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Faraday instability: Linear analysis for viscous fluids
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We present a linear stability analysis of parametrically excited surface waves for the case of viscous
fluids. We show that the inclusion of viscosity leads to an extension of Mathieu s differential equation,
which is valid for the case of inviscid fluids, in the form of an integrodifferential equation. We numeri-
cally solve this equation for the case of a single as well as a double frequency excitation.

PACS number(s): 47.20.Dr, 47.20.Gv, 47.35.+i, 47.54.+r

I. INTRODUCTION

Recently, the Faraday instability [1] of the surface of a
vertically oscillating Quid layer has been investigated ex-
perimentally and interesting nonequilibrium patterns
have been found [2—4]. Theoretical considerations have
started by considering the case of inviscid Quids. Benja-
min and Ursell [5] were the first to consider the linear
stability analysis of the plane surface. They showed that
the linear dynamics of the amplitudes of the surface
modes is governed by Mathieu's equation. Viscous effects
usually are included phenomenologically in the way dis-
cussed, e.g. , by Landau and Lifschitz [6]. This treatment
neglects the contributions that stem from rotational Qow
in the boundary layer close to the surface.

The aim of this paper is to present a treatment of the
instability starting from the basic hydrodynamic equa-
tions including viscosity from the very beginning. There-
by, we consider the case of bulk viscosity since recent ex-
periments [4] have been performed for highly viscous
fiuids. (For the discussion of effects of surface viscosity,
we refer the reader to Eisenmenger [7].) We shall show
that Mathieu's equation of the inviscid case is modified in
two ways. First, the time derivatives 0, are substituted
by the derivatives 8, +2vk, where v denotes the viscosi-
ty of the Quid and k denotes the wave number of the sur-
face wave. Second, a memory term arises leading to an
integrodifferential equation. From this equation, it is
possible to obtain the dispersion relation for the viscous
surface waves of a nonoscillating Quid layer as given by
Lamb [8].

The plan of this paper is as follows. First, we list the
underlying basic equations of Quid dynamics. Then, we
transform these equations to state variables that describe
deviations from the state of the plane surface. Subse-
quently, the integrodifferential equation generalizing
Mathieu s equation is given. Finally, we present numeri-
cal solutions.

Height z

Surface
z = zi(x,y;1)

Gas

The mathematical description of the surface waves has
to take into account the motion of the Quid as well as the
deformation of the free surface (cf., Fig. 1). The medium
above the surface is air characterized by a constant at-
mospheric pressure p. The behavior of the Quid with
viscosity v and density p is described in a comoving coor-
dinate system. We denote the coordinates in the horizon-
tal directions by a vector x:=(x,y). The x and y com-
ponents of the velocity field v(x, z;t) are combined into
the vector v' '=(v„,v ). Furthermore, we abbreviate the
spatial derivatives by

v=(a„,a„a,), v"'=(a„,a, ),
6=a'+a'+a' 2 "'=a'+a' .x y z x y

The Quid is assumed to be incompressible, i.e., the
divergence of its velocity field vanishes: b,v(x, z, t)=0.
Since we take into account viscosity, the temporal evolu-
tion of the velocity field v(x, z, t) is governed by the
Navier-Stokes equation (cf., Fig. 1);

a, v(x, z, t )+v(x, z, t ).Vv(x, z, t )

1= ——Vp(x, z, t)+vbv(x, z, t) —g[1 fW(cat)]e, —.
P

II. THE BASIC EQUATIONS

In this section, we list the basic differential equations
as well as the boundary conditions that govern the
behavior of surface waves in the Faraday instability for
the case of a viscous Quid.

Fluid

G = g (1 —f W(et)) e,

FIG. 1. Setup of the Faraday instability.
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n(x, t)= ( —B„g,—8 g, 1) .1

1+(Vg)
(4)

Furthermore, let o."denote the stress tensor of the Quid
given by

BU BU;
0 ]~

= p5~+pv +
BXI BXj

1, for i=j
jJ 0

and o' the stress tensor of the air. 0' is characterized by
a constant atmospheric pressure p: o';J = —p5 j At the
boundary z =g(x, t ), the difference between the stresses is
balanced by surface tension [6],

3

nkvd k+nktr k)
k=1

1 1= —a +
R1 R2

n;, for i =1,2, 3 . (6)

R, and R 2 are the curvature radii of the surface
z =g(x, t) given by

The time-dependent term W(tot ) stems from the tem-
poral variation of the gravitational force —gez in the
comoving coordinate system. This is caused by the verti-
cal motion of the Quid layer with the excitation ampli-
tude f. p(x, z, t) describes the pressure in the fiuid while
the location of the surface is given by a function
z=rt(x, t). Its dynamics is determined by the relation-
ship which defines the vertical velocity component at the
surface z=g(x, t) as the substantial temporal derivative
of the function g(x, t ), namely,

a~(x, t) +v' '( xz =q( xt ), t ) V' 'g( x, t )
Bt

=u, (x,z=g(x, t), t) . (3)

In order to allow for a unique solution of the Navier-
Stokes equation, one has to specify boundary conditions.
Let us first consider the free surface r)(x, t ) with normal
vector n(x, t ) (in outer direction), which is defined by

slip-free boundary conditions like v(x, z = —h, t ) =0 or
stress-free boundary conditions. For the sake of simplici-
ty we used the latter ones. Therefore, we have to fulfill

„=O and a,'u, I, „=O.
Finally, we mention that the consideration of a finite

geometry needs analogous conditions to be stated at the
lateral walls. However, we shall consider the case of
periodic boundary conditions, which facilitate the
mathematical treatment and should yield accurate results
for the case of large aspect ratio systems.

III. BASIC STATE: PLANK SURFACE

In this section, we formulate the solution of the basic
equations in the case of a plane surface. Then, we intro-
duce dimensionless quantities and formulate the evolu-
tion equations for the variables describing the deviation
from this basic state.

The state of a plane surface at z =0 of the fiuid layer is
given by ri(x, t ) =0, while the velocity field of the fiuid is
v(x, z, t)=0. The integration of the Navier-Stokes equa-
tion becomes trivial and taking into account the bound-
ary condition (8), one obtains

p (0,xz, t ) =p —pg[1 fW(tot )]z—.

Now, we perform the transformation p(x, z, t)
=go(x, z, t )+pm(x, z, t ) and introduce dimensionless
quantities by the appropriate scaling of length and time.
A natural time scale T is the period of the driving force
fW(cot): T= 1/co while we use L =(a/(pcs ))'~ as the
new length scale. Finally, we introduce the following di-
mensionless quantities:

1 Th= —h, g= g, v=
L ' L

T
J 2

(10)
LV= V7T ' g=Lg, L

7T IT 7T2

ending up with the following set of equations. (For the
sake of brevity we drop the tilde. ) The evolution equa-
tion for the surface (3) remains unchanged and reads

a, q(x, t)+v'"(x, =~(x, t), t }.V"'q(x, t)
1 1

R1 R2
Vr)(x, t )

+I+(Vg)
= —Ag(x, t )+h. o. , (7)

=u3(x, z=g(x, t), t) .

The external force drops from the Navier-Stokes equa-
tion leading to

where h.o. denotes higher-order terms.
Using the explicit expressions of the stress tensors, the

boundary condition (6) reads

B,v(x, z, t)+v(x, z, t) Vv(x, z, t).
= —Vm(x, z, t)+vbv(x, z, t) . (12)

1p-p+- + '
R1 R2

n,.
The boundary conditions (8), however, will depend on
time explicitly due to the external forcing

3= —vpg
BUj BU;+ n.
BX; BXj z=g(x, t)

i =1,2, 3 . (8)

—n. +g[1 fW(t )]g( xt)+ —+1 1

R1 R2

BU; BUk= —vg + n„,

n).

In addition to (8), boundary conditions have to be for-
mulated at the bottom of the Quid vessel. One may use i =1,2, 3, z=ri(x, t) . (13)
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We can summarize these boundary conditions as fol-
lows. Taking the scalar product of (13) with n, we obtain

—ir+g[1 f—W(t)]71(x, t)+ +1

R) R2

[
—~(x,o, t)+g[1—fW(t)]il(x, t) —6"'il(x, t)]

—2 [a,b, ' 'S(, , t)], =0 . (22)

The boundary conditions at the bottom are either (stress-
free boundary)

Taking the vector product gives

nX[nXVXv+2n. Vv]=0 .

= —2vn. (n V )v . (14)

(15)

s(x, z, t ) =a,'s(x, z, t ) =0~,

or (slip-free boundary)

S(x,z, t ) =a,S(x,z, t ) =Oi,

(23)

(24)

At the lower surface, boundary conditions for the veloci-
ty field have to be specified. The next step will be to ana-
lyze the stability of the plane surface, i.e., the basic state
g=0, v=o.

IV. LINEARIZED EQUATIONS

The stability analysis of the basic state with plane sur-
face requires a linearization of the evolution Eqs. (11)and
(12) as well as the boundary conditions (13). The bound-
ary conditions at the free surface il(x, t) depend on the
velocity field v(x, z;t) taken at z=il(x, t). For small de-
formations of the surface, we may perform the following
approximation:

v(x, z=rt(x, t), t)

The standard treatment of the instability based on a
neglection of viscosity (see [5]) is obtained from our equa-
tions by the limiting case v=O. Thereby, the boundary
condition (21) drops out, together with the term vb, in the
Navier-Stokes equation. In that case, the velocity field
can be assumed to be of potential type
(b, ' '+a, )S(x,z, t)=0. However, for finite viscosity, this
cannot hold close to the surface due to the boundary con-
dition (21). As a result, a boundary layer close to the sur-
face develops in the case of viscous Auids.

V. EXTENSION
OF MATHIEU'S DIFFERENTIAL EQUATION

BY THE INCLUSION OF DISSIPATION

The standard treatment of the Faraday instability
neglects the viscosity of the Auid motion. In this case,
Benjamin and Ursell [5] showed that the modes

=v(x, z =0, t)+g(x, t) av(x, z, t
Bz z ——O

+h. o. (16)
il(x, t ) =il(t )e'"'" (25)

(vxz, t)= VX VXe& S( xz, t)+VXe&Z( xz, t) . (17)

The second term describes fluid motions that are purely
horizontal. In the linear approximation, the correspond-
ing modes do not couple to the surface deformations and
decay due to viscosity. However, we emphasize that they
may play an important role in the nonlinear regime. The
evolution equation for the field S(x,z, t ) is obtained from
the linearized Navier-Stokes equation (12). Taking twice
the curl of this equation, one obtains

(a, —vb, )hh' 's=o .

The pressure can be calculated as follows:

s"'~= —(a, —va)a"'a, s .

(18)

(19)

A similar expansion holds for the pressure term
m(x, z=il;t).

As usual we introduce the following decomposition of
the velocity field:

of the surface deformation obey Mathieu's equation

a,'il(t)+k tanh(hk)[g+k'+ fgW(t))rt(t)=0 . (26)

In this section we shall show how the correct inclusion
of viscosity leads to a generalization of this equation. To
this end, we start by making a plane wave ansatz for the
field S(x,z, t), the surface deformation il(x, t ), and the
pressure m.

S(x,z, t ) = [so(t )(e"'—e "')+s, (z, t ) ]e'"'",

il(x, t) =rt(t)e'" *,
z=z+h, k= ~k~ .

(27)

The first contribution to the field S(x, t) is of potential
type and, therefore, does not fulfill the boundary condi-
tion (21). However, it already fulfills the stress-free
boundary conditions at the bottom of the vessel
(z = —h ). The second contribution is assumed to obey
the equation

The linearized evolution equation (3) for the surface reads [a, —v(a, —k )]s,(z, t)=0, (28)

a, q(x, t)+a"'s(x, o, t)=o . (20) so that the linearized Navier-Stokes equation is fulfilled.
Furthermore, we require

The x and y components of the boundary conditions (13)
take the form [a, +k ]s, (z t)~, = —2k (e""—e "")s (t) . (29)

(a,' —~"')V'"S(x,z, t ) =O~

The z component leads to

(21) This condition ensures that S(x, t ) fulfills the boundary
condition (21).

Inserting this ansatz into Eq. (22) and eliminating the
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pressure according to Eq. (19), we obtain

k(e""+e "")(8,+2vk )sp(t)+2vk B,s, (z, t)~,

+ [g +k'+ jg W(t) ]ri(t) =0 . (30)

Representing s i (z, r ) as a Fourier integral, we obtain the
general solution for s i (z; t );

s, (z, t)=Re f dcos (co)1

Now we can consider the linearized evolution equation
or the surface,

k(co)Z —k(ro)Z)e isn't 7

1/2

B,r)(t) —k [sp(t)(e"" e—"")+s((O,t)]=0 . (31)
k(co) = i

V
(35)

(g +2 k2) (() r) — 2 k2( kh —kh) (r)so t (32)

At the surface z =0, we can combine (28) and (29) to ob-
tain

This solution ful611s the stress-free boundar d t'
2

un ary con itions
s, (z, t)=B,si(z, t)=0 for z= —h. The amplitude s, (co)

(34);
is obtained from Eq. (28) together with (29) (32) dan

This relation helps us to eliminate the variable s)(O, t)
from the evolution Eq. (31),

s((co) = „„g(pi),2v
kh —kh

(36)

B, [[(3,+2vk ]il(t) —k (e" —e " )sp(t)}=0.
We can integrate this relation once and obtain

[ [(),+2vk ]ri(t) k—(e"" e—"")sp(t) I
=0 .

(33)

(34)

The resulting integration constant has to be put to zero
since this would lead to a constant surface deformation
without Quid motion.

Now we have to determine the quantity (3 s (z'r )j. y, s& z, t
is en, we have to solve Eq. (28) together with the

boundary condition (29). We introduce the transforma-
tion s, (z;t)=e " 's, (z;t) and il(t)=e '" 'ri(t).

g (z r) — f' dr Ref"d
p ~ jpi (ekh kh)

xe'"" ' )(3' (r') (37)

Now, it is straightforward to calculate () s ( )(z~1 ~~~ =0

2v'v
drt G(r rl )

Yk (t i )

oo
a,s, (z, r)~, ,=—

X(a,, +vk')q(r ) . (38)

where rI(co) denotes the Fourier transform of rI(t), lead-
ing to (c.f., Fig. 2)
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oo 1 I

G(t t'—) =Re de tao(t —t )

&i co tanh[hk(co) ]
(39)

It is impossible to calculate the integral (39) analytically.
However, we can simplify the integral (39) for two limit-
ing cases. First, we consider shallow water in the vessel,

tanh(hk )~hk, (40)

The function G(t —t') thereby is defined by the Fourier
integral

The second case is the deep water approximation
where the height h of the Quid vessel is large with respect
to the characteristic fiuid length scale 1/k, . In this case,
we can use

tanh(hk )—& I . (42)

We mention that in this case it becomes irrelevant wheth-
er one uses rigid or stress-free boundary conditions at the
bottom of the vessel. Performing the Fourier integral
(39), we end up with

which leads to G(t t') =—&vr/(t t') .— (43)

G(t —t')=
2h

(41) Due to Eq. (34), we can obtain a single equation for the
amplitude q( t ) of the surface deformation;

1 (Bt+2 kv')'q(t)+[g+k'+fgW(t)]ri(t) Zvk' — f dt'G(t t')e —" " ''(r), , +vk')g(t')=0.22
k tanh(kh) 77 oo

(44)

This is the starting point for an investigation of the linear Faraday instability including viscosity.

VI. NUMERICAL TREATMENT

The diff'erential equation (44) can be treated only approximately. If we consider a time periodic forcing W(t) with
period ~, the general solutions are superpositions of functions of the form

ri(t)=e~'ri(t), ri(t)=rt(t+2rr) . (45)

This is a result of Floquet s theory. For a numerical treatment, one expands the periodic function ri(t) into a Fourier
series

N
q(t)=e ' lim g q„e'"'.

N~ oo
(46)

Then, one obtains an infinite dimensional algebraic set of equations for the coeKcients g„;

(A, +in+2vk')' 4v k
" — +(g+k') g„fg-k tanh kh tanh(k„h ) n'= —N

The excitation term W„„,which stems from the time dependence of the driving force, is obtained from W(t);

8'„„= T
duel(n n )1 W(r)

27T 0

(47)

(48)

where T is given by W(t) = W(t + T).
A truncation of the ansatz (46) leads to a finite dimensional linear eigenvalue problem, which can be treated by nu-

merical means.

VII. CLASSICAL PROBLEM: EXCITATION WITH cos(2cut)

In this section we shall consider an excitation of the form W(t) =cos(2t) and use the lowest order truncation in Eq.
(46). The ansatz (27) for the surface deformation now reads

ri(t)=e '(rie "+g*e ") .

Inserting this ansatz into (47), we obtain the following complex algebraic relation:

(~+i+2vk ) k2 2v+(~+i/v+k ) + fgg+k + —2vk +9*
k tanh(hk) tanh(hV (A+i )/v+k .)

(49)

(50)
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FIG. 3. Eigenvalues calculated from (51) for high viscosity in
a single excitation mode.
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The solvability condition for this equation leads to a rela-
tionship between the growth A, and the forcing amplitude
f depending on the wave number k.

The onset of the Faraday instability is characterized by
the condition X=0. The solvability condition now reads

FIG. 5. Neutral curve for dual-frequency driving as mea-
sured by [4]: dashed line calculated for potential flow with phe-
nomenological damping, e.g. , [6], solid line obtained from Eq.
(47) with (54) (+=70') in (I /s ).

2

while we have defined

A =(g+k )+ (2vk +i )
1

k tanh hk

2v+i /v+ k

tanh( h t/i /v+ k )

(51)

(52)

Since the quantity 3 depends on the wave number k, the
relation (51) defines the neutral curve f=f, (k). The
minimum of the neutral curve with respect to the wave
number k yields the critical wave number k, . The neu-
tral curve essentially depends on the scaled viscosity v
and the scaled thickness h of the undisturbed Quid layer.
Figure 3 shows the eigenvalues A. obtained from a numer-
ical solution for a high value of the viscosity v.

VIII. MULTIFREQUENCY EXCITATION

—0.50

—1.00

Recently, Edwards and Fauve performed an experi-
ment [4] using an excitation with two commensurable fre-
quencies of the form

—1.50
W(t) =cos(9)cos(4t)+ sin(8)cos( St + 0&) . (53)

—2.00

I s s s s I s s s s I s s s s I s s s s

kc

O.Z5 0.50 0.75 1.00 1.25 1.50 f.30
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I

I
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l
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1
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f.00
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FIG. 4. Real part of the eigenvalue calculated from Eq. (47)
with (54) for dual-frequency driving [4] with @=70', 8=70 (a)
and %=70', 0=75' (b).

8
FIG. 6. Critical wave number k, (0,+=70 ): dashed line po-

tential Aow, solid line from Eq. (47), predicting the most unsta-
ble pattern wavelength.
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They found spatially quasiperiodic patterns. The excita-
tion leads to a matrix 8'of the form

W„„.= —,
' cos(0)(5„„+4+&„„4)

+—,'sin(0)(e' 5„„.+5+e ' 5„„~). (54)

The solution of the corresponding eigenvalue problem
yields eigenvalues A, , which depends on the forcing ampli-
tude f, the angles 8 and N, as well as on the wave number
k. From this expression, we can calculate f, (k), e.g., the
critical amplitude that denotes the instability of the plane
surface with respect to disturbances with wave number k.
The minimum of f, (k) with respect to k yields the criti-
cal wave number. This minimum is a function of 0 and N
and defines the neutral curves.

Figure 4 shows the real parts of the Floquet exponents
as a function of k. As a result of the two frequencies of
the excitation, there are basically two different wave
numbers destabilizing, leading to bicriticality.

The neutral curve f, depending on 8 and N is exhibit-

ed in Fig. 5 in comparison with the neutral curve calcu-
lated for potential Row [5] presented as Edwards and
Fauve [4] performed in their experiments. The corre-
sponding values of the critical wave number is shown in
Fig. 6 as a function of 0 and N. It predicts a variety of
patterns in the region where the critical wavelength is not
determined by cos (4C&) (left-hand side of Fig. 6), nor
cos(5%) (right-hand side). As a matter of fact Edwards
and Fauve [4] found in this region of parameter-space
quasiperiodic patterns.

IX. CONCLUSION

We have derived the basic hydrodynamical equations
describing the parametric excitation of surface for the
case of viscous Auids. We have shown that the linear sta-
bility analysis leads to a generalized Mathieu equation ex-
tending previous studies [5] for ideal fluids. The extended
equations include a memory term that results from the
existence of a viscous boundary layer close to the surface.
We have performed analytical as well as numerical solu-
tions of this equation.
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