axis. At very low
tip velocities (low 1/B), the anisotropy has little or no ef-
fect. At only slightly higher velocities, the finger departs
dramatically from the smooth ST curve at a sharp an-
gle in the direction of wider fingers. The finger remains
unusually wide as 1/B is increased until the capillary
length, I„becomes of the same order as the lattice-cell
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FIG. 1. Rectangular lattice: dimensionless A vs dimensionless 1/B for 8 =0', 8 = 10', and 8 = 45' for indicated values of
the cell gap, b The solid c.urve was sketched through the data shown in Fig. 2 for an unperturbed cell. The right hand (or
only) dashed line marks the stability limit for steady-state flow. In the two cases with a second line, the left hand line marks
the point, discussed in the text, where an initial wider-finger snaps into a narrower and apparently steady-state finger.
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0.8

Square Etching
O~ —0

I + b=0.37 mrn

b=1.60 mm

0.4 I

2000

0.8
0"= 10

+ b=0.37 mm

b=1.60 mm

unperturbed

size, d, where the capillary length decreases with velocity
and is given by

(5)
12@'U

In the range l = d, the finger width returns to near the
unperturbed ST value. This effect can be seen in both
Figs. 1 and 2. Flow over the rectangular lattice at 0=0
and 10 to the symmetry axis of the lattice shows a return
to the ST curve, while flow with the same lattice at 45
shows a curve which goes below the ST curve to fingers,
which are narrower than the unperturbed ST case. Flow
over the square lattice at 0 and 10 stays slightly above
the smooth ST curve, as shown in Fig. 2. The limit of
stability for the steady-state finger is dramatically depen-
dent on the lattice and flow angle, as well as dependent
on the degree of anisotropy. This limit for 6=0.37 mm is
shown as a vertical line in Figs. 1 and 2 (in cases where

there are two vertical lines, the limit at the larger value
of 1/B is the stability limit). For fiow over the square
lattice at 0' or 10, the lowest anisotropy (largest gap)
fingers are stable to about 1/B = 5000, while the high-
est anisotropy fingers are only stable up to about 1/B =
2500. For the rectangular lattice at 0', high anisotropy
fingers are again stable to about 1/B=2300, but at 10'
and 45', the fingers are stable to about 1/B=4500. For
a smooth cell, this stability limit arises from macroscopic
perturbations in the cell, whose minimum required size
shrinks with tip velocity until the irregularities in the
cell are enough to destabilize the steady-state finger [37].
Thus the limit depends to some extent on the particular
cell used, and we are unable to compare limits measured
using two diBerent plates of glass in the cell and confi-
dently relate the stability limits to universal properties.
On the other hand, we can confidently compare stability
limits, which depend only on changes in anisotropy or
angle, and. these suggest that flow over either lattice at
0 is very unstable. Figure 3 shows stability limits for all
orientations of both lattices as a function of anisotropy
(defined as a = etch depth/6). Uncertainties shown in
Fig. 3 reflect the range of tip velocities at which in-
stabilities were observed to set in. It should be noted
that the present definition of the anisotropy parameter,
a, bears no unambiguous relation to the surface tension
anisotropy parameter, e, normally used in theoretical for-
mulations of the pattern-forming equations. On the other
hand. , it is reasonable to assume that the surface tension
anisotropy varies monotonically with the parameter a.
For the rectangular lattice when the flow direction makes
an angle, 0, of 10 and 45' to the lattice's symmetry axis,
there is a range of control parameter, 1/B, in which a
wide initial apparent-steady-state sets up, then forms a
finger-tip anomaly rather like the beginning of tip split-
ting, and finally snaps into a narrower and apparently
true steady state. These regions of 1/B lie between the
two vertical lines in the relevant sections of Fig. 1, and
the finger widths shown in these sections are the widths
of the final steady-state fingers. These regions have only
been observed at high anisotropy.

DISCUSSION OF RESULTS

0.6 —
(i

We can suggest a tentative approach to thinking about
the results presented above. Sarkar and Jasnow [38] have
suggested that if the capillary length is much greater than
the lattice-cell size, then it may be legitimate to use a
coarse graining argument to represent an otherwise very
complicated mobility tensor in Darcy's law'.

0.4 I

2000
I

4000

FIG. 2. Square lattice; dimensionless A vs dimensionless
1/B for 8 = 0' and 8 = 10' for indicated values of the cell
gap, b. The solid curve is sketched through the data shown at
0 = 10 for an unperturbed cell, and the same curve is shown
for all cases here and in Fig. 1. The dashed line marks the
stability limit for steady-state How.

V = —MV'P, (6)

where V is the interface velocity, M is the coarse grained
mobility tensor, and P is the pressure field averaged over
the cell gap. If coarse graining is valid, this mobility
tensor should have equal eigenvalues for a lattice with
fourfold or sixfold symmetry. In general, the mobility
tensor will have unequal eigenvalues for the rectangular
lattice. Thus the equation of flow for the square lattice
remains a Laplace equation, and that for the rectangular
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lattice could change in an important way. We should
also consider changes in the boundary conditions. For a
smooth cell (no lattice at all), the boundary conditions
are that the normal components of velocity for the two
Buids must match:

V~ i —V~

+higher order terms in v

+—TK,
4 (8)

Rectangular Etching

and that the pressure jump across the two Buids, one of
which is assumed to wet the plates, should have the form,

) 2/3

1+3.80
6/2 l T )

where r is the curvature in the x-y plane. The presence
of the lattice can be expected to change these boundary
conditions, and it is not at all clear how to write down
the corrected boundary conditions which should reBect
the anisotropy. One might expect anisotropy to bring in
both an angular dependence to the surface tension T in
Eq. (8) and also a kinetic (v -dependent) term.

Differences between Bows over the square lattice and
the rectangular lattice might be attributed to the dynam-
ical equation, but strong similarities between anisotropy-
dependent features of the Bows can probably be assumed
to arise from the boundary conditions. For b=0.37 mm
and a channel width of 3 cm, the capillary length is larger
than the lattice-cell size for 1/B ( 2600. The measured
lattice effects on the steady-state finger are very simi-
lar for both the square and the rectangular lattice in this
range. This is illustrated in Fig. 4, which shows the ratio
of the 6=0.37 mm finger's width to the ST finger width
for all cases. This strong similarity suggests that the en-
tire wide-finger phenomenon may be attributable to the
lattice boundary conditions, with little sensitivity to the
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FIG. 3. Stability against tip splitting for all orientations

of Bow on rectangular and square lattices as a function of the
dimensionless anisotropy parameter, a, defined in the text.
The vertical line segments give the range of the dimensionless
control parameter, i/B, within which the fingers have, in at
least one How realization, been observed to become unstable.

1lB

FIG. 4. Dimensionless ratio of perturbed-cell anger width
to unperturbed-cell finger width for b=0.42 mm for the rectan-
gular and square lattices at all orientations. The lines shown
are sketched to guide the eye.



1188 K. V. McCLOUD AND J. V. MAHER 51

mobility tensor in the dynamical equation. Strong insta-
bility in the square lattice flow at relatively low values
of 1/B may result from interesting differences in the mo-
bility tensor in the dynamical equation, but these only
occur when the capillary length is of the order of the
lattice-cell size and, therefore, cannot easily be discussed
in the framework of an averaged mobility tensor.

The differences in the finger width at large 1/B may
result from difFerences in the mobility tensor in the dy-
namical equation, but these efFects are seen at values of
1/B, where the capillary length is of the same order or
smaller than the lattice-cell size and again cannot be eas-
ily discussed in the framework of an averaged mobility
tensor. Such finger-width efFects, with fatter fingers at
some orientations, 0, and thinner fingers at others, may
be understandable in terms of the previously available
literature [21—23, 25, 31, 32], although that literature has
stressed narrow fingers. These theoretical formulations
incorporate a smooth cosine-dependent anisotropy term
in the dynamical equation but tend to stress an expecta-
tion of narrow fingers, at least for some angles. None of
these papers examine the stability of the narrow-finger
solutions.

Ben Amar et aL [21] have recently published re-
sults from an experiment that may well be related to
ours. They studied high-velocity fingering over a ny-
lon mesh in a Hele-Shaw cell, and, after averaging over
many flow realizations, constructed average-finger pat-
terns with widths above the ST result. Since their indi-
vidual flow patterns were very unstable and so far into
the DI A-like regime, it is unclear how to compare their
results with ours, which were obtained from stable and
reproducible flows. Further caution in interpreting the
similarities of the two experiments in producing fatter
fingers is warranted because (1) for most of their data
their capillary lengths are small compared to their lat-
tice constants; (2) there may be differences due to the
difFerent wetting properties of nylon and glass, and (3)
a stretched-nylon lattice may be less homogeneous and
more deformable than the glass etched lattices specified
in Table I.

In conjunction with their experiment, Ben Amar et al.
performed a calculation, which indicates the existence
of an "exceptional solution" when adverse anisotropy is
added to the ST problem. They report that this excep-
tional solution is wider than the standard ST finger and
becomes the selected solution above a threshold in 1/B.
More recently, Combescot [39] has extended the study
of this exceptional solution at adverse anisotropy in the
small surface tension (large 1/B) limit, confirming the
calculated results of Ben Amar et aL and arguing that
the exceptional solution should become wider as 1/B is
increased. Neither paper comments on the possibility of
wider ST fingers at 0 = 0 . There is no obvious incon-
sistency between the present results and the work of Ben
Amar et al. or Combescot, and further work may well
show that their exceptional solution can be extended to
explain our results.

Corvera, Guo, and Jasnow [40], using Hele-Shaw equa-
tions with an anisotropic surface tension and no kinetic
term, have used both analytic and computational tech-

Rectangular Etching
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FIG. 5. Dimensionless ratio of perturbed-cell Bnger width
to unperturbed-cell finger width vs 1/B for several values of
cell gap, b, for the cell with the rectangular lattice. The lines
shown are sketched to guide the eye.

niques to study finger width as a function of 1/B for two
cases, one of which has surface tension, T, a local max-
imum at the ST fingertip and the other with T a local
minimum at the finger tip. In the case where T is a local
minimum at the finger tip, they find the selected solu-
tion to be indistinguishable from the normal ST finger.
When T is a local maximum, the normal ST finger is
also indistinguishable from their selected solution below
a threshold in 1/B. Above this threshold, they observe
a selection of a finger wider than the ST finger.

In comparing our results with those predicted by
Corvera et al. , we find consistency if we assume that T
has a local maximum at the finger tip for flow at 0 =0 .
In that case, we contradict none of their results, since
our square lattice has been measured at only 0 and 10,
and the T should only find its deepest minimum at 45 .
Our rectangular lattice has been measured at 45, but
the twofold symmetry of the rectangular lattice might
not be expected to cause T to reach the deepest local
minimum until 0 = 90 . Thus our observation of the
ST finger up to a threshold of about 1/B 70, followed
by fatter fingers at larger values of 1/B bears a resem-
blance to the work of Corvera et al. Above some value of
1/B, kinetic anisotropy should become important, and
the results of Corvera et al. do not deal with this, so the
eventual return of our data toward the ST value in no
way contradicts their low 1/B results.

It should also be noted that the selection of finger
widths dramatically difFerent from the ST values does not
set in abruptly at some very large value of the anisotropy.
Rather, it appears smoothly as the anisotropy is in-
creased, with small anisotropies (a ( 0.106) yielding re-
sults indistinguishable from the ST values and larger val-
ues (a ) 0.18) showing stronger efFects as the anisotropy
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increases. This is illustrated in Fig. 5, which shows the
ratio of finger width to ST finger for several values of
anisotropy for the rectangular lattice at 0 = 45 .

It is difficult to assess the relation between the present
experiment and solidification. The present experiment
achieves a ratio of capillary length to lattice-cell dimen-
sion of 25, whereas the analogous quantity in solidifica-
tion is typically of order 1000. In addition, the boundary
conditions are difficult to establish for the present case,
the lack of difference between flow over the rectangular
and the square lattices strongly suggests that the bound-
ary conditions have a profound efFect on the present
case, and the available theoretical work with averaged
anisotropy in the surface tension suggests narrowed fin-
gers at some angles. However, this experiment involves
the first test of the effect on the ST steady-state finger
of a perturbation which is both local (which bubble and
wire experiments are not) and "microscopic" in the sense
of having l, /d ) 1. As a uniquely local and microscopic
perturbation, its production of dramatically difFerent se-
lection than had been expected constitutes a challenge
to our understanding of this fundamental growth prob-
lem. The smooth onset of the differences in the selection
as anisotropy changes suggests a tractable problem even
though its systematics had not been anticipated.

SUMMARY AND CONCLUSIONS

We have measured the selection of steady-state viscous
fingers in Hele-Shaw cells, one of whose glass plates has
been etched with a very regular lattice of squares or rect-
angles. The etched lattices perturb the Saffman-Taylor
problem with an anisotropy whose strength can be varied
by varying the cell gap. Over a wide range of observable
finger-tip velocities, the capillary length of the flow, l', is

much larger than the cell size of the lattice. In this con-
dition, the perturbation can be said to be both local and
microscopic, in principle, a very different condition from
other perturbations whose channel-fIow selection proper-
ties have been studied.

At each observed angle, 0 (between the lattice orienta-
tion and the flow-channel orientation), and for both lat-
tices, steady-state fingers are observed over a wide range
of flow-rate control parameter, 1/B. These fingers are
always symmetric and centered in the flow channel, with
tip curvatures which place them in the ST family. At the
very lowest flow velocities, the fingers also have the width
of normal ST fingers. Above a threshold, 1/B 70, the
selected finger becomes wider than the ST solution se-
lected in the unperturbed case and this wider-finger so-
lution persists at all larger values of 1/B for which the
capillary length is much larger than the unit cell size.
The ratio of the wider finger to the unperturbed finger
increases with the strength of the anisotropy (i.e. , in-
versely with cell gap).

At much higher tip velocities where the lattice can no
longer be considered microscopic, the finger widths re-
turn close to the unperturbed values, and both narrower
and wider fingers are obtainable, depending on the angle
0. At these high velocities, flows over the square lattice
become very unstable at large anisotropy while the rect-
angular lattice solutions are only very unstable at 0 =
00
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