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Generalized hydrodynamics and the acoustic modes of water: Theory and simulation results
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We discuss an application of extended hydrodynamics to a model of water, in a range of wave num-
bers k, where the effect of single-molecule modes must be taken into account together with the collective
phenomena underlying sound propagation and dispersion. The calculation of the density-density,
energy-density, energy-energy, and longitudinal and transverse current correlation functions from a
molecular dynamics simulation of the transferable intermolecular potential with four points (TIP4P)
model of water, allows us to obtain the k dependence of the generalized hydrodynamic coefficients. In
particular, we have found that the ratio of generalized heat capacities y(k) =c~(k)/e, (k) =-1 up to k =—1
0
A ' and that the correlation between temperature and density fluctuations is negligible at all times,
while there is an important frequency dependence of the transport coefficients. This leads to a remark-
able simplification of the expression of the Laplace transform of the correlation functions, although
models for the transport coefficients are still necessary at the present state of the theory. The frequency
dependence of the transport coefficients is necessary to describe correctly the behavior of the density-
density and temperature-temperature autocorrelation functions (ACF's). A model for the frequency
dependence of the generalized viscosity P(k, z) and thermal di6'usivity Dr(k, z) is proposed here. In addi-
tion to the correct short-time behavior of the correlation functions of the memory kernel, this model is
able to account satisfactorily for the effects of the acoustic mode and the single-molecule modes, in par-
ticular, that related to the oscillation in the nearest neighbor cage (45 THz). A simple polynomial extra-
polation to k=0 of the parameters of the model gives values consistent with the large sound dispersion
observed in water. In the supercooled region, the shape of the predicted dispersion curve shows that

0
there are two k ranges, 0.01—0.03 and 0.2—0.5 A ', which account for most of the dispersion. When the
temperature increases the contribution to the lower k range is less apparent and shifted to higher k, but

0
the behavior of the 0.2—0.5 A ' range does not change. The model also predicts an acoustic mode fre-
quency co,„(k)/k, 2—3 times larger, and a bandwidth Ect)iy2(k)/k almost an order of magnitude small-
er than those in the hydrodynamic regime. Moreover, co,„(k) and Ace&&2(k) are in quantitative agree-
ment with the neutron scattering data at T=298 K. The location and height of the first step of the
dispersion curve are related to the long-time tail of generalized viscosity, while its size is determined by
the anomalous value of the second moment of the longitudinal current co (k) as compared to that of the
density-density ACF coo(k). The analysis of the transverse current ACF with the same model and the
value of the transport coefficients obtained confirm that the TIP4P model potential leads to a shear and
bulk viscosity in satisfactory agreement with the experimental data at 298 K. In the supercooled region,
conversely, the dynamics obtained with the TIP4P potential is 2—3 times faster than that of real water at
the same temperature, as already noted for the self-diffusion coefficient and dielectric relaxation times.

PACS number(s): 61.20.Gy, 61.25.—f, 62.60.+v

I. INTRODUCTION

Over the past decade there has been a debate in the
literature on the physical mechanism underlying a veloci-
ty of sound in water roughly twice as large, in the range
0.25 & k (1 A ', as that in the hydrodynamic, k —+0, re-
gime. This was observed both by molecular dynamics
(MD) computer simulation [1,2] and by inelastic neutron
scattering experiments [3]. These data have been ex-
plained either as evidence of a second acoustic mode that
propagates through the hydrogen bond network with a

*Author to whom correspondence should be addressed.

speed close to that in ordinary ice [4,5] or as a conse-
quence of anomalous positive dispersion of the normal
acoustic mode [6,7].

Recent simulation results [8—10] support the latter hy-
pothesis. Actually, it has been shown in [8] that one of
the two peaks in the spectrum of the density-density au-
tocorrelation function (ACF), for water modeled by the
Stillinger and Rahman ST2 potential [1,5], is due to a
single-molecule mode rather than to a second high-
frequency sound mode. On the other hand, Balucani
et al. [9,10] have proven that the large sound dispersion
is to be traced to the anomalous, very large value of the
second moment of the longitudinal current compared to
that of density-density ACF. This has been related to the
structure of water and in particular to the distance of the
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main peak of the oxygen-oxygen radial distribution func-
tion goo(r), determined by the directionality of the hydro-
gen bond and the tetrahedral arrangement of molecules
in the network.

In order to interpret their simulation results obtained
with the Matsuoka-Clementi- Yoshimine model inter-
molecular potential, Wojcik and Clementi [6] fitted the
spectrum of density-density ACF with a model proposed
by Levesque et al. [11,12] to analyze their simulation
data of liquid argon. This attempt has shown that the ob-
served behavior is consistent with a large sound disper-
sion. However, as the dependence on k of some hydro-
dynamic coefficients was unknown, Wojcik and Clementi
were forced to some assumptions and concluded that this
model reproduces fairly well the central peak of the dy-
namic structure factor, but shows some drawbacks con-
cerning the side peaks, i.e., those relevant to sound prop-
agation.

If the hypothesis of a large dispersion of ordinary
sound is correct, generalized hydrodynamics [13—15]
should provide useful insight and this is why we attempt
to apply this approach to the overall dynamic behavior of
water, in the spirit of two fairly recent works [16,17].

Then, in our analysis we not only calculate the
density-density correlation functions (CF's) but also the
energy-density and energy-energy CF's in addition to lon-
gitudinal and transverse current CF's at 245 K, for
several values of k. To investigate the temperature effect,
the density-density, longitudinal, and transverse current
CF's have been calculated at 298 K.

The equal time values of this set of correlation func-
tions allow us to obtain the generalized enthalpy h (k),
constant volume and pressure heat capacity c„(k) and
c (k), their ratio y(k), and the thermal expansivity a(k).
We emphasize that the calculation of energy-energy and
energy-density CF s, in addition to the density-density
CF, and the knowledge of the k dependence of the ther-
modynamic functions, in particular, y(k), besides their
interest per se, also eliminates the risk of an incorrect in-
terpretation of the physical meaning of the parameters
that enter a fitting function for the time dependence of
the density-density CF (see Sec. IV B).

de Schepper et al. [17] have shown that, for the
Lennard-Jones (LJ) liquid, the evaluation of the three in-
dependent correlation functions (density-density, energy-
density, and energy-energy) allows a complete description
of the longitudinal dynamics. In other words, the time
dependence of all 25 CF's based on the five fundamental
quantities, i.e., the longitudinal velocity u, the longitudi-
nal stress tensor a, and the longitudinal heat Aux q, in ad-
dition to the density n and energy e, can be described as a
linear combination of five exponentials. The time domain
approach coincides with the more general, formally ex-
act, frequency domain approach when the coefficients of
the linear combination do not depend on time [17]. This
cannot be assumed to hold in the case of water and even
for simple LJ liquids and liquid metals, at least in some
thermodynamic states, whenever the time dependence of
the generalized viscosity P(k, t) requires two separated
time scales to be correctly described [11,12,18]. There-
fore, we work in the frequency domain to obtain the gen-

eralized thermodynamic properties and transport param-
eters necessary to describe the dynamics of the system,
using Laplace transforms of correlation functions of
orthonormal combination of the five fundamental vari-
ables relevant to the longitudinal dynamics [17].

In order to reach a correct description of the normal-
ized density-density and temperature-temperature ACF's,
it is necessary to take into account the frequency depen-
dence of the transport coefficients. Many papers, mainly
concerning the viscoelastic theory [19—22], have stressed
the importance of this approach to generalize linear hy-
drodynamics. Moreover, the spectrum of the velocity
ACF has been related [23] to the frequency-dependent
friction coefficient, which is proportional to the viscosity
in the Stokes-Einstein formula. This relation is particu-
larly important when the velocity ACF has a long-time
tail, e.g. , in argon close to the triple point or in water
below room temperature. In these thermodynamic states,
it is apparent that, in argon [12], rubidium [21], and wa-
ter [10], the time dependence of the generalized viscosity
shows two well separated time scales. As a consequence,
the simulation results cannot be described correctly by
a simple exponential dependence of the generalized
viscosity.

In the case of water, the spectrum of the velocity ACF
displays two main peaks, one (45 THz) relevant to the os-
cillation in the cage of the nearest neighbors, whose am-
plitude increases when temperature is lowered, and a
lower frequency band (9—. 10 THz) generally considered a
0—0—0 bending mode [2,5,8,24].

Any model to be used in the description of the general-
ized transport parameters of water should take these
self-modes into account, especially at those k values
where the acoustic mode frequencies become of the same
order of magnitude as the self-modes, which depend
weakly on k. Hence the theoretical approach introduced,
which supplements traditional hydrodynamics with infor-
mation on generalized viscosity, from the longitudinal
stress tensor fluctuations, and thermal diffusivity, from
longitudinal heat Aux fluctuations, should provide useful
insight both on single-molecule dynamics and on the
inAuence of long-time tails on the collective dynamics.

This paper is organized as follows. Computational de-
tails on the simulations we carried out are collected in
Sec. II. Section III is devoted to a brief outline of the
theory. Section III A contains a discussion of the prob-
lems inherent to the extension of generalized hydro-
dynamics to molecular liquids and of the approximations
we adopted, while Sec. III B recalls the main results re-
quired to analyze the simulation results. The latter are
presented in Sec. IV, where the behavior of the general-
ized thermodynamic quantities is discussed and the im-
portance of the frequency dependence of the transport
parameters is stressed. In Sec. V we present a model for
the transport parameters that is applied first to longitudi-
nal dynamics, analyzing the anomalous sound dispersion
(Sec. VI), the longitudinal stress tensor, heat flux fluctua-
tions (Sec. VII), and the relation between collective and
individual dynamics and the long-time tails behavior
(Sec. VIII). In Sec. IX the model is also applied to trans-
verse currents. Finally, the various transport coefficients
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(viscosity, shear modulus, and thermal conductivity) are
extrapolated to k =0, to compare the calculated values to
the experimental data (Sec. X). Section XI summarizes
our results.

II. COMPUTATIONAL DETAILS
AND OBSERVED DYNAMIC VARIABLES

The Laplace transform of the normalized longitudinal
current ACF's, G22(k, t), which have been computed in-
dependently and suffer smaller truncation effects, have
been used as a check of the numerical procedure. The
comparison with the transform of the normalized
density-density ACF's, G»(k, t), is done through the well
known relation

The results we present in this paper have been obtained
from an analysis of the trajectories produced by a molec-
ular dynamics simulation, in the microcanonical ensem-
ble, of the transferable intermolecular potential with four
points (TIP4P) model of water [25] on a sample of 343
molecules in a cubic box with periodic boundary condi-
tions in the usual minimum image convention. The
short-range Lennard-Jones part of the TIP4P potential
has been spherically truncated at half the box side, i.e.,
r, = 10.9 A. Long-range corrections have been applied to
both the internal energy and the virial sum, replacing the
radial distribution function with 1 beyond the cutoff dis-
tance r, .

The equations of motion have been integrated with the
generalized method of constraints [26], with time steps of
2.0 and 2.5 fs at 298 and 245 K, respectively, fairly usual
values for rigid models of small molecules. The use of the
method of constraints and of Ewald sums allowed very
good energy conservation, with no upward or downward
drift and fiuctuations no larger than 10 %%uo. Also, no ve-
locity rescaling was required to maintain average temper-
ature at the desired value.

The length of the runs reported in Table I relates to the
number of steps performed starting from very well equili-
brated configurations from previous work [24,27]. The
thermodynamic data obtained in the present work repro-
duce quantitatively those computed in [24]. All k-
dependent time correlation functions have been averaged
over all k vectors of the same magnitude. Other details
on the runs and the computed CF's are given in Table I.

To reduce truncation effects in the Laplace transforms,
we have fitted the time correlation functions with a linear
combination of exponentials with complex coefficients, in
the spirit of what done for argon [17]. These functions
allow us to obtain very accurate fits, although the physi-
cal meaning of the optimized parameters is dificult to ex-
tract because the frequency dependence of the transport
parameters is important. The difference between the time
correlation function and the fitting function is then nu-
merically transformed and the result added to the analyt-
ical transform of the fitting function.

co G„(k,co)
G22(k, co) =

f„„(k)
where

(2.1)

G,, (k, ~)—=Re{G,, (k, z)]

=Re J dt e "G,(k, t) . . (2.2)

III. GENERALIZED HYDRODYNAMICS
EQUATIONS AND TRANSPORT COEFFICIENTS

A. Theory and approximations adopted

We give here just a brief outline of the theory, which is
described in detail in [17], keeping the same notation for
the sake of convenience. As already mentioned, the 25
time derivative of CF's, FJ&(k, t), can be obtained from
the five fundamental quantities density, longitudinal ve-
locity, energy, longitudinal stress tensor, and longitudinal
heat fiux. We number the above quantities from 1 (densi-
ty) to 5 and define the time CF's as

F )(k, t)=(a.(k.)'a)(k, t)) .

The five microscopic quantities a.(k) are defined as

(3.1)

(k) — y g (l)(k)e —tk rI )

(3.2)

The relation (2.1) is very well satisfied at all frequencies
and for the k range explored. Gzz(k, co) is more accurate
at the highest frequencies (co) 30 THz) and can be used
to correct co G»(k, co). In the low-frequency region, on
the other hand, G»(k, co) is more accurate, so the most
effective fitting procedure relies on a linear combination
of the two functions, namely, (1+5co )G))(k, co) with
0 ~ 5 ~ 1 ps . It should be noted that when 5= 1/f„„(k),
this linear combination becomes G i i (k, ro)+ G2z(k, to)
[Eq. (2.1)].

TABLE I. Details of the simulation runs. The subscripts of
the correlation functions relate to density (1), longitudinal ve-
locity (2), and energy (3) (see text). C~ is the transverse current
ACF.

where the index (I) relates to the molecules and

for density (j = 1 ),

A'"(k)=v'" k/k

(3.3)

(3.4)

Run T (Kj N/10' At (ps) Correlation functions
for longitudinal velocity (j =2),

245
245
298

52
66.5
40

0.0025
0.0025
0.002

11~ 22~ J.

+11 F22 F13 +33
EI I ~F22~ Ci

2 1V

g (l)(k) i ~U(l) + i y y(r(ln) r )
n =1&l

for energy density (j =3),

(3.5)
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A'"(k)=(v'" k/k)

(3.6)

for longitudinal momentum Aux (j =4), and

1 /
2 1

A 5" (k) = —mv'" + — g P (v'" k/k)
n =1%1

( In)
(3.7)

for longitudinal heat fiux (j =5).
Equations (3.3)—(3.7) are written for an atomic fiuid.

Hence an extension of these definitions to a molecular
liquid such as water would require replacing the center of
mass position and velocity with that of all three atoms, so
that for j = 1 there should be three phase factors, for
j =2 three velocities, and for (j =3) additional summa-
tions extended to the three velocities and the four interac-
tion centers, as the TIP4P potential [25,28,29] depends
on the charges position for the Coulomb part and on the
oxygen position for the short-range Lennard- Jones part.
Relatively few attempts to extend generalized hydro-
dynamics to molecular liquids have been made [30—32].

Furthermore, the main interest of this work relates to
relatively slow modes ( (70 THz), due to the center of
mass dynamics, especially in the low-k region [33].
Hence we have chosen a mixed description, whereby all
phase factors and velocities correspond to the center of
mass, while the potential energy E„„contains all atom-
atom and charge-charge contributions required by the
TIP4P model.

For a molecular liquid such as water, described as a set
of rigid molecules, the total energy can be written as

g(()(k) —) mU(l) + ) y y(l)~(l) +~ (3.8)

where I " and co';" are the moment of inertia and the an-
gular velocity relative to the ith principal axis of inertia.
As a consequence, the energy-energy correlation function
contains a number of terms of rather different weight.
We could check that the (E „E„(t ) ) contribution is,
by far, the largest at both temperatures. On the contrary,
rototranslational coupling has been shown [2,33,34] to be
negligible compared to translational-translational and
rotational-rotational terms. The latter can be further
decomposed into a very rapid librational motion plus a
much slower reorientational dipolar motion.

The librational motion can easily be eliminated from
F33(k, t) (see Sec. IV and Table III) without affecting this
CF in the part relevant to our analysis. As to the reorien-
tational terms, again the potential part, which is included
in E „,dominates the kinetic one. Hence it seems sensi-
ble to neglect the second contribution on the right-hand
side of Eq. (3.8) and maintain an atomiclike description of
the kinetic terms, at least as far as the first three variables
above are concerned [Eqs. (3.3)—(3.5)].

To verify this hypothesis, generalized thermodynamic
variables such as h (k), c, (k), and a(k) have been com-
puted from CF's which include or neglect the rotational

V ((k)—:F i(k, 0),
these relations are

h (k) V„(k)—V, 3(k)
a(k) =

aB T'

(3.9)

(3.10)

c,(k)=

V,3(k)
V„(k)

(3.11)

h (k) V„(k)—2h (k) V,3(k)+ V33(k)
c (k)=

k TB

[h (k) V„(k)—V,3(k)]
y(k) = 1+

V, 3(k)
V„(k) V33(k) V„k

where

(3.12)

(3.13)

m (3 Fi3(k, t)
h (k) = — lim

kB Tk' ~-o 8't

is the generalized enthalpy per molecule.

(3.14)

C. Orthonormal variables' ACF's and their properties

As shown in [17], it seems more convenient to intro-
duce a new set of orthonormal variables b (k) and linear
combination of a~(k), whose time correlation functions
can be defined as in Eq. (3.1)

GJ((k, t) = ( b (k)"b((k, t) ) (3.15)

and became linear combinations of the F &(k, t) We give.
in the following the expression for G»(k, t), G 3(k2, t),
G(3(k, t), and G33(k, t):

kinetic term. The values we obtain in the k ~0 limit are
in a much better agreement with the corresponding ordi-
nary thermodynamic variable, i.e., h, c„and a [24,28],
when they are obtained without rotational contributions
to kinetic energy (see, e.g. , Fig. 8). These approximations
we adopted rely on the very different time scales [33,34]
of the acoustic modes (which we are mainly interested in
here) with respect to the other motions and on the much
larger size of the potential contribution to the energy
compared to the kinetic one.

Finally, work in progress [35] on F~(k, t) shows that
the model for the transport coefficients based on the re-
sults of our approximate description, leads to a prediction
of the CF for both diagonal and off-diagonal components
of the stress tensor in quite satisfactory agreement with
the results we obtain with the correct calculation in the
k ~0 limit.

B. Initial values and calculation
of the generalized hydrodynamic coefticients

The initial values and the short-time behavior of the
CF's FJ&(k, t) are the necessary information to calculate,
according to the theory of critical phenomena [36—38],
the generalized thermodynamic coefficients; see Eqs.
(2.15)—(2.18) in Sec. II C in Ref. [17]. Defining the initial
value
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F„(k,t)
G„(k,t)=

11

F»(k, t)
G»(k, t)=

22

(3.16)

(3.17)

G,3(k, t) =

G»(k, t)=

F„(k,t)
F,3(k, t) V,—3(k) V„k)

V,3(k)
V„(k) V33 (k) V„(k)

V13(k) V,3(k)
F„(k,t) 2 — F,3(k, t)+F33(k, t) .

11 V„k
V, 3(k)

V33 (k)—V„k

(3.18)

(3.19)

Defining the Laplace transform of Eq. (3.15) as in Eq. (2.2), the following set of formally exact equations can be ob-
tained [17]:

5

zG1(k, z)= —g H„( kz)G„1( kz) +6, 1 (j, l = 1, . . . , 5) . (3.20)

H(k, z) is a symmetric matrix which is a function of four independent combinations of the coefficients V,.&(k), the

f„„(k),f„(k), f„T(k), and fT (k) [see Eq. (2.28) of Ref. [17]],and of three generalized transport coefficients z (k, z),
z~(k, z), and z~ (k, z), formally expressed in Appendix A of [17]:

if„„(k)

H(k, z) =
if„„(k)

if„T(k)
if„(k)

if„T(k) if„(k)
0 0 ifT (k)

0 z (k, z) iz~ (k, z)

ifT (k) iz (k, z) z (k, z)

(3.21)

It should be noted that no approximation is required to
obtain Eq. (3.20), while to transform it back in time

[z z+~(k, z)z f+„„(k) ]
G33(k, z) = (3.25)

BG1(k, t)
Bt

5= —g H)„(k)G„1(k,t) (j, l =1, . . . , 5)

(3.22)

[[z+zT(k,z)][z +f„„(k) ]+zf„T(k) ]
644(k, z) =

z (k, z)
[z+z (k, z)]+ D(k,z).z+z (k, z)

it is necessary that z, z, and z do not depend on fre-
quency.

From the relation (3.20), the 25 spectra of the time
correlation functions G1(k,z) can be computed as a func-
tion of the elements of H(k, z). We report here the re-
sults that relate G»(k, z), G,3(k,z), G»(k, z), G44(k, z),
and G»(k, z) to the elements of the matrix H(k, z):

6~5(k, z) = z[z +zt, (k,z)z+f„„(k) +f„T(k) ]

zq (k, z)
[z+z (k,z)]+ D(k, z)z+z (k, z)

(3.26)

(3.27)

G„(k,z)= 1

f„„(k)
[f„T(k)+b(k,z)]

z +z~(k, z)+
z+zT k, z)

where

D( k, z)= [[z +zT( k, z)][z +z~(k, z)z+ f„„(k) ]

+z [f„T(k)+b,(k,z)] ] (3.28)

—f„„(k)[f„T(k)+h(k,z)]
G, 3(k,z)=

D(k, z)

(3.23)

(3.24)

and z&(k, z), zT(k, z), and h(k, z) are defined in Sec. IV B
of Ref. [17]. We notice that they are proportional to
f„(k),fr (k) and the product f„(k)fT (k)z (k,z),
respectively.

With the short-time values of the time correlation
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e computed function is si n'
g

g ypn y in a requency ran e t
i no intensity in the ran e 0—

i iti 1 al s V (k) ofs; of the computed time
functions are coll t d

' Tec e in Tables II—IV.
e correlation

A. Generalized hd hydrodynamic variables

The generalized thermod n
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modynamic variables h (k), c (k

d h li df
and f (k) of matrix (3 21 T
k dependence of V (k):—S

a rix .21) are collected in T
o ii =—S(k) is shown in Fig. 7 at 245

5.0
TABLE II. E

K).
Equal time values of the CF'E e s of run 1 (T=245
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0
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0.25 0.5
I

0.75 t [ps]

FIG. 2. (a ) and (b) Longitudinal currenna current CF's (run 2, T =245
ngi u inal current CF's (run 3, T =298 K).

No.

1

2
3
4
5

6
7
9

10

k
(A )

0.2877
0.4068
0.4982
0.5753
0.6432
0.7046
0.8631
1.4668
2.0341

0.0621
0.0656
0.0594
0.0655
0.0720
0.0808
0.0863
0.3675
0.9785

~22
(A/ps)

11.44
11.41
11.36
11.15
11.40
11.34

C, (k, 0)
(A/ps)

11.42
11.32
11.29
11.44
11.27
11.40
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TABLE III. E ualqual time values of the CF's
energy values used in th CF '

e 's of run 2 ( T =245 K)

tional contribut' '
F3

e include a
. In the sec

ionian F, (k t
rotational term V"

~ 33 1s the ini
ond part of this t bl, h

F33, ' has been remov d

a e, te
ve see text).

'tial value obtain d hne w en the libra-

51

No.

1

2
3
4
5

6
8

11
12

k
(A )

0.2877
0.4068
0.4982
0.5753
0.6432
0.7046
1.2865
2.0744
2.8766

0.0550
0.0618
0.0562
0.0553
0.0658
0.0710
0.209
1.016
1.439

V~~

(A/ps)

11.06
11.11
11.29
11.04
11.30
11~ 36
11.18
11.22
11.10

{kJ/mol)

—2.365
—2.660
—2.484
—2.557
—2.890
—3.140
—8.848

—41.231
—59.681

(kJ/mol)

145.53
152.43
152.69
143.48
164.3
177.59
411.67

1704.3
2508.7

V(c)
33

(kJ/Q101)

140.17
145.82
146.04
137.99
157.49
170.48
403 ~ 93

1693.9
2494.0

1

2
3
4
5

6

0.2877
0.4068
0.4982
0.5753
0.6432
0.7046

—2.1311
—2.391
—2.2382
—2.2863
—2.6011
—2.8412

135.76
139.12
141.64
131.79
149.31
161.10

134.13
136.21
137.56
126.83
144.13
155.23

-1.5
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FIG. 4. {a) and (b) Densit -en ' T

0
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1 1.5

f) - „CF' h

t [ps]

term (see text).

gy- sy g
y va ues incinc ude a rotational kinetic
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10
TABLE IV. Equal time values oof the ACF's of ru 3

0

No.

1

2
3
4
5
6

k
(A )

0.2875
0.4066
0.4979
0.5750
0.6428
0.7042

0.0676
0.0821
0.0775
0.0843
0.0834
0.0914

(A/ps)2

13.67
13.87
13.80
13.85
13.80
13.84

C] (k, 0)
(A/ps)

13.20
14.08
13.59
14.11
13.85
13.67

0

10

5.0

C (k, t)

I

t [ps]
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TABLE V. Generalized thermodynamic properties and frequencies (run 2). The zero-k values are
extrapolated data. The second part results have been obtained from initial values of CF's that include a
rotational energy term.

No.
k

(A )

h (k)
(kJ/mol)

c, (k)
(J/mol K)

y (k) o;(k)
(10 /K)

f„„(k) f„(k) f„T(k) fry(k)
(THz) (THz) (THz) (THz)

0
1

2
3
4
5
6
8

11
12

0
0.2877
0.4068
0.4982
0.5753
0.6432
0.7046
1.2865
2.0744
2.8766

—44.24
—44.09
—43.52
—43.16
—42.48
—41.90
—40.74
—35.42
—39.24
—38.83

87.8
77.3
62.8
72.6
39.4
61.0
63.5
60.0
41.4
36.2

1.0047
1.0018
1.0005
1.0017
1.0402
1.0091
1.0269
1.3274
1.0884
1.583

—2.0
—1.23
—0.605

1.19
4.19
2.7
4.93

28.7
27.3
76.6

0
4.079
5.453
7.064
8.131
8.432
8.912
9.401
6.892
7.992

0
14.01
19.33
23.08
26.37
28.93
31.22
44.63
39.94
33.67

0
0.1717
0.1183
0.2934
1.6309
0.8022
1.4629
5.379
1.935
5.142

0
5.45
6.75
7.95

12.69
10.85
11.26
17.78
19.1
18.4

0
0.2877
0.4068
0.4982
0.5753
0.6432
0.7046

—37.5
—35.8
—35.15
—33.17
—32.83
—31.65
—31.37

112
103~ 37
87.63
96.97
64.66
82.71
83.31

1.0016
1.0092
1.0176
1.0515
1.1245
1.0993
1.1272

1.34
3.23
4.37
7.5
9.44

10.4
12.28

0
4.079
5.453
7.064
8.131
8.432
8.912

0
14.006
19.32
23.03
26.27
28.82
31.09

0
0.3903
0.7244
1.604
2.869
2.657
3 ~ 1786

0
5.88
8.38
9.84

13.3
13.4
14.0

tions in the supercooled liquid. According to Xie et ai.
[40], these increased density fluctuations should be asso-
ciated with a larger fraction of water molecules partici-
pating in clusters rather than with increased correlation
lengths. This phenomenon is much less apparent in the
simulation data, which are also hard to extrapolate reli-

ably at k =0, as the isothermal compressibility computed
in simulations is affected by a large uncertainty [28].

The k dependence of the generalized thermodynamic
properties and frequencies of Table V is shown in Fig. 8.
As to V33(k), the equal time value of the energy-energy
time correlation function, we have used a "corrected"

40- 40

40„
20

0.0—

60-

c (k) t J/mole 1

0.0 t' FIG. 8. k dependence of the generalized
thermodynamic properties and generalized fre-
quencies. The zero-k value of c, has been ob-
tained in an independent calculation [24].

40-

y(k)

1.2—

1.0
0
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value V~3'3'(k), where the librational contribution has been
removed, as outlined before.

Comparing these results with the corresponding ones
for argon [17], one can observe significant differences.
Besides the behavior of S(k), two separate peaks at 2 and
3 A ' for supercooled water, as opposed to one for ar-
gon, h (k) is negative at all k's considered and also a(k)
becomes negative when k —+0. [The value of a(k) extra-
polated to k =0 is —2.0X10 K '.] It should also be
noted that the value of c, (0), obtained with a polynomial
extrapolation as the other data in the second row of
Table V, agrees very well with that obtained in a previous
independent calculation with no approximations [24].

In the supercooled region, the function a(k), which is
negative at k =0 in agreement with the experiment [41],
crosses the zero at k =0.45 A ' so that y is exactly 1 at
K =0.45 A and stays very close to 1 up to
k-0. 8 A '. The temperature dependence of a [28] al-
lows us to assume that y(k) will be close to 1 also at 298
K for the TIP4P model as in real water. As a conse-
quence, f„r(k), which is proportional to y(k) —1, turns
out to be negligible compared to f„„(k), f„(k), and

fr (k).
A further important difference with respect to argon is

that f„(k) is roughly 3 —4 times larger than f„„(k). In
argon 1.5 & y & 3, depending on the thermodynamic state
[11,12,17,42], and f„(k) is larger than f„„(k) by

I

50—80%. We shall see that these two differences play a
fundamental role in determining the behavior of the sys-
tem as to transport phenomena and especially sound
propagation.

It is also worth stressing that if the rotational term is
included in the calculation of the energy (see the second
part of Table III), a(k) is positive, although y(k) is still
very close to 1. Moreover, the values of c, (k) are in-
correct. In particular, the value extrapolated at k =0 is
too large compared with that of Ref. [24]. In our
opinion, this depends on including rotational terms only
in the energy, so we chose not to include them in all cal-
culated correlation functions, relying on the complete
separation between librational and acoustic modes.

B. Hydrodynamic limit

It is important to compare the classical hydrodynamic
theory [14,43] with the present generalized approach in
the hydrodynamic regime k, co —+0. The most apparent
difference is the frequency dependence of z (k, z), z~(k, z),
and z (k, z) and the presence of the term b, (k, z). It can
be shown that z (k, O)~0 with k as well as f„„(k),
f„r(k), f„(k), and fz (k). Hence h(k, z)~0 as k (see
Ref. [17])and can be neglected, while z (k, O) and z (k, O)
tend to a finite limit. So, when k, co —+0 the following re-
lations hold:

Gii(k, Z)=

G~~(k, z) = 1

z+z (0,0)

G~~(k, z) = 1

z+z (0,0)

1

(c, k /y)
Z+

(y —1)(c,k /y)z+Pk +-
z+pa, k'

—(,'k'/y)(y —1)' '
G,3(k,z) =

I(z+yDrk )[z +Pk z+(c, k /y)]+(y —1)(c,k /y)zI

[z +Pk z+(c, k /y)]
G33(k, z) =

I(z+yDrk )[z +Pk z+(c, k /y)]+(y —1)(c,k /y)zI

(4.2)

(4.3)

(4.4)

(4.5)

where

Cs

1/2
kB Tp
mS(0) (4.6)

z (0,0)=

( —43')+g)
Dz. =

nmc nm
2 2

z (0,0)=
yDz

(4.7)

(4.8)

c, is the adiabatic sound velocity, Dr and A, r are the thermal diffusivity and conductivity, and p, il, and g are the total,
shear, and bulk viscosity. u„and uz- are the limits for k~O of f„(k)/k and fr (k)/k, respectively.

Equation (4.1) is the well known classical hydrodynamic expression for the transform of the density-density time
correlation function [43]. It is also worth stressing that, under some assumptions for the solution of the cubic equation
[42,43] given by the denominators of Eqs. (4.1)—(4.3), one can obtain the following equations in the time domain, i.e.,
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the transforms of Eqs. (4.1)—(4.3) with these hypotheses:

cos(co, t)+
co~+ (y —1)coT

sin(co, t) . ,
CO

(4.9)

(y —1)'"
G,3(k, t)= — ~ e —e ' cos(co, t)+

(co~ cor )
sin(co, t) (4.10)

+ (y —1)e

r
cos(co, t)+ COT

sin(co, t) . ,
co y 1

(4.1 1)

where

co =D k, co =I k, co, =c,k,
with I the sound attenuation coefficient and

(4.12)

Pk +(y —1)coT
C02—

2

In this case, the poles of the denominator of Eqs. (4.1)—(4.3) are

(4.13)

zh —~T& z+ —l co~ +6)2, z — l 67+ +c02 (4.14)

Schoen, Vogelsang, and Hoheisel [42] have used Eq. (4.9) to fit the density-density ACF and obtain y(k) and the
three frequencies of (4.12). This procedure does not allow us to distinguish a z dependence of z from an increase of
y(k), unless the energy-energy and energy-density time correlating functions are also calculated. If, for example, the
Laplace transform of the density-density ACF can be well fitted by an expression like Eq. (4.1),

G„(k,z)= 1

f„„(k)
kf„„k [y k —1]

z+y, „(k) z+y „(k)

1

f„„(k)

z+f„(k) z+z kz

(4.15)

a„(k) f„„(k)'[y(k)—1)]+ (4.16)z+y, „(k) f„(k) [z+y~„(k)]

which corresponds, in the time domain, to the linear
combination of two exponentials.

From the left-hand side of Eq. (4.16) one can conclude
that z does depend on frequency as follows:

y i.y2. + [~.yi. +(1—~. )yz. ]z
z (k z)=

z +a„yz„+(1—a„)y,„
(4.17)

From the right-hand side of Eq. (4.16), conversely, one
obtains that z (k)=y, „(k) so that

f„ (k)
y(k) —1=[1—a„(k)]

f„„(k)
(4.18)

one can interpret this result in two different ways: (i) y is
larger than 1 and a simple exponential dependence of the
generalized viscosity [the term that multiplies f„(k) in
Eq. (4.15)] and (ii) y ( k ) = 1 and a z dependence of
1/[z+z (k,z)] such as

a„(k) [1—a„(k)]
z+y, „(k) z+y2„(k)

Moreover, if the decay rate y, „(k) is faster than that of
Gii(k, t), the latter can be fitted in time with an equation
equal to Eq. (4.9), as will be shown in the next subsection.
This ambiguity can be resolved by an independent calcu-
lation of the coefficients y(k), f„„(k),and f„(k), i.e.,
by calculating the energy-density and energy-energy time
correlation functions.

C. Calculation of G I(k, t)

The G»(k, t), G»(k, t), and G»(k, t) obtained from
Eqs. (3.16)—(3.19), using the initial values V&(k), are
shown in Fig. 9 at k =0.288 A '. These results show the
kind of problems one can have when using the optimized
parameters, which derive from the fit to G» (k, t) via Eq.
(4.9), to calculate G,3(k, t) and G33(k, t) by Eqs. (4.10)
and (4.11).

The difference from the corresponding functions calcu-
lated from the simulation is apparent and is clear evi-
dence of the ambiguity mentioned in the preceding sub-
section. Actually, the correct G,3(k, t) is always small, as
it should be when y= 1 [see Eq. (4.10)] and G33(k, t)
behaves like an exponential [Eq. (4.11)]. Hence the in-
correct value y =2.9 is a consequence of the forrnal iden-
tity Eq. (4.18) and we must conclude that, as y(k) =—1, z
does depend on frequency.



GENERALIZED HYDRODYNAMICS AND THE ACOUSTIC MODES. . . 1103

0.8

y=2.9; I =0.18 THz
T

I =4.2 THz; co =6.8 THz
2 S

1.0

0.8

0.6
33 0.6

0.4

0.2 — !
I

0E

0.4

0.2

0

-0.2

-0.2 I I

1 1.5 t [ps]
FIG. 9. G»(k t), —G 3(k t), and G33(k t) (thin curves),

computed from MD data for k =k;„=0.288 A . The bold
curve labeled G»(k, t) is a fitting function whose optimized pa-
rameters have also been used to obtain G»(k, t) and G33(k, t)
through Eqs. (4.10) and (4.11).

I

0.5

Figure 10 shows our results for GI3(k, t) and G33(k, t)
at four k values. The amplitude of Gi3(k, t) is very small
at all k up to 1 A ', which suggests a simplified approach
to the analysis of results. In fact, it can be seen from Eq.

0
I I I

0.25 0.5 0.75
I

t [ps]

FIG. 10. k dependence of G»(k, t) and G33(k, t) CF's. The
curves are labeled according to the value of k given in Table V.

(3.24) that
~ 6,3(k,z)

~

—+0 when f„z (k)~0, i.e., y ~ 1,
and b(k, z)~0, so that ~z (k, z)~ ~0. As the first condi-
tion is fulfilled at least up to 1 A, the second also must
be substantially obeyed [note that z (k) is close to zero
even for argon up to =2 A ' [17]].

Under these circumstances, Eqs. (3.23)—(3.27) become

G„(k,z) -=

G,3(k, z) -=0,

1

f„„(k)'
f„(k)'

Z+ [z+z (k,z)]

(4.19)

(4.20)

1
G33(k, z) =-

fr (k)
Z+ [z+z (k,z)]

(4.21)

G44(k, z) =—
[z~+f„„(k) ]

f„(k)[[z+z (k,z)]I z + z+f„„(k)[z+z (k,z)]

(4.22)

655(k, z) -=

fr (k)
[[z+z (k, z)]] z+ [z+z (k, z)]

(4.23)

and b.(k, z) =—0. It is worth observing that when y(k) -=1,
a(k)=—0, and G,3(k, t)=—0, G33(k, t) is equivalent to the
temperature-temperature ACF [20,44]. To fit the La-
place transforms of the time correlation function accord-
ing to Eqs. (4.19)—(4.21) and to obtain the transport
coefficients z (k, z) and z (k, z), it remains to assume a
functional dependence of the latter on frequency.

In the following, the models proposed in the literature
will be compared with one introduced here to allow a

more accurate description of the short-time behavior of
these transport coeKcients and also to take into account
the e6'ects due to single-molecule modes, mainly for k's
typical of simulation and neutron scattering experiments
(&0.2A ').

V. MODELS FOR THE TRANSPORT COEFFICIENTS

To fit the equations in the frequency domain and ob-
tain the generalized transport coefIicients z (k, z) and
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z (k, z), a functional dependence of these coefficients on
frequency must be assumed. The relations used for the fit
are Eqs. (4.19)—(4.23) in Sec. IV C, valid when, as in the
case of water for k ( 1 A ', the two conditions
y(k) =c~(k)/c, (k) =—1 and zq (k) =0 are fulfilled.

The generalized transport coefficients z, (k, z) and
zq(k, z) are the transforms of the correlation functions
J (k, t) and J (k, t) [see Eqs. (A18) and (A19) in Ref. [17]]
and the latter two CF's are the memory kernel of n (k, t)
and n (k, t):

X cos[toJ( '(k)t]+m J '(k)
sin[cd)~ '(k)t]

co~( '(k)

will be labeled model J. To make sure that the latter
correlation functions have the correct short-time
behavior keeping two well separated time scales, we
chose a time dependence of the form

J~(k, t)
=a& '(k)eJ (k, O)

1
n (k z)= (5.1)

where

+[1—a' '(k)]e (5.6)

1
n (k,z)= (5.2) [1—a' '(k)]

m' '(k)=y' '(k)+ y' '(k) .J 1J (5.7)

The models previously employed in the literature assume
an exponential time dependence of n (k, t) and nq(k, t)
[19—22] (simple viscoelastic model) or a linear combina-
tion of two exponentials for n (k, t) [12]. In the latter
case, which will be referred to as model n in the follow-
ing, one has

z (k, z)

J (k, O)

z +a', '(k)z+a' '(k)

z +a', (k)z +b', '(k)z+b' '(k)
(5.8)

Relations (5.6) and (5.7) describe a z dependence of
z (k, z) such as

n (k, t)=[1—a(~)(k)]e '~ +a'„~'(k)e z~ (5 3) where—y (k)t —y' '(k)t

General arguments [10,18,45] lead us to conclude that
the time derivative of n (k, t) and n (k, t) must vanish at
t =0, a constraint obviously violated by the simple
viscoelastic model and by model n. Furthermore, while
the viscoelastic model assumes that z depends just on k,
model n leads to a k and a z dependence of z [see Eq.
(5.1) and the transform of Eq. (5.3)] such as

&(~)—2 (o)+ (o)

~ (u) ~ (0 ) (iT)~(o. )~ OJ ~71J 72J +J

+(1 a(~))(y(~) +y(~) +~(o) )

g( ) — ( )+~( ) +2 ( ) ( )

1J 71J ~J Y1J V2J

b(a) (a)( (a) +~(o) )OJ V2J 7 1J ~J

(5.9)

a', „'(k)z +a'„'(k)
z (k,z)=

z+b,'„'(k)

where

a', „'(k)=[1—a'„'(k)]y', „'(k)+a„'(k)y'„'(k),

b()„'(k)= [1—a'„'(k)]y~„'(k)+a'„'(k)yI„'(k) .

(5.4)

(5.5)

In both cases, the short-time behavior of J (k, t) and
Jq(k, t), i.e. , the Laplace transforms of z (k, z) and
z (k, z), is described incorrectly. In fact, the viscoelastic
treatment assumes a complete time scale separation be-
tween the relaxation time of G» (k, t) and J (k, t), so that
z takes the zero-frequency value, while model n implicit-
ly assum. es a fast decay of the correlation function, whose
contribution is a ', „'(k), i.e., z ~ ~ in Eq. (5.4).

In the case of water, the viscoelastic model cannot be
adopted, in view of the frequency dependence of z (k, z)
and zq(k, z). Moreover, it is necessary to include in the
description both the collective acoustic mode and single-
molecule modes, especially the one corresponding to the
45-THz band in the spectrum of the center of mass veloc-
ity ACF. All this stresses the importance of a good
description of the short-time part of n (k, t) and n (k, t)

It is more convenient to set up a model for J (k, t) and
J (k, t) rather than n (k, t) and n (k, t), so the new model

G„(k,co) =
C1„+~D1„

where

(5.10)

(5.1 1)

and

(5.12)

The Laplace transform of G33(k, t), the real part, is

and the k dependence has been omitted for simplicity.
The number of parameters increases to 5 from 3 for

model n. This is a straightforward consequence of the
fact that model J also describes the single-molecule mode
at -45 THz. In fact, the two extra parameters are the
frequency and the decay rate of the single-molecule
mode. Moreover, model J, besides the correct descrip-
tion of the short-time behavior, allows us to know
J (k, t), the memory kernel of n (k, t). This is not possi-
ble with model n as Eq. (5.4) cannot be inverted, unless
the z —+ ~ limit is subtracted. In this case J (k, t) would
be an exponential with an amplitude (a 0„'—a') „'ho„') and
a decay rate (1/ho„').

Equations (5.6)—(5.9) can also be applied to J (k, t),
z (k, z), and n (k, t), with the parameter index changing
from 0 to q. For model n we have
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G33(k, cQ) =
[ [b(q)f 2 2( (q)+b(q))]2+ 2[ 2

( (q)+f 2 )]2]

The same relations with model Jbecome

[aOJ bOJ +~ (a1J b 1J aOJ a 1J bOJ )1
G„(k,co) =

C1J+Q) D 1J

where

C(j=cQ —
cO (J +b)j'+f„„+f„)+co[J aQJ +f„b',j'+f„„(J +b', j')] f„„J—aQJ'

(5.13)

(5.14)

(5.15)

D]J a I J'co cQ [—bQJ'+a ',j'(J +f„„+f„)]+f„bQJ'+f„„(bQJ'+J a, j')

and, for the transform of G33(k, t),

fTq Jq[aQJ'bQJ'+co (aI j~b') j' aQJ'a', —J' bQJ')—]
G33(k, co) =

C3J+co D3J

where

C3J a 1J cQ cO [b OJ +a 1J ( Jq +fTq ) ]+ b 'OJ fTq

and

D3J ~ ~ (b)j+J +fT2 )+aQJ J +b 1JfT,

(5.16)

(5.17)

(5.18)

(5.19)

In Eqs. (5.14)—(5.19) the k dependence has been omitted for simplicity and J —=J (k, O) and J—:J (k, O).
For a correct comparison of models n and J, the time dependence of n (k, t), which corresponds to the time depen-

dence of J (k, t) as given by model J [Eq. (5.6)], can be calculated. Inverting Eq. (5.1) and using Eq. (5.8), it can be
shown that the corresponding time correlation function is of the form

—y (k)t sin[co(„)(k )t]
n (k, t)=[1—a' '(k) —a' '(k)]e '" cos[co' '(k)t]+m' '(k)o. & 1n 2n n n (aJ)(k)~n

)(k)t(aj)(k) Tln + (o'J)(k) ) 2 (5.20)

where

a(a J)(k)y(a j)(k)+a(a j)(k)y(a j)(k )+ [ 1 —a(a J)(k)—a(a j)(k) ]y(a j)(k)

[1—a', „'(k)—a2„'(k) ]
(5.21)

n (k, O)=0,

n (k, O)= —J
n' (k, O)=0,

n (k, O) =J + [b',j'(k) —a(')j'(k)]J

(5.22)

Comparing Eqs. (5.22) with the correct short-time
behavior of n (k, t) [10,18]

In Eqs. (5.20) and (5.21) the index (o J) relates to
coefficients obtained from model J. In the Appendix, the
method used to calculate these coefFicients, from those of
Eqs. (5.6) and (5.7), is described in detail.

Moreover, from Eqs. (5.6), (5.7), (5.20), and (5.21), we
obtain

T, (k)=
1/2

2
(5.24)

On the other hand, the fourth time derivative term would
be, according to Eq. (5.23),

16
n (k, O) =''=4J (5.25)

VI. FIT OF THE TRANSFORMED CF'S
AND SOUND DISPERSION

This result, though not exact, is very close to that one
obtains from Eq. (5.24) and the fourth of Eqs. (5.22). All
these considerations show that J is simply related to the
collision time T, [10,18,45].

n (k, t)=sech [t/T, (k)],
we get, from the second of Eqs. (5.22),

(5.23) The optimized parameters obtained from a fit to the
Laplace transforms of the density-density ACF according
to models J and n are collected in Tables VI —IX at



DAVIDE BERTOLINI AND ALESSANDRO TANI

TABLE VI. (a) Computed (c) and optimized generalized frequencies and parameters used to fit

G„lk, col with model 1 [Eq. 15.141]. (b) Coefficients required to compute n (k, t) according to Eq. 15.20).
These values have been obtained from (a) as described in the Appendix ( T =245 K).

No.
k

(A )

[f.' lfJ
(THz)'

[f'. ]. [f'.]fJ [f'- 1.
(THz) (THz) (THz)

J
(TH )

(a) (a) (a)71J 72J ~J
(THz) (THz) (THz)

g (o. )
QJ

0.2877
0.4067
0.4983
0.5754
0.6432
0.7046
0.8631

16.94
29.53
49.85
65.06
69.96
77.48
94.81

17.3
29.5
51.0
66.5
71.0
79.4
97.3

165.8
319.2
443.7
562.4
696.3
801.0

1105

(a)
196.3
373.6
532.7
695.4
837
974.7

1274

953.7
907.5
831.6
765.6
796.0
765.6
790.6

16.8
16.7
16.9
17.3
19.1
19.9
24.4

3.44
2.79
2.76
2.39
2.26
2.33
2.16

42.8
43.5
41.5
40.1

41.7
41.9
43.4

1.0485
1.0357
1.0370
1.0331
1.0322
1.0330
1.0316

No.
k

(A )

0.2877
0.4067
0.4983
0.5754
0.6432
0.7046
0.8631

(aJ)
Vln

(TH )

14.49
13~ 10
13.15
12.90
13.52
13.69
15.61

(aJ)
2n

(THz)

0.414
0.459
0.530
0.532
0.470
0.523
0.543

(aJ)
3n

(THz)

(b)
11.07
11.32
11.44
11.78
13.18
13.94
17.37

~(aJ)~n
(THz)

52.22
52.26
49.83
47.92
49.37
49.11
50.02

( o.J)
&n

0.5273
0.5682
0.5757
0.6031
0.6331
0.6421
0.6988

~(aJ)
2n

0.1590
0.1398
0.1350
0.1171
0.1047
0.1126
0.0943

TABLE VII. Same as Table VI (al for model n [Eq. 15.10)]. The last three columns report the time
integral of the memory kernel of the models and of the normalized density-density ACF.

No.
k

(A )

[f.'. ]f.
(THz)'

[f.'. ]f. x'i. ' y2. '

(THz) (THz) {THz)

(o) [n (k, 01]f„
(ps)

[n lk, 01]fJ
(ps)

Gi, (k, 0)
(ps)

0.2877
0.4067
0.4983
0.5754
0.6432
0.7046
0.8631

16.5
28. 1

47.0
61.7
67.1

76.1

98.0

139.2
271.5
411.8
565.1

753.0
938.5

1515

17.4
16.7
20.4
22.8
25.6
27.9
32.0

0.428
0.505
0.723
0.765
0.679
0.758
0.777

0.191
0.174
0.187
0.163
0.147
0.144
0.107

0.4927
0.3940
0.2985
0.2498
0.2498
0.2206
0.1656

0.4257
0.3531
0.3040
0.2728
0.2863
0.2685
0.2250

4.17
3.78
2.65
2.29
2.80
2.72
2.57

TABLE VIII. Same as Table VI at 298 K.

No.
k

(A )

[f'. ]f1
(THz)2

[f.'. ], [f.'. l J1 [f.'. ],
(THZ) {THZ) (THZ)

J
(THz)2

~(a)

(TH )

„,(a) (a)r2J
(THz) (THz)

0.2875
0.4066
0.4979
0.5750
0.6428
0.7041

17.3
28.1

45.6
53.4
68.4
74. 1

17.3
28.2
44.4
52.5
68.5
74.6

152.9
294.0
445. 1

560.7
662.8
761.1

170
342
490
640
778
900

1391
1275
1261
1250
1206
1195

36.0
29.0
37.1

33.8
37.1

40.7

4.18
3.86
4.27
4.48
6.32
5.77

55.0
51.1
51.4
48.6
50.2
48.5

1.0390
1.0316
1.0409
1.0488
1.0441
1.0546

No.
k

(A )

0.2875
0.4066
0.4979
0.5750
0.6428
0.7041

(aJ)
71n

(THz)

24.42
20.66
25.38
25.54
25.63
29.19

( o.J)
2n

(THz)

1.755
1.863
1.969
1.886
3.735
2.944

(o J)
3n

(TH )

25.06
19.67
25.56
22.38
25.55
27.56

( o.J)
COn

(THz)

63.52
60.34
59.15
57.30
57.67
55.36

(aJ)
&&n

0.6994
0.6581
0.7174
0.6569
0.7043
0.7241

0.0982
0.0900
0.0940
0.1002
0.1131
0.1111
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TABLE IX. Same as Table VII at 298 K.

k
No.

[fun ]fn Ifua ].fn 'Yin ) Z, n

(THz) (THz) (THz) {THz)
[n (k, O)]f [6 (k O)]fJ G„(k,O)

(ps) (ps) (ps)

0.2875
0.4066
0.4979
0.5750
0.6428
0.7041

17.2
27.7
45.6
53.7
69.5
76.0

216.2
306.7
566.5
774.4
942.8

1137

41.1

26.9
35.65
42. 18
42.98
43.6

1.99
2.10
2.39
2.54
5.44
3.52

0.0878
0.0970
0.0876
0.0933
0.1270
0.0915

0.0664
0.0797
0.0624
0.0581
0.0436
0.0469

0.0905
0.0861
0.0828
0.0862
0.0648
0.0706

0.78
0.85
0.77
0.85
0.61
0.70

T =245 and 298 K. In most cases the parameter 5, intro-
duced in Sec. II, is given the value 1 ps, to allow us to
balance the low- and high-frequency information. In
Tables VI —IX, the f„„(k) have been obtained from the
second moment of G»(k, t) and agree with the corre-
sponding data of Table V within the statistical uncertain-
ty. The results for G33(k, cu) are shown in Tables X and
XI.

The spectra calculated from the MD correlation func-
tions and those from the fitting functions are compared in
Figs. 11—13 at some values of k. As can be seen, both
models reproduce accurately co G»(k, co) at the smallest
k, except that the band at about 45 THz is missing in the
fit with model n. The data relevant to model n in Table I
at k )0.5 A ' have been obtained with 5=1/f„„(k) as
those obtained with 6=1 ps are unphysical. This prob-
lem does not show up at 298 K as the bands correspond-
ing to single-molecule modes are less resolved and model
n is able to compensate by a large increase of [f„(k) ]f.

Model J, on the other hand, is only weakly dependent

on 5 and leads to values of f„„(k),f„(k), and fr (k)
very close to those calculated independently from V &(k).
Note that although the [f„(k ) ]f from model J are sys-
tematically underestimated by —15%, their ratio to the
correct values does not depend on k.

In the case of G33(k, n~) (Tables X and XI) model n

shows more clearly its limitations, so only results relevant
to k =k;„and 3k;„are reported. In fact, in this case
there are two separate bands and model n cannot com-
pensate the effect of the higher-frequency band by in-
creasing fz- (k) . Actually, the main bands of the spectra
shown in Fig. 13 are those at 10—15 and 45 —60 THz.
Their position depends slightly on k, while the amplitude
of the high-frequency band increases much more rapidly
with k.

It is also worth stressing the different behavior of
J (k, t) and Jq(k, t). Both correlation functions show a
fast decay followed by a long-time tail, but the latter is
negative for J (k, t) [1—aiJ '(k)] (0 and positive for
J (k, t) [1—ajq'(k)]) 0. This difference is confirmed by

TABLE X. (a) Computed (c) and optimized generalized frequencies and parameters used to fit

G»(k, co) with model J [Eq. (5.17)]. (b) Coefficients required to compute nq(k, t). These values have
been obtained from (a) as described in the Appendix (T =245 K). The last two columns are the time in-
tegral of the temperature-temperature ACF and the corresponding generalized thermal difFusivity [see
Eq. (10.2)].

No.
k

(A ')
[fr, ]fj
(THz)'

(fTq ]c Jq 'Y 11 ) 2J'

(THz) (THz) (THz) (THz)
~y()

{THz)

(q)
CXJ

1

3
5

6
8

11
12

0.2877
0.4983
0.6432
0.8046
1.2865
2.0744
2.8766

30.9
74.0

153
153
315
257
251

29.7
63

118
127
316

(a)
1123.4
1191
1618
1525
2187
1125
983

41.4
25. 1

40.5
35.5
50.9
30.81
25.4

3.05
2.26
1.69
1.68
3.58
4.08
7.27

40.9
38.6
41.6
40.3
32.8
33.0
39.8

0.8997
0.9047
0.9501
0.9381
0.9747
1.0867
0.9891

No.
k

(A )

y(qJ)

(TH )

(qJ)
2tl

(THz)

(qJ)
3 tt

(THz)

(qJ]
CO„

(THz)

(qJ)
a&ti

(qJ)
2tt G33(k, O) [Dr(k, O)]fJ

(ps) (A /ps)

1

3
5
6
8

11
12

0.2877
0.4983
0.6432
0.7046
1.2865
2.0744
2.8766

25. 1

15.4
38.6
33.1

64.0
33.8
24.6

9.20
9.08
3.92
4.46
4.51
1 ~ 38
6.45

25.8
14.0
21.0
18.4
18.5
15.2
17.1

(b)
45.9
48.9
52.5
51.6
55.3
45.4
46.0

1.282
1.366
0.580
0.599
0.247
0.418
0.618

—0.442
—0.774
—0.064
—0.087
—0.015

0.072
0.038

1.992
1.023
0.540
0.597
0.233
0.0525
0.0989

6.06
3.94
4.37
3.35
2.55
4.43
1.28
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No.

(q)a,(q)
3'&n

(THz)

[fr', ]f.
(THz)'

k

(A )

X ( ) fpr model n [ 1.F (5.13)].me as Table X aTABLE XI. Same

(q)
72n

(THz)

(k, t0)
33

[THz]
10

0.2877
0.4983

44 9
98.6

26.8
23.9

10.7
11.2

—0.46
—0.67

co G (k,co)
11

[THz]

0
0 20 40 60m) [THz]

of temperature-as Fig. 12 for t eh spectrum ofFIG. 13. Same as ig.
e CF at 245 K.temperature

0
0 20 40 60 ~PH. ]

m G (km)
11
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0
20 40 I [THz]
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298 K. As we do not calculate the isothermal compressi-
bility yz, which determines S(0), for simplicity the low-k
behavior of S(k) has been described with a polynomial fit
on the data of run 2 (f„„(k)=[k&TlmS(k)]k
=m, k +mzk ). This does not account for the rising of
S (k) in the low-k limit, observed experimentally in super-
cooled water, which leads to a lower sound speed at 245
K. This feature is much less apparent in our MD S(k),
as can be seen in the inset of Fig. 7.

Besides the almost quantitative agreement at room
temperature, the qualitative trends at both temperatures
can be explained by a simple extrapolation of the parame-
ters that determine the k and co dependence of the gen-
eralized viscosity.

Thus we can conclude that at the k values typical of
neutron scattering and simulation, the sound velocity is
2—3 times larger and the bandwidth an order of magni-
tude smaller than those predicted by a simple extension

of the hydrodynamic values. Besides the frequency
dependence of n(k, z), the physical quantity that plays
the major role in determining the dispersion curve is the
ratio [9,10]

[~„(k) —coo(k) ]'i f„(k) =3
coo(k) f„„(k) (6.1)

which is much higher than in most other liquids. coo(k)
and co (k) are the second moments of G&, (k, t) and
Gzz(k, t), respectively. The importance of the value of
this ratio can easily be checked by repeating the calcula-
tion done to get the results of Figs. 15 and 16, with a
smaller value of f„(k) Qual.itatively, a dispersion curve
of the same shape would be obtained at the larger k's, but
the size of the dispersion would diminish and the band-
width would increase linearly with the value of the ratio
of Eq. (6.1).

u (k)-1

0.040

(0 (k)
[THz]

40

0.020

20

0.0

y, (k)—
[THz] Qi

g. o
ii

2.0

1.0

1000

J (k)

[THz']

II ~I

FIG. 14. k dependence of the fitting pa-
rameters for model J applied to the density-
density ACF at 245 K. The curve is a polyno-
mial fit of the discrete values (solid squares).
The error bar corresponds to the standard de-
viation. In the case of f„(k) and f„„(k)
(bottom right) the open squares are calculated
values; see Table VI.

0.0 500.0

(k)
[THz]

20

(k)
2000

[THz ]

10 0(

(k)
50

0.0
0 0.2 0.4

I

0.6
k [A ]

OL.
0 0.2 0.4 0.6
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[A/ps]

50—
ro /k

I (k)

[THz]

20

40—

30—
15

20—
10

10— 5.0

0.0
0.001 0.01 0.1

0.0 0.2 0.4 0.6 k [A- )

[A~/ps]

1000—

A(o (k)

[THz]

40

800 )k]
30

600

400
20

200 10

0.00
0.001 0.01 0.1

0.0
0 0.1 0.2 0.3 0.4k 2g-2)

FIG. 15. (a) Dispersion curves for the acoustic mode, calcu-
lated from model J at 245 and 298 K. The solid and open
squares are the MD values at the same two temperatures calcu-
lated from the Laplace transform of CF's of Figs. 1 and 2. The
second moment of the longitudinal current ACF (co„/k) and of
the density-density ACF (coo/k) are also shown for T =245 K.
(b) Width at half height calculated from model J at 245 K. The
solid squares are MD values from CF's of Figs. 1 and 2 at 245
K. The horizontal line is the hydrodynamic limit ( T =245 K).

FICJ. 16. (a) Comparison of experimental [3] (open squares)
and MD results (solid squares) for the k dependence of the fre-
quency of the maximum of the spectrum of the longitudinal
current ACF. The curve shows the prediction from model J.
The straight line is the hydrodynamic behavior (T =298 K). (b)
Same as (a) for the width at half height.

directly from the simulation data through

G22(k, z) —=

z +f„(k) n (k,z)z+f„„(k)
(7.1)

VII. CALCULATION OF n ~ ( ky t) y 7fq ( kp t )~ G44 ( ky t)~
AND G55(k, t)

With the knowledge of the generalized transport
coefficients z (k, z) and z (k, z) it is possible to calculate
n (k, t) and n (k, t) by means of Eqs. (5.1) and (5.2) at all
k's. The results at k =0.288 A are compared in Figs.
17(a) and 17(b) with those obtained from model n with
the parameters given in Table VII.

The main differences are visible at short time. The
curve from model J has a vanishing derivative at t =0
and the oscillation due to the nearest-neighbor cage,
features that are not included in model n. At longer
times, on the other hand, there are only minor differences
due to the different values of [f„„(k)]f and [f„(k) ]f.
Figure 17(a) and the inset also show n (k, t) computed

The agreement between the function from model J and
that obtained according to Eq. (7.1) is satisfactory, al-
though some caution is necessary due to possible trunca-
tion effects on Gz2(k, z) from Eq. (7.1). As already no-
ticed, n (k, t) has a positive long-time tail, while n~(k, t)
a negative, faster, long-time tail.

G44(k, t) and G~5(k, t), calculated by inversion of
G44(k, z) and G55(k, z), as given by Eqs. (4.22) and (4.23),
are shown in Figs. 18(a) and 18(b), where also n (k, t) and
n~(k, t) are plotted. The latter are very similar to
G4~(k, t) and G~5(k, t), respectively, as it should be ex-
pected, since these pairs of functions must be equal in the
k —+0 limit. In fact, f„„(k) and f„(k) vanish as k,
while z (k, z) and z (k, z) go to a finite limit and depend
weakly on k.
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0.8 I-

0.6-

n (k, t)

0.5

t.e., when S(k)—= 1. In this case, even the long-time de-
cay rate A, (k) of the self- and collective functions turns
out quite similar.

From Fig. 20 one can also note that the acoustic mode
band is hardly visible when k ) 1 A ', as a consequence
of its decreased amplitude and merging with the two
bands corresponding to single-molecule modes. This is
apparent from the figure, where the increase of amplitude
of the 0—0—0 bending mode (8—10 THz), as a function
of k, at the expense of the 0—0 stretching mode (40—50

0
0 0.] 0.2
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FIG. 17. (a) Longitudinal memory function n (k, t) from
model J (solid line), model n (dotted line) and from an inversion
of Eq. (7.1) (dash-dotted line). The inset shows an enlarged view
of the short-time region (T =245 K, k =k;„). (b) Temperature
memory function nq(k, t) from model J (solid line) and (n) (dot-
ted line) at 245 K and k =k;„.

0.8
[ps]

0.4

VIII. COLLECTIVE AND INDIVIDUAL
DYNAMICS AND LONG-TIME TAILS 0.2

G„(k,z) = [G (k, )]"'
(8.1)

Recently [46], Kerr's theory [47] has been applied to
calculate the time correlation functions of collective vari-
ables from the corresponding self-part. Other authors
[48,49] have obtained, for the spectrum of the collective
part, a relation with that of the self-function that is
equivalent to Kerr's:

0

-0.2

0

n (0,
q

G (1@,t)
I

0.2

ss

I

0.4 0.6

(b)

I

t [ps]

It is clear that when S(k)—= VII(k)=1 the collective
function reduces to its self-part. From Fig. 19 it can be
seen that this occurs in the case of water at k =2 A

FIG. 18. (a) Comparison of the longitudinal memory func-
tion n (k, t) (solid line) with G44(k, t) (dotted line) at k =k;„
and 0. In the latter case the two functions coincide (dot-dashed
line) (T=245 K). The inset shows the corresponding spectra.
(b) Same comparison for n~ {k, t) and G»(k, t).
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FICx. 19. Density-density ACF (bold line) and the corre-
o —l

sponding self-part (thin line) at k =2.074 A at 245 K. The in-
set shows co times the corresponding spectra.

FIG. 21. Long-time decay rate A,(k) and the inverse of the
time integral of the density-density ACF at 245 K. Solid sym-
bols relate to the average value of the two runs, while open sym-
bols relate to the single runs; the curves are drawn as a guide.

THz) is clearly visible. The position of these two bands is
not significantly dependent on k. This is why this low-
frequency single-molecule mode does not affect much, at
low k's, the collective density-density ACF, which can
therefore be described satisfactorily by model J, although
it does not take into account that mode. Including it in
the model would require an additional combination of
sine and cosine functions in Eq. (5.6), tuned on the fre-
quency of the mode, 8—10 THz.

Another feature worth stressing is the lack of de
Gennes narrowing [50] of the spectrum of G»(k, t) at
k = (2'/cr ) —=2—(o is the length parameter in the LJ part
of the TIP4P potential), where S(k) has one of its maxi-
ma. Actually, A, (k), the long-time decay rate of G»(k, t),

co G (k, co)
11

[THz]

4.0

G „(k,co=0)
f„„(k)

z (k, co=0) .f„(k) (8.2)

When k (1 A ', the ratio of the f's above is 0.09—0.08
at 245 K and does not vary much; see Table VI (the
minimum is 0.03 at k =2 A ). z (k, O), conversely, in-
creases monotonically with k, from 2.35 THz at k =k
to 12 THz at k = 10k;„. The combination of these two
trends produces the results of Fig. 21 and shifts the
minimum of A, (k) from the k corresponding to the max-
imum of S (k). As we shall see, this behavior is related to
the fact that A(k) does not depend on thermal diffusivity.

reaches a minimum at a value of k that does not coincide
with that of the maxima of S(k) at room temperature
[10].

X(k) is shown in Fig. 21 together with the inverse of
the area under G»(k, t). There is an apparent correlation
between the behavior of these two functions, which indi-
cates that the long-time regime is also affected by the way
z (k, O) depends on k

3.0 IX. TRANSVERSE CURRENTS

2.0

1.0

With the procedure outlined above it is possible to cal-
culate the Laplace transform of the transverse current
ACF C~(k, t), shown in Fig. 5. As discussed in [12], ac-
cording to hydrodynamic theory this transform can be
written as

0.0
0 20 40

co [THz]

C~(k, O)
Ci(k, z) =

z+coi(k) ni(k, z)

where

(9.1)

FICJ. 20. Spectra of the longitudinal current ACF. The
curves are labeled according to the value of k, reported in Table
X (9 and 10 relate to k = 1.467 and 2.034 A, respectively).

8 [Cj(k, t)/C~(k, O)]
co (k) = —lim

i~O dt 2 (9.2)
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(9.3)

By analogy with G33(k, z) [see Eq. (4.21)], a memory ker-
nel with the correct short-time behavior could be

ni(k, z) = 1

z+zi(k, z)
(9.4)

C (k, co)

(ps]

0.50

0.40

0.30

0.20

The memory kernel used in [12] to fit the real part of this
function is a combination of two exponentials

1 —a'„"(k) a'„"(k)
ni(k, z)= +

z +y'i„'(k) z +yz„'(k)

where

zi(k, z) z +a,J(k)z+aoJ(k)
z'+a, (k)z'+b, (k)z+b (k)

and a,z(k), aQJ(k), b,z(k), and boJ(k) can be obtained
(i) (j.) (i) (i)

from the coefficients yIJ'(k), yzJ(k), o~J (k), and az (k)
by means of equations analogous to Eq. (5.9).

The results of the fit to Ci( k, co )—:Re I Ci ( k, z)/
Ci ( k, 0) I by equations of the form (5.17)—(5.19) are
shown in Figs. 22(a) and 22(b) and the optimized param-
eters collected in Tables XII—XV.

As can be seen from the figure, co,„(k), the frequency
(i)

of the maximum of Ci ( k, co ), increases with k, while the
height of the maximum decreases with k. Here too, the
single-molecule band at 45 THz is more apparent when k
increases.

It is worth stressing that a fit by model n with uncon-
strained parameters gives sensible results only at the first
three values of k at T=245 K. It can be seen from
Tables V —VII that coi(k), if unconstrained, would take
much too high values after the first three k, to "compen-
sate" for the band at 45 THz. Hence we chose to set it at
the value obtained by Eq. (9.2). The optimized parame-
ters for the fit with model J, on the other hand, behave
regularly, although the unconstrained coi(k) is 30—40%
smaller than that given by Eq. (9.2).

0.10 X. VISCOSITY AND THERMAL CONDUCTIVITY

0.0
0

C (k, co)

I:ps]
0.30

10 15
ro [THz]

Total viscosity ( —4i)+g) and thermal diffusivity (DT)
can be obtained, extrapolating to k =0 the parameters re-
ported in Tables VI, VIII, and X, by the following equa-
tions:

[f. (k)']f . [f. (k)']f
—', rI+g= lim = lim n (k, O),k-o k'z (k, O) I -o k'

(10.1)

[fT, (k)'lf
DT= lim

2
= lim

& k zq(k, O) k o k G33(k, 0)
(10.2)

0.20
prom the first of Eqs. (4.7) thermal conductivity XT can
be obtained. Moreover, from

0.10 and

[cubi(

k ) ]fg= lim = limk-o k'z, (k, O) k-o k'C, (k, o~=O)

peri(k)
G = lim

k 0

(10.3)

(10.4)

0.0
10

co [THz]

FICx. 22. (a) Spectra of the transverse current ACF at 245 K,
computed directly (solid curve) and from model J (dotted
curve). The inset details the high-frequency part. (b) Same as
(a) at 298 K. The results from model n are shown for curve 6
(k =0.705 A ).

the shear viscosity and the rigidity modulus can be calcu-
lated [12].

A polynomial extrapolation has been carried out on the
data of Tables VI —XV for k ( 1 A '. Theory allows us
to set the zero-order term equal to zero when fitting
f„(k), fT (k), and cubi(k), while z (0,0), z (0,0), and
zi(0, 0) do not vanish at k =0. The results obtained and
the experimental data are collected in Table XVI at 245
and 298 K.
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TABLE XII. (a) Computed (c) and optimized generalized frequencies and parameters used to fit

C, lk, co) with model I [with a relation such as Eq. (5.17)]. (b) Coelftcients required to compute n, (k, t)
These values have been obtained from (a) as described in the Appendix (T =245 K). The last two
columns are the frequency of the maximum and the time integral of the transverse current ACF.

[~HfJ
No. (A ) (THz)

Ji
(THz)'

(i)71J
(THz)

(&)
V2J

(THz)

co")COJ

(THz)

0.2877
0.4067
0.4983
0.5754
0.6432
0.7046

54.7
110.5
163.6
214.4
267.4
314.8

87
174
253
335
406
472

(a)
1049.3
1068.5
1073.2
1163.9
1079.8
1078.8

10.4
11.6
13~ 3
14.8
16.0
17.4

7.5
8.5
9.3
8.8

11.4
11~ 3

29.3
29.0
28.8
31.8
28.0
28.0

1.1490
1.1915
1.2447
1.1998
1.3691
1.3867

0.2877
0.4067
0.4983
0.5754
0.6432
0.7046

(LJ)
71n

(THz)

17.81
20.13
22.69
22.96
27.38
28.69

(iJ)
2tt

(TH )

0.7923
0.9451
0.9605
1.0887
1.3309
1.3557

(lJ)
3n

(THz)

4.839
5.537
6.140
7.119
7.333
7.973

(THz)

(b)
44.20
44.39
44.44
47.29
44.43
44.43

(LJ)
2n

0.2608
0.2524
0.2511
0.2821
0.2355
0.2421

~(iJ)
2n

0.1901
0.1903
0.1873
0.1855
0.1931
0.1869

(i)
~max

(THz)

3.3
4.7
5.8
6.9
7.4
8.4

[Cilk 0)]fJ
(ps)

0.0704
0.0412
0.0288
0.0247
0.0232
0.0206

TABLE XIII. Same as Table XII for model n (see text).

No.
k

(A ')

0.2877
0.4067
0.4983
0.5754
0.6432
0.7046

60.4
325

1083

(i)3' I n

(THz)

75.3
81.3
82.0
79.7
83.2
79.5

(i)
T2,n

(THz)

0.822
0.999
1.012
1.185
1.314
1.306

0.1223
0.1234
0.1216
0.1215
0.1216
0.1168

Thermal conductivity has been calculated only at 245
K, where the energy-energy and the density-energy corre-
lation function have been computed. The value we ob-
tain is in fairly good agreement with the experimental
data. The latter has been extrapolated from data mea-
sured on the saturation curve between 543 and 273 K
[51],as values measured in the supercooled region are not
available.

The simulation result for thermal conductivity corre-
sponds to a thermal diffusivity DT =7.8 A /ps. The com-

0

parison of this result with that of Fig. 21 shows that the
long-time decay rate of G»(k, t) has no relation with the
hydrodynamic prediction [A(k) =coT(k) =DTk ]. In this
case, A, (k) would vanish as k and one should have
A,(k)=0.65 THz at k =k;„=0.2877 A ' and A,(k)=7.8

THz at k = 1 A ', much higher values than that of Fig.
21, but of the same order of magnitude as 1/G»(k, 0);
see Table X.

At y= 1, the long-time decay rate of G»(k, t) is deter-
mined by generalized viscosity rather than thermal
diffusivity. The latter is to be calculated from G»(k, t),
i.e., extrapolating the data of Table X to k =0.

The dynamics underlying the viscosity with the TIP4P

model turns out to be 30—40% faster than in real water
at room temperature and 2 —3 times in the supercooled
region, as also shown by self-diffusion and dielectric re-
laxation results [34,52]. All this is consistent with the ob-
servation that Dg/T= DrD —=con—st [53,54].

XI. SUMMARY AND CONCLUSIONS

In this paper, we have examined the density-density,
energy-density, and energy-energy time correlation func-
tions for the TIP4P model of water at 245 K. From the
equal-time values of these functions, the generalized ther-
modynamic coeScients have been obtained. Moreover,
fitting their Laplace transform by means of a model for
the transport coe%cients, important information around
the propagation and dispersion of acoustic modes has
been obtained. The main results we have obtained can be
summarized as follows.

(i) S(k) shows a neat peak at 2 A, which is a conse-
quence of the increased, intermediate-range, tetrahedral
ordering allowed by the lower temperature. At 298 K
this peak is only a shoulder of the main peak at 3 A
The experimentally observed rise of the S(k) curve when
k goes to 0, related to correlated density fluctuations, is
much less apparent in the MD results.

The specific heat capacity both at constant volume and
pressure increases when k decreases in a way that makes

0
their ratio very close to 1 when k (1 A '. This is con-
sistent with the very small value obtained for the thermal

0
expansivity, which becomes negative for k &0.45 A
although the value extrapolated to k =0 is less negative
than the experimental data [41]. This behavior and some
other features such as the self-diffusion coefficient [24,29]
and the dielectric relaxation times [29,34,52] indicate that
the TIP4P model tends to underestimate the effect of a
lower temperature on static and dynamic properties.
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TABLE XIV. Same as Table XII at T =298 K.

k [coi]fJ
No. ( A ) (THz) 2

Ji
(THz)2

(i)
1J

(THz)

(i)
Y2J

(THz)

0.2875
0.4066
0.4979
0.5750
0.6428
0.7041

54.6
98.0

156.8
205 ~ 8
248.8
312.0

82
154
234
295
366
435

1172
1066
1200
1206
1131
1293

18.0
15.8
25.5
25.5
23.4
32.0

94
7.3

10.4
10.6
12.9
1 1.4

29.1

29.1

27.7
26.0
25. 1

26.0

1.224
1.137
1.338
1.393
1.517
1.414

k
No. {A )

0.2875
0.4066
0.4979
0.5750
0.6428
0.7041

(iJ)
V ln

(THz)

26.73
21.95
36.68
37.90
36.66
46.01

(iJ)
2n

(TH )

2.684
2.558
2.927
2.860
3 ~ 388
3.320

(iJ)
3n

(THz)

7.950
7.180

10.96
10.44
9.795

12.99

(THz)

45.57
43.96
45.37
44.78
43.67
46.01

0.2744
0.3108
0.2552
0.2337
0.2195
0.2213

(iJ)
2n

0.1432
0.1277
0.1340
0.1276
0.1515
0.1277

(THz)

2.2
3.2
4.0
5.1

6.2
6.4

[&l(k, ollfJ
(ps)

0.2560
0.1421
0.1006
0.0791
0.0657
0.0579

TABLE XV. Same as Table XIII at 298 K.

No.
k

{A )

0.2875
0.4066
0.4979
0.5750
0.6428
0.7041

(i)
P ln

(THz)

73.3
69.0
71.6
71.0
72.0
66.9

(i)
2n

(THz)

2.66
2.61
2.73
2.61
3.04
2.86

0.0936
0.0840
0.0808
0.0775
0.0866
0.0728

Also the temperature dependence of the viscosities (Table
XVI) confirms this limit of the TIP4P model.

(ii) The results in the hydrodynamic limit help to illus-
trate the ambiguous interpretation of the physical mean-
ing of functions used to fit the density-density ACF. In
particular, the effect of an increase of y(k) can be misun-
derstood as a frequency dependence of the generalized
viscosity, unless the energy-density and the energy-energy
time correlation function are also calculated. The
behavior of the latter correlation functions has shown
that, for water, it is the frequency dependence of the gen-
eralized viscosity that plays the major role to determine
the observed anomalous sound dispersion, as y(k) =1. A
further consequence of y(k) = 1 is that, unlike in argon,
f„T(k) behaves differently from the others, which in-
crease linearly with k, at small k's.

(iii) The G»(k, z) has a small amplitude up to k=1
A ' (see Fig. 10), which indicates that y(k)=1 and
Iz (k, z)I is small [Eq. (3.24)]. Equations (3.23)—(3.27) in
this case can be simplified and reduced to Eqs.
(4.19)—(4.23), showing that density and temperature fluc-
tuations are not coupled, the former being driven by the
generalized viscosity term and the latter by the thermal
diffusivity.

(iv) In view of the substantial dependence on frequen-
cy, in the case of water, of the generalized transport
coefficients z (k, z) and z (k, z), a simple viscoelastic

model, with frequency-independent transport coefficients,
turns out to be inadequate for this liquid.

(v) Model J for the generalized transport coefficients
z (k, z), z~(k, z), and zi(k, z), introduced in this paper, al-
lows us to accurately fit the spectra of the density-
density, temperature-temperature, and longitudinal and
transverse current ACF's also leading to a correct
description of the short-time behavior, at least up to
k—= 1A

(vi) The optimized generalized frequencies of the fit
agree satisfactorily with those obtained independently
from the second moments or the initial values of the
relevant ACF. The difference, which does not depend on
k, is larger in the transverse functions and is due to the
neglect of librational contributions [35].

(vii) The weak k dependence of the fitting parameters
allows a polynomial extrapolation to k =0 that gives
both the large dispersion and the remarkable narrowing
of the band of the acoustic mode, observed at the lowest
k accessible to neutron diffraction and computer simula-
tion.

As Fig. 15(a) shows, at 245 K there are two ranges of k
where the speed of sound increases rapidly, separated by
a plateau region. After this paper has been submitted,
MD results by Sciortino and Sastry [55] on the TIP4P
model at various temperatures have extended the analy-

0
ses of sound dispersion down to k =0.026 A ', i.e., at
the edge of the plateau region of Fig. 15(a). There is a re-
markable overall agreement between their MD data and
the prediction of our model. The temperature effect also
is that obtained with our model. It is particularly notice-
able that at k =0.026 A ' (see Fig. 5 of [55]), the speed
of sound (co,„/k) is still twice as large as in the hydro-
dynamic limit (26 A/ps vs 13 A/ps), in the supercooled
region. This supports the results of Fig. 15(a), i.e., that
about 60—70% of the dispersion occurs between 0.01 and
0.03 A

From a physical point of view, these features are to be
traced back to the large value of the second moment of
the longitudinal current, which determines the overall
size of the effect [see Eq. (6.1)], and to the slow decay
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TABLE XVI. Comparison of calculated and experimental (in parentheses) thermal conductivity and
viscosity and rigidity modulus.

T
(K)

245
298

kT
(W/mK)

0.35+0.07 (0.45)

4g/3+ g
( 10 g/cm s)

10+2 (27)
2.0+0.5 (3)

7l

( 10 g/cm s)

2+0.3 (8)
0.5+0. 15 (0.9)

G
(g/cms )

(11.0+1.5) 10"
(9.7+2) 10'

y2( '(k) and amplitude a2(„)(k) of the memory kernel
n (k, t), that determine, respectively, the k range
(0.01 —0.03 A at 245 K and 0.02 —0.06 A at 298 K)
and the height of the first step of the dispersion curve.

(viii) In water, the negligible coupling between sound
propagation and thermal fluctuations leads to a simplified
picture of the liquid dynamics. It is possible, in particu-
lar, to shed light on the physical meaning of some fitting
parameters. For example, the weak k dependence of J,
Jq and J~, as results from Tab les VI—XV, and their simi-
lar values are evidence that the short-time behavior is
dominated by collision phenomena, as shown at the end
of Sec. V, and that ~, depends weakly on k [56], at least
in the low-k region. The collision time ~, turns out to be
0.044 ps at 245 K and 0.037 ps at 298 K, in good agree-
ment with simulation results (0.04 ps) for deuterated
TIP4P water at 310 K [10].

As to the other parameters, y(3„)(k) and a)(„)(k) are
related to the single-molecule mode determined by the os-
cillation of the tagged molecule in the nearest-neighbor
cage, as is proved by the values of co(„'(k), always in the
range 40—60 THz. It is also worth stressing that
y3„'(k), the damping rate of this mode, roughly doubles
at the higher temperature and this makes it more difficult
to distinguish the single-molecule mode from the sound
propagation mode.

The parameter y2(„)(k), as already remarked in the

previous sections, describes the long-time behavior of the
memory functions and determines the shape of the
dispersion curve, in the case of the density-density ACF.
This parameter increase by a factor of 4 when tempera-
ture rises from 245 to 298 K (see Tables VI and VIII), a
behavior opposite that of a typical structural time for this
liquid. In Ref. [18] this long-time behavior is connected
with mode-coupling effects, through the knowledge of
structural properties.

As to the parameters used in the description of the
spectra of the temperature-temperature ACF, I /y(z~ '(k)
is much shorter than that relevant to the density-density
and transverse current ACF, while the negative ampli-
tude and long-time tail are fairly close to the correspond-
ing values for the single-molecule velocity ACF. The
other parameters y()„)(k), y(P '(k), and y()„'(k) are of or-
der 1/w, (k) and are probably an extension to relatively
intermediate times of binary collision effects.

(ix) G44(k, t) and G»(k, t) in the low-k region are very
similar to the memory functions n (k, t) and n~(k, t) and
should became equal in the limit k =0; see Fig. 18. It is
also apparent that the single-molecule mode related to
the oscillation in the nearest-neighbor cage remains more
clearly visible in G&4(k, t) than in G&5(k, t). Work is in
progress to identify the contribution to the longitudinal
momentum and energy Aux, which is responsible for this
different behavior.

APPENDIX: CALCULATION OF n~ q g(kit) FROM J~ q J(k, t)

By Laplace transform of Eq. (5.20) we obtain

z +a' '(k)z +a' '(k)z+a' '(k)
(J) (k )

2n )n On

z +a2„'(k)z +b~„'(klz +b', „'(k)z+bo„'(k)

where

a( )= ( )+ ( )+2 ( )~ 2n ~ ln 'V2n 73n

a(o J)—~(aJ)(~(aJ) +(y(a&) y(aJ))&)+~(aJ)(~(aj) +(y(aJ) y(aJ))2)+2@(aJ)(y( J)+ay(aJ))+ (aJ)y(aJ)
1 n ln L ~n V3n V ln & 2n L n F3n Y2n j V3n Yln V2n V ln 72n

9 a =Ot(aJ) ~aJ~I ~~aJ] +(y~aJ] y~aJ]52']+A aJ
p

aJ I Qp(aJ) +~ (aJ) ~aJ~)21+2y[aJ~y

b(o'J) — (aJ)( (O'J) +2 (crJ) )+ (aJ) + (aJ) +2 (O'J) (aJ)
2n 71n 72n V3n ~3n ~n 2n 3n

b(aJ) (
(o J)+ (aJ))( (aJ) + (o'J) )+2 (o J) (aJ) (o J)

1 n X 1 n V2n ~n 3n V ln 72n 3 3n

I (aJ) — (aJ) (aJ)~~(aJ) + (aJ) ~
On V 1 n V2n ~ ~n 3n

In Eqs. (A2) all parameters depend on k, though not explicitly indicated, to simplify notation.
From Eqs. (5.8), (5.1), and (5.9) we get an equation equal to Eq. (Al) with

a 2„(k)=a Iq'(k), a ') „'(k)=b )J'(k), a()„'(k) =b()J'(k),

bz„'(k)=b')J'(k)+J (k, O), b'(„'(k)=boJ'(k)+a)J'(k)J (k, O), bo„'(k)=aoJ'(klJ (k, O) .

(A 1)

(A2)

(A3)
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By simple algebra, the following relations can be derived from Eq. (A2):

(aJ) (o') (oJ) +(b(o)+J )
(oJ) (b(a)+J (a)) (aJ)+a(o)J OV1 1J V1 1J o 71n OJ a~ 1J V1n OJ cr

a( '
(o1) (a(o ) (o'1)

)
(aJ) +( b(a)+ J (aJ)(a(a) (o I)) i (aJ)

72n 1J V1n V2n L 1J a V1n 1J V1n J V2n (aJ)
1n

a(a) — (aJ)— (aJ)
(aJ) 1J V ln 72n

P3n

(aJ)n

( o.J)1n

' 1/2g(a) y
OJ o (aJ)2

(o J) (aJ) 73n
'V1n 'V2n

(aJ)( (o J) + (aJ) J ) b(o')+2 (aJ) (O'J) (o J)
V ln ~n V 3n a OJ 7 1n V2n V3n

(
(aJ) (aJ))( (aJ) +( (o'J) (aJ))2]

V 1 n V2n ~~n 'V 3n 'V1n

)r( )(a ( ) +7r( ) J ) b( )+2)r( J)7r( J)7r( )

V2n ~n V3n a OJ V1n V 2n V 3n

(
(aJ) (o J))( (o J) +( (oJ) (o J))2]7 2n V 1n L~n 7 3n V2n

(A4)

where J =J (k, O).
Solving the first two equations of (A4), all six coefficients can be obtained. They must be real and yI„)(k), y(2„)(k),

y3„'(k), co'„' must be positive.
From Eq. (5.8), the following relations can easily be derived:

(a) &(a) (o) +g(a) (o) I (a) —OV2J 1J V2J 1J V2J OJ

(o) (o)
( )

~ 1J V2J
V1J

(A5)
1/2

b(o) (a) (o)
OJ V2J 3 1J

(o. )
72J

(a) (a) & (a)
V1J 72J +OJ

(a) + (
(a) (a))2~J V1J V2J

The coefficients can now be obtained by solving the first equation of (A5).
Hence, from the five parameters a ()J)(k), a OJ)(k), b'i J'(k), bc(J)(k), and J (k, O) the parameters relevant to model J can

be calculated through Eqs. (A4) and (A5). Model n approximates Eq. (5.20) with a combination of two exponentials, so
only the amplitude and the decay rate of the slower exponential, a2(„'(k), yz„)(k) and a(2„)(k),y~z„)(k) can be directly
compared; see Tables VI —XV.
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