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The cooperative diffusion coefficient D, for spherical particle suspensions is calculated using a
“mode-coupling” method which extends previous calculations of D, for critical fluids and semidilute po-
lymer solutions. The renormalization of the viscosity in the velocity-velocity correlation function from
the solvent to the suspension viscosity leads to a generalized Stokes-Einstein (SE) equation in which the
suspension viscosity 7 replaces the solvent viscosity 7, and the correlation length & (related to the osmot-
ic compressibility) replaces the sphere radius R at nonvanishing suspension concentrations. Insertion of
the leading order hard sphere virial expansions for 7 and the osmotic compressibility into our general-
ized SE equation gives a virial expansion for D, which is consistent with theoretical estimates obtained
by alternative methods. These leading order virial expansions are also consistent with experiments on
model (“hard sphere”) suspensions. Results are given for the virial expansion of spherical liquid droplets
interacting via a contact attractive interaction. Further experiments are required to test the generalized

SE equation at higher suspension concentrations.

PACS number(s): 66.20.+d, 61.25.Hq, 64.60.Ht, 46.30.—i

I. INTRODUCTION

Recent activity in the hydrodynamics of suspensions
has been stimulated by the development of inelastic
scattering techniques which allow routine estimates of
the cooperative diffusion coefficient and other suspension
properties [1]. Dynamic light scattering measurements
complement the traditional tracer diffusion, sedimenta-
tion, and viscosity studies of suspensions and a compar-
ison of these measurements on carefully prepared model
suspensions has allowed a check on the internal con-
sistency of available hydrodynamic theory for hard
sphere suspensions [2,3]. Good agreement between
theory and experiment has been obtained at low concen-
trations where the leading order virial expansions of
transport properties should be sufficient [2,3]. Further
theoretical development has been slow because of the
complications caused by many-body excluded volume
and hydrodynamic interactions and existing theories are
inadequate for describing suspensions at intermediate and
high concentrations [4].

The present paper develops a nonperturbative calcula-
tion of the cooperative diffusion coefficient D, of spheri-
cal Brownian particle suspensions. We obtain a simple
relation between D,, the suspension viscosity 7, and the
osmotic compressibility, which can be represented as

D,=kyT /6mnE , (1.1)

where kT denotes thermal energy and £ is a “correlation
length.” In the dilute limit (1.1) reduces to Einstein’s
equation [5] and & thus reduces to the particle radius R.
We term Eq. (1.1) a “generalized Stokes-Einstein (SE)
equation” since it is an obvious extension of the infinite
dilution result [5,6].
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An explicit determination of D, is obtained through a
“sum rule” relating £ to the osmotic compressibility (see
Sec. II). This procedure serves to specify D, in terms of
long wavelength suspension properties (7, I1), where II is
the osmotic pressure. From this sum rule we find an al-
ternative expression for D, for spherical particle suspen-
sions

D, /D, o=(n/10)"'[(3I1/3¢) /(31 /3¢ )s]'/? , (1.2)

where the O subscript denotes the dilute solution limit
and ¢ is the volume fraction of suspended particles.
Equation (1.2) indicates that there are two competing fac-
tors which determine the concentration dependence of D,
for hard sphere suspensions. The “fluidity” (7/7,)
factor in Eq. (1.2) decreases with increasing concentra-
tion, while the osmotic compressibility factor in Eq. (1.2)
increases with increasing concentration. In the absence
of attractive interparticle interactions the osmotic contri-
bution predominates so that D, increases with concentra-
tion. Equation (1.2) is a useful representation of D, since
there are many known results (exact and approximate)
for IT and 7 for spherical particle suspensions which can
be inserted into Eq. (1.2) to estimate D_.. As a nontrivial
example we consider a suspension of spherical liquid
droplets, having a viscosity different from the solvent, in-
teracting via a contact attractive interaction. The ratio
of the droplet to the solvent viscosity, the “relative fluidi-
ty,” z,, and the attractive interaction, as measured by the
dimensionless second osmotic virial coefficient 3, are
found to have a large effect on D, for liquid droplets.
The predicted variation of the leading virial coefficient of
D, for “sticky liquid droplets” is found to be comparable
to measurements on flexible polymer solutions.

In Sec. IIT we derive the generalized SE equation (1.1)
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using methods that extend the mode-coupling calcula-
tions of Ferrell [7] and Brochard and DeGennes [8] for
D, of critical fluids and semidilute polymer solutions, re-
spectively. Although our calculations share a common
conceptual basis, relating to the consideration of the cou-
pling of solvent velocity and solute concentration fluctua-
tions, our implementations of these ideas is rather dis-
tinct from previous calculations. The angular preaverag-
ing approximation, which is conventionally employed in
mode-coupling calculations [7-9], is examined and avoid-
ed in the present calculations, for example. Section IV
compares the ‘“generalized Stokes-Einstein equation” Eq.
(1.2) to previous virial expansion calculations for D, and
to experimental measurements of D, at low concentra-
tions. Favorable agreement is obtained in these compar-
isons. In Sec. IV we also consider a nonperturbative
‘““generalized Svedberg equation” [10] relating D, to the
sedimentation coefficient A and the osmotic compressibil-
ity. The virial expansion of A is then obtained for hard
spheres and interacting liquid droplets by combining this
equation with Eq. (1.2). Some technical details of our cal-
culations are given in the Appendices.

II. DYNAMIC STRUCTURE FACTOR AND THE
COOPERATIVE DIFFUSION COEFFICIENT D,

A. General results

Consider a suspension of N spherical Brownian parti-
cles in a large container of volume V. Local fluctuations
in the microscopic density arising from thermal fluctua-
tions or from imposed perturbations of the suspension re-
lax according to the diffusion equation where D, defines
the cooperative diffusion coefficient. Since D, reflects
both the viscosity of the suspension and the interparticle
interaction through the osmotic compressibility we begin
our derivation of D, by defining the microscopic particle
density and the associated density-density correlator, the
dynamic structure factor.

The microscopic particle density n(r,t) is defined in
the usual way,

N
n(r,t)=7 8(r—r;(t)),

i=1

2.1

where r; denotes the center of mass position for the ith
particle. If we denote the volume average of a suspension
property P by

1
(P),=— [drP(r), (2.2)
then the average particle density equals
N/V={_n(r,t)),=¢/(4wR>/3)=7 , 2.3)

where ¢ is the particle volume fraction. Consideration of
a suspension of spheres having a distribution of sizes
(“polydisperse”) requires a generalization of the density
definition
N
n(r,t)=3 ¥ 8(r—r;(1)),

joi=1

(2.4)
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where ¥ ;n;=N and n; is the number of spheres having
radius R;. The conclusions of the development below,
however, are unchanged from the simpler case of a solu-
tion of monodisperse (R;=R) spheres and, for the sake
of notational simplicity, we confine our development to
the monodisperse case. We combine Egs. (2.1) and (2.3)
to define the density-density correlator

S(R,T)=<[n(r,t)—ﬁ][n(r’,t’)—ﬁ])v , (2.5a)
where

R=r—71, r=|t—1t'|. (2.5b)

The variables R and 7 are appropriate for suspensions
which are homogeneous on average in space and time.
The Fourier transform of Eq. (2.5a) defines the dynamic
structure factor

S(k,f)———<2e

ij

> k70, k=|k| .

ik.[ri(r)—rj(on> 2.6)

For k=0, Eq. (2.6) needs to be replaced by Eq. (A4) and
this point is further discussed below and in Appendix A.

It is also convenient to perform a Fourier transform of
S(k,7) in time,

Sk,o)= [ dte's(k, 1), .7

which allows us to obtain a direct connection between the
initial decay rate T'\{”) of the dynamic structure factor
[11] through the cumulant relation

9 [ do 2.8)

F(O):__l ww inS(k’ )
k or n — 217'6 @ ot

Some illustrative calculations, related to I'\”’ and helpful

for the development below, are given in Appendix A. If
we define the fluctuation of the number density p(r,¢) as

p(r,t)=n(r,t)—n , (2.9a)

then T'\” can be rewritten, using Egs. (2.5)—(2.8), in the
form

F{(O)z_ fdrrfdre—vik-(r—r')ga;

X{p(r,)p(r',1")), /S(K,0) |,

7—0
(2.9b)

where S(k,0) is given by Eq. (A4). We next focus on the
numerator term in (2.9b).
Assuming that the continuity equation

d o

= n(r,t)+divj=
Y n(r,t)+divj=0
holds for both macroscopic and microscopic densities we
can define [12] a current j

N
j: 2 v,-(t)S(r—ri(t)) )

i=1

(2.10)

(2.11)
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where v;(¢) is the velocity of the ith particle. Equation
(2.11) does not explicitly account for the fact that our
particles are immersed in a fluid, however. Thus, we let
vf(r,t) be the fluid velocity and v;(¢) is taken to be the
velocity of the particle center of mass v;(¢)=dr,(¢)/dzt.
Imposition of the nonslip boundary condition then gives
rise to the constraint

v(r,t)=v;(2) . (2.12)
Obviously, this result should be modified to account for
the finite size of the Brownian spheres. This complica-
tion is ignored in the present treatment so that some inac-

1083

in which the spontaneous velocity fluctuations occur at
scales larger than the size of the Brownian particles.
By Fourier transforming Eq. (2.10) we obtain

O () +ik-j(k,t)=0,

a3 (2.13)
where
1
ji(k,t)= dk'v(k',t)n(k—k',t) . (2.14)
Mot =5 kot om

with the help of Egs. (2.12)-(2.14) we can write Eq. (2.9)
as

curacy can be expected at high volume fractions where S(k,O)l"LO’=ftdt”k-(j(k,t)j( _k””)>'k|fﬂo+ . (2.15)
packing effects become important (¢>0.4). Neglect of 0
the finite particle size should be appropriate for situations Alternatively, we have
J
S(k,0)T0= (21 5 fotdt”fdk’fdk"(k-v(k’,t)v(k—k”,t)-kn(k—k',t)n(—k',t”)) R (2.16)
o 7—0
[
where { - -+ ) denotes a “thermal average,” which is as- s k; kj
sumed to be equivalent to the volume average in Eq. (2.2). (o (t W) ) =(2m)’8(k+k’) 8ii— X2
The ‘‘preaveraging” approximation (commonly em-
ployed in the dynamics of critical fluids [7-9] and in po- 2kgT T —Ili—r|
lymer solution dynamics [11]) may be introduced by X ol D¢ ) 2.21)

“breaking” the average in Eq. (2.16),

k-(v(k',t)o(k—k’,t")) k{n(k—k',t)n(—k",t")) .
(2.17)
Thus the decoupled current-current correlator €jj) ad-

mits an easy calculation if we employ the velocity-
velocity correlator for fluids given by

(Uik(t)vjk'(tl)>
k;k

1

k2

2k T
nk?

J

=(2m)%(k+k’) |8, — (2.18)

8(t—t') .

We note that the decoupling approximation Eq. (2.17) re-
quires that the viscosity in (2.18) is the suspension viscosi-
ty rather than the solvent viscosity at nonvanishing parti-
cle concentrations (see below). The correlator in Eq.
(2.18) can be obtained in a standard way [13] from the
low Reynolds number approximation to the Navier-
Stokes equation

—a—v(r,t)Z—%VP-%-f‘Vzv(r,t), (2.19)

at
where p is the solvent density, P is the hydrodynamic
pressure, and I'=1/p is the kinematic viscosity. Adding
to Eq. (2.19) the randomly fluctuating forces and using
the incompressibility condition
dive =0 (2.20)

produces an explicit expression for the velocity correlator

where '=T"k2. Finally, taking the limit ' — oo gives the
approximation

lim —g—e*”'*"’:w—z') , (2.22)

F'—>ow
leading to Eq. (2.18). The approximation Eq. (2.22) is
very helpful because it allows us to replace the correlator
{(n(k—k',t)n(—k"”,t")) by an equal time correlator.
Using the auxiliary result of Eq. (A4), we then obtain the
nonperturbative relation

on

(n(k—K,t)n(—k",t))=n Ee kgT .

T

(2.23)

Note that Eq. (2.23) is independent of k in view of Eq.
(A4).

B. Correlation length and 8-function regularization

At low suspension concentrations the density correla-
tion function falls off sharply and in the infinite dilution
limit a 8-function decay is formally obtained [see (A3)].
More generally, the decay of the density correlation func-
tion reflects the interparticle interactions at finite particle
concentration. Following Landau and Lifshitz [13(a)]
and more recently Ferrell [7], we introduce a regulariza-
tion of the & function to account for the finite decay
range (“correlation length”) of the density correlation
function

. 1 1 IR|
S(|R]) §1m0+4 §2| |exp[ £ ]

(2.24)
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We then replace the & function in our formalism by this
regularization and determine £ self-consistently through
its calculated relation to other properties. Given the for-
mal nature of this procedure, it is important to check the
consistency of this method with exact results for hard
sphere suspensions in dilute solutions. This consistency
check is considered below.

First, we observe that S(k=0,0) is related to the
osmotic compressibility (9I1/d7); via the sum rule
[13(a)]

o | _ —S(k=
kpTh | <o | = [dR S(R,0)=5(k=0,0). (2.29)

Substitutions of Eq. (A3) into the right-hand side of Eq.
(2.25) with the 6 function regularized according to Eq.
(2.24) produces the identity due to the relation
1= f o dx xe ™. The Fourier-transformed and regular-

ized expression for S(R,0) can now be written as

(n(k—k',t)n(—k",t))

Or T
oIl | 1
=(2n)8(k—k'—K")———"————  (2.26)
(kll) +é~ g
instead of Eq. (2.23). The combined use of Egs.
(2.16)—(2.18) and (2.26) produces
2kB

(0)

f——LkT H(q) kg(k+q), (227

where g(k)=(k +£7%)7! and the Fourier transformed
Oseen tensor [11] H(k) is defined by

kik; 1 3
H;k)= - > (2m)°8(k+k'), (2.28)
k k
where we have employed Eqgs. (2.21) and (2.22). [Again

we emphasize that the viscosity in Eq. (2.28) is the sus-
pension viscosity rather than the solvent viscosity.] It is
also important that although Eq. (2.27) was derived pre-
viously [7,9,11], the present derivation allows us to devel-
op our formalism beyond the preaveraging approxima-
tion. This generalization is developed below.

C. Generalized Stokes-Einstein relation

The computation of I'\”’ is actually rather cumbersome
[7,9] even within the preaveraging approximation Eq.
(2.27). The situation is simpler if only the calculation of
the diffusion coefficient is required. Using Egs. (A7) and
(2.15) we obtain

3 o
D“er lk=0
w9 0
TE 2 et k=0
=%fodt”(j(0,t)~j(0,t”))|T_,0+’k:0/S(0,0) . (2.29)

From the theory of Brownian motion [12] in the infinite

dilution limit we also have the definition

= =« 2
tlinzn T L ([x(6)—1(0) )
—tgrr;éfdr<u(t v(7)) . (2.30)

In the case of a nonslip boundary condition [see Eq.
(2.12)] we can simply replace the particle velocities v by
those for the fluid. Consistency between Egs. (2.29) and
(2.30) requires

(v(r)-v())=(j0,7)-j(0,7)) /5(0,0)

This result is independent of the preaveraging approxi-
mation and is based only on the nonslip boundary condi-
tion prescribed by Eq. (2.12). The imposition of the
nonslip boundary condition is nontrivial (as it is ex-
plained in the Appendix B) and is related to the assump-
tion of the incompressibility of the fluid given by Eq.
(2.20).

Equation (2.12) could also be used as a starting point
for a field-theoretic approach to concentrated suspensions
of hard spheres, polymers, or even semiflexible mem-
branes. The mathematical framework for such a field
theory was suggested in the work of Lund and Regge
[14(a)] and others [14(b),14(c)] in different physical con-
texts. We shall develop this formalism specifically for the
hydrodynamics of sphere suspensions in a separate work.
The important qualitative aspect of this formulation for
the present work lies in the insight it gives into the renor-
malization of the viscosity in the velocity-velocity corre-
lator [e.g., Eq. (2.18)]. The field theory leads to a descrip-
tion of suspension hydrodynamics in which the suspen-
sion particles are represented by a scalar field interacting
with a field representing the hydrodynamic interaction
fluctuations (“photon field” in an analogous electro-
dynamic problem). The interaction between these fields
is controlled by a coupling parameter involving the sus-
pension viscosity. The renormalization of the coupling
constant caused by the field interactions corresponds to
the viscosity renormalization adopted rather formally in
Eq. (2.18). Moreover, the sum rule Eq. (1.2) serves to fix
the renormalization scheme in the field theory so that the
present formulation is complementary to the field-
theoretic approach.

To understand better the significance of Eq. (2.31), we
first consider the infinite dilution limit. Using Eq. (2.18)
and Fourier transforming it to real space we obtain

(2.31)

( )= 1 (s i 6(r—r)

v;(r,7)v;(r', 7 =y Jr—r] oy T
(2.32)

where n,=(r—r’);/|r—r'|. In view of Eq. (2.31), we

take the trace of both sides of Eq. (2.32) to obtain

kg T
(7)) =2 L b(r—) .
m |r—r'|

(v(r,7)v (2.33)

This expression should now be properly averaged to elim-
inate the explicit » dependence. By analogy with Eq.



51 GENERALIZED STOKES-EINSTEIN EQUATION FOR . ..

(2.2), we then introduce the surface average (sphere case
only) as
2

Jdaafaq -,

1

T

()= (2.34)

where
27 T
dQ= in@ .
i J.7ds [ "dosing
Combining Egs. (2.33) and (2.34) gives

kT
(v(r)v(r))y=—2
T

8(7—-7")< (2.35)

1
[r(Q)—r(Q")| >S )
Next, using the fact that

1 3 < Ir'l"  4x
lr—r'| S, It 20+1

Y, ()Y, (Q),
Ir]>1r'] (2.36)

and combining this result with Egs. (2.34) and (2.35) pro-
duces the simple result

, _ kBT
(v(r)v(r))= o

8(r—71"), (2.37)
where R is the hydrodynamic radius of the Brownian
sphere. Finally, substituting Eq. (2.37) into Eq. (2.30) re-
covers the familiar Stokes-Einstein result

0 6171’]0R ’
where the superscript O denotes the infinite dilution limit.
1), is the solvent viscosity. Notice that this result was ob-
tained without the preaveraging approximation and is
based only on the nonslip boundary condition Eq. (2.12).
The more familiar method of obtaining Eq. (2.38) em-

ploys a preaveraging approximation [7]. In this case it is
convenient to rewrite the right-hand side of Eq. (2.31) as

(j(0,7)-j(0,7)) /5(0,0)
= [dr8(r—7') TrH(r)
X (p(r)p(0)) / [ dx(pirp(0)) ,

(2.38)

(2.39)

where 8(7—7') TrH ;(r) is given by the right-hand side of
Eq. (2.33) and the density-density correlator {p(r)p(0))
is given by Eq. (A3), where the & function is regularized
according to Eq. (2.24). A simple calculation combining
the right-hand side of Egs. (2.39) and (2.31) with Eq.
(2.30) yields the generalized Stokes-Einstein equation Eq.
(1.1) so that at least in the infinite dilution limit, R =§.
At the same time, the sum rule Eq. (2.25) implies [13(a)]

S(0,0)~£2, (2.40)

where & is the static correlation length and the exponent
2 is exact at the level of mean-field theory. By using Eqgs.
(2.38) and (2.40) and invoking the complementary and
continuity arguments, we identify the correlation length &
in Eq. (1.1) with £; (up to a constant factor). Thus we ob-
tain a dimensionless expression for D, at finite concentra-
tions,
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where £,=R. Alternatively, in view of Eq. (2.40), we

may express D, in terms of the suspension relative viscos-
ity /7, and the relative osmotic compressibility,

D, 5(0,0) |7

B , 2.42
D.o (n/7m) | $4(0,0) (2.42)

) (2.41)

which can also be written in the form of Eq. (1.2) using
Egs. (2.25) and (2.40). In Appendix C we outline another
derivation of Eq. (2.42) that does not involve the
preaveraging approximation Eq. (2.39). It is based on a
direct consideration of the left-hand side of Eq. (2.31) at
finite concentrations. The present paper focuses on the
long wavelength property D, and thus does not consider
the wave-vector dependency of I'\” in a fashion similar to
previous treatments of critical fluids [7,9] and polymer
solutions [8,11]. If necessary, such dependence can be
easily recovered from our discussion. In the next section
we illustrate the validity of the generalized SE equation
Eq. (2.42), by using available theoretical estimates and ex-
perimental data for suspensions at low concentrations.

III. COMPARISON OF THE GENERALIZED
SE EQUATION WITH THEORY AND EXPERIMENT

The expansion for D, in terms of volume fraction can
be readily determined from Eq. (2.42) and well known
virial expansions for the osmotic pressure Il and the
viscosity 17 (we call all such volume fraction expansions
“virial” expansions). II has the expansion [13(b)]

Mv /ky T=¢[1+44+0(4?)] (3.1)

and from this result we obtain, in leading order,

oIl _ JIl a¢ 2

— ===k T[1+84+0(¢7)] .

on 8¢ on ‘aTLITBATOWD]
(Experiments by Newman et al. [2] indicate a leading
osmotic virial 7.6%3.9 for a model suspension of com-

(3.2)

pact DNA  particles.) From Eq. (3.2) the
compressibility-dependent contribution to D, is given by
—1/2
S(0,0) 2y11/2
— =[1+8¢+0
S0(0,0) ! ¢ (¢9)]
=1+4¢+0(¢?) . (3.3)

The Einstein expansion for the velocity equals [6]

n/mo=1+5¢/2+0(4%) , (3.4)

which compares well with dilute solution measurements
[15]. Inserting Egs. (3.3) and (3.4) into Eq. (2.42) yields

D./D.,=1+3¢/2+0(4%) . (3.5)

The best theoretical estimates of the leading order D,
virial for repulsive hard spheres by Felderhof [16] and
Bachelor [17] equal 1.56 and 1.45, respectively. Experi-
mental data [2,3] on model suspensions also agree with
Egs. (3.3)-(3.5) to within experimental uncertainty. For
example, Newman et al. [2] and Kops-Werkhoven and
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Fignaut, and Russell [3] obtain 1.2+0.4 and 1.3+0.2, re-
spectively.

We can also obtain the virial expansion of D, for liquid
droplets having viscosity 7g,opiee Suspended in a solution
of viscosity 77y based on Taylor’s expression [18] for the
viscosity of dilute spherical droplet suspensions and Eq.
(2.42),

Dc/Dc,0=1+kD¢+0(¢2) ’ (363.)

kD:3[1_%Z7,/(1+Z1])], znzndroplet/no 4 (3.6b)

where z,_ is the ‘“‘relative fluidity.” The friction on a
liquid droplet of radius R at infinite dilution fype iS
also a function of z, [19,20],

fdroplet:47r77()R[1+%Zn/(l+z1])] .

Using Eq. (3.6) we find the apparently new result that the
virial coefficient kj, for liquid drops is larger than that for
hard spheres for any finite z,. Felderhof [16] obtained
the related result kp=3.5 for spheres having a ‘“slip”
boundary condition which is comparable to Eq. (3.6a) for
a “bubble” where kp(z,—0+)=3. The leading order 7
virial for a bubble is identical to a sphere having a slip
boundary condition [18,20], so that a similar magnitude
for kj in the case of bubbles or slipping spheres should
be expected. Our own calculations are limited, however,
to the nonslip (“stick”) boundary conditions for reasons
explained in the Appendix B.

Having in mind applications to polymer solutions, it is
also possible to introduce the attractive interparticle in-
teraction into kj through the osmotic compressibility.
Following Batchelor [21(a)] we can incorporate an attrac-
tive (“sticky”) contact interaction between the spheres so
that for “sticky liquid droplets” we obtain

kp=4p—1—3z,/(1+z,),

(3.6¢)

(3.7a)

where ¢ is a dimensionless second osmotic virial
coefficient normalized to vanish at the ‘“theta point”
(T'=0) and to equal 1 in a “good solvent” (T >>0). We
compare Eq. (3.7a) to the estimate of k;, for hard spheres
with a sticky interaction obtained using Batchelor’s
direct hydrodynamic method [21(c)],

k,=4.48¢y—3.03 (sticky hard spheres) , (3.7b)

which is quite similar to our estimate for sticky hard
spheres from Eq. (3.7a),

kp=4p—3, z,—>o . (3.7¢)

Equation (3.7a) further predicts that k, = —[7] at the ©
point (¢=0) for both hard spheres and liquid droplets.
([7] is defined in Eq. (3.8).) Hard sphere suspensions and
polymer solution are commonly observed to have kj
values which can be either positive or negative [21(c),22].

Douglas and Freed [23] introduced a simple model of
polymers in dilute solutions in which the polymer is con-
sidered to be described by a droplet having a radius equal
the chain radius of gyration and a fluidity similar to the
surrounding solvent z,~1. The predicted variation of
kp from (3.7a) for such sticky liquid droplets equals

kp~4f— (3.7d)

T Zp=l.
As in the case of hard spheres the diffusion coefficient,
virial kp for these droplets, is predicted to change sign
for temperatures intermediate between © temperature
and the good solvent regime. This variation is well estab-
lished and universal for flexible polymer solutions and ac-
curate data [22] indicate that k;, for polymer solutions
monotonically increases with ¢ from about —2 under ©
conditions to about 2 in good solvents. The correspond-
ing range of k, values for sticky droplets —1 <k, <3,
predicted by (3.7d), is rather consistent with the polymer
data. Theoretical estimates of kj, for polymer solutions
are also consistent. For example, Freed [23(b)] obtained
kp=—[n] for a dilute solution of flexible polymers under
© conditions. Our main point for the present discussion
is that qualitative observations on D, for interacting par-
ticles can be rather well understood from the generalized
SE equation (2.42).

It is also interesting to consider the second-order virial
expansion for D,. In this case we begin with viscosity ex-
pansion

n/me=1+[n1p+ky([n1$)*+0(¢*) ,

where [7]=2 for hard spheres. Using the reasonable es-
timate ky =0.7 from Refs. [15,24] and the well known
[14] virial expansion for hard spheres

(S/80)"V2=1+4¢+7¢*+0(4>) (3.9)

(3.8)

and then inserting Egs. (3.8) and (3.9) into Eq. (2.42), we
obtain the second-order expansion for D,

D, /D, ,=1+3¢/2—1.375¢>+0(4°) . (3.10)

(There are other estimates of ky differing somewhat from
the present estimate [3], so that the precise value of the
second-order virial for D, is not emphasized.) The ob-
served value of the second-order virial coefficient has
been estimated as —12+5 in Ref. [3]. Given the rough-
ness of the second-order virial coefficient estimates we
can claim only qualitative agreement with (3.10).
Perhaps future experiments, which more precisely deter-
mine the second-order virial coefficient, will allow for a
more meaningful consistency check of Eq. (2.42) [or Eq.
(3.10)].

There is another basic nonperturbative equation relat-
ing D, to the sedimentation coefficient A(¢) (“mobility”)
and the osmotic compressibility [25]

D ($)/D, ,=[A($)/A)(S/Sy) "' . (3.11)
The infinite dilution calculation of sedimentation
coefficient Ay was first given by Svedberg [10a] and, ac-
cordingly, we term Eq. (3.11) the generalized Svedberg
equation. A comparison of Eq. (3.11) to Eq. (1.2) gives
some important qualitative insight into A. Since the
fluidity [(77/770)”1] is generally rather insensitive to the
osmotic compressibility, then A must depend rather
strongly on osmotic compressibility. From Egs. (3.5) and
(3.11) we obtain the sedimentation coefficient A virial ex-
pansion for hard spheres [See Ref. [10b]),
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A/Ay=1—6.5¢+0(¢?) . (3.12)

Newman et al. [2] and Kops-Werkhoven and Fignaut [3]
measure the leading sedimentation virial as —6+1 and
—6.7%£0.8, respectively, which again is rather consistent
with the theoretical virial expansions obtainable from
Egs. (2.42) and (3.11).

The sensitivity of A to the osmotic forces is illustrated
in the case of interacting liquid drops where we obtain,
using Eqgs. (3.7) and (3.11),

A/A=(S/8)" 2 /(q/mp) =1~k $+0(¢?) ,
ky=4y+[n(z,)]), ky=kp+2[n(z,)],

where [7(z,)] is Taylor’s results for the intrinsic viscosi-
ty of a spherical droplet solution [18],

[n(z,)]=1+3z,/(1+2z,) .

(3.13a)
(3.13b)

(3.13¢)

Equation (3.13a) reduces to Eq. (3.12) for the hard
sphere limit (z, — o) and good solvents (¢—1), but the
friction virial coefficient k, is apparently much smaller
under O conditions, reflecting the decreased contribution
of osmotic forces to A. From Egs. (2.40) and (3.13a) we
also see that the sedimentation coefficient A diverges
(A~E,) below the © point as the critical point for phase
separation is approached T'— T,. Such a divergence has
been observed in critical fluid mixtures [26] and can
perhaps be exploited to separate fluid suspended matter
efficiently.

IV. DISCUSSION

The cooperative diffusion coefficient D, of a suspension
of interacting particles at nonvanishing concentrations
reflects the changing particle fluidity with increasing con-
centration and particle interaction through the osmotic
compressibility. Generalized Stokes-Einstein equations
(1.1) and (1.2) are derived which prescribe the depen-
dence of D, on these factors.

The generalized Stokes-Einstein equation (1.1) ap-
parently arises in many physical contexts other than par-
ticle suspensions. We mentioned the case of D, for criti-
cal binary mixtures and semidilute polymer solutions. In
each case Eq. (1.1) has been verified to remarkable accu-
racy [27,28]. It is also known that Eq. (1.1) describes the
thermal diffusivity of condensing fluids [28]. Tanaka and
co-workers [29] have shown that the temperature depen-
dence of the diffusion coefficient D,., associated with con-
centration fluctuations in swollen gels, is accurately de-
scribed by an expression similar to Eq. (1.1) and this has
important implications for the swelling of gels [30].

There is also evidence that this type of dynamic sum
rule applies to a wide range of conductivity problems.
For example, the electrophoretic contribution to the con-
ductivity o, (ion) of a univalent pointlike ion in a dilute
electrolyte solution equals [31]

ae:kBT/67T7IO§DH ’ 4.1)

where £py is the Debye-Hiickel electrostatic screening
length. This effect arises from a coupling between local

charge density fluctuations and velocity fluctuations [31]
in much the same fashion as a critical fluid where local
velocity and concentration fluctuations couple. Indeed,
the original mode-coupling theory of critical dynamics of
Fixman drew upon this analogy between critical fluid
fluctuations and ion “solvation” fluctuations [32].
Another interesting example of this type of mode-
coupling effect arises in the Hubbard-Onsager calculation
[33] of the “dielectric friction” f, of a pointlike ion in a
dilute solution which also obeys a Stokes-Einstein-type
relation

fe~MoRuo >

where Ryq is the “electrohydrodynamic ion radius.” A
diffusing solvated ion experiences dielectric friction since
the ion polarizes the fluid locally and the fluid is unable
to adjust its polarization fast enough to stay in equilibri-
um with the moving ion. The Hubbard-Onsager theory
[33] treats the mode coupling between velocity and local
polarization fluctuations. It is easy to imagine that mode
coupling between solvent velocity and charge and polar-
ization fluctuations could arise at higher electrolyte con-
centrations leading to general dynamic sum rules relating
the conductivity, viscosity, and osmotic compressibility.
This possibility deserves examination.

(4.2)
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APPENDIX A: CALCULATIONS OF T'y®’
FOR NONINTERACTING SUSPENSION
OF BROWNIAN SPHERES

Let D be the diffusion coefficient for the individual par-
ticle; then the diffusion equation can be written as

on(r,t)/3t=DV?n(r,t) , (A1)

where n(r,t) is the microscopic particle density defined
by Eq. (2.1). Multiplying both sides of Eq. (Al) by
n(r',t’), taking into account Eqgs. (2.3) and (2.5), and
volume averaging we obtain, after Fourier transforming,

aS(k,t)
ot

The above equation should be supplemented with an ini-
tial condition. Following Ref. [13(a)] we write

+k2DS(k,t)=0 . (A2)

S(R,0)=[7(37 /3I1);8(|R ]k, T , (A3)

where (0I1/37 ), is the osmotic compressibility. Com-

bining Egs. (A2) and (A3) and remembering that
7=|t—1t'| we obtain

S(k,r)=m[(87 /M) e "K' P )kp T . (A4)

For an ideal solution we have (9I1/07);=kpT, so that
n(dn /oIl )ky T=r. The combined use of Egs. (2.7) and
(A4) produces
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S(k,w)= % (AS)
Equation (2.8) and (A4) imply

Y=o, (A6)
so that

D=Lr“°) o (A7)

ak2 K k=0

Although this result is obtained in the limit of infinite di-
lution, we expect it to hold as well for finite concentra-
tions by the principles of continuity and complementary.

APPENDIX B: CONSEQUENCES
OF GALILEAN INVARIANCE

From Eq. (2.12) we have
dr;(t)
dt

Consider now an infinitesimal (|e| —0+ ) Galilean trans-
formation

=v(r;,t) . (B1)

r'=r—et, t'=t. (B2)
Suppressing the i subscript we then require
id:—=v’(r’,t) (B3)
if (B1) holds. This requirement implies
(e, 0= =p(r,1)—e (B4a)
or
v(r,t)=e+v'(r't) . (B4b)
On the other hand, we also have the relations
="', 1) —v(r,1) (B5)
dt
or
v'(r',t)—v(r,t)=—€. (B6)
Using (B2) again we obtain:
—e=v'(r',t)—v(r' +et,t)
=v'(r',t)—u(r’,t)—-te-ﬂ . (B7)
ar r=r'

The matrix dv; /9r; can evidently be brought to the diag-
onal form. Then, using the incompressibility condition
Eq. (2.20) we obtain

—e=v'(r',t)—v(r',t) . (B8)
Combining this result with Eq. (B4b) we have
v(r,t)=v(r',t) . (B9)

Finally, using Eq. (B2) we arrive at the relation
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v(r,t)=v(r—et,t)=v(r,t)—te-dv/0r . (B10)

The last equation becomes an identity if the fluid is in-
compressible, whence the imposition of the nonslip
boundary condition is equivalent to the requirement of
fluid incompressibility . If the fluid is compressible, then
the nonslip condition Eq. (B1) should be modified in or-
der to preserve Galilean invariance.

The above derivation is applicable, strictly speaking,
only for spheres. In the more general case of bodies of
arbitrary shape the boundary condition Eq. (B1) should
be changed.

Let R(¢) denote the position of the center of mass of
the arbitrarily shaped body. Assuming that our body ro-
tates with angular velocity Q(t¢), for some point r at its
surface, we obtain

%=u+ﬂx[r—R(t)]Evm+v(’) ,
where o is the velocity of the center of mass, i.e.,
oe=dR/dt. In the case of a sphere we obtain
r—R(z)=Re, where R is radius of the sphere and e is the
unit outward normal to the surface of the sphere. In this
case we have

d[r(t)—R]/dt=Rde/sdt ,

(B11)

(B12)
so that Eq. (B12), in view of Eq. (B11), acquires the form
de/dt=QXe . (B13)

Equation (B13) describes a pure rotation and it is analo-
gous to Eq. (5.9) of Ref. [34]. Finally, for the sphere, let

v+ =g, 1) +o (1, t)=0(r,t) , (B14)

where v(r,t) is fluid velocity. Because of Egs. (B11) and
(B13), we conclude that the rotational and translational
motions are completely decoupled. This fact was used
implicitly by Einstein [5] in his treatment of Brownian
motion and a more sophisticated consideration of this
decoupling problem is given in Ref. [35]. For suspensions
of spheres, the analysis of Galilean invariance presented
above is complete. In the more general situation of a
body of arbitrary shape there is coupling between rota-
tional and translational motion [35] so that the argu-
ments presented in the main text as well as in this appen-
dix should be modified accordingly.

APPENDIX C: VELOCITY CORRELATOR
FOR A SUSPENSION OF BROWNIAN SPHERES
AT FINITE CONCENTRATIONS

In Eq. (2.34) we introduced an angular averaging { ),.
This averaging is appropriate only for spheres and the
case of infinite dilution. To generalize this result to finite
concentrations, we need to consider instead of Eq. (2.34)
the expression

- 1 e

(- )5=3 AiA_fds,.de,. , (C1)
iIsj J

where A, is the area of ith surface. For surfaces of arbi-

trary shape we obtain
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w={(1/lr—r'|),

1 — 1 —
= d2%vg— (4% e
gj AiAj f gl\/gz lr(gl)_r(é—JH fd gj\/g, ’

(C2)

where g; is the determinant of the induced metric of the
surface. Expressions of this sort were considered in our
previous work (Ref. [36]). Equation (C2) could be viewed
as a total electrostatic energy of the collection of extend-
ed objects. Unlike the case of usual electrostatics, where
there are charges of opposite signs to ensure the electrical
neutrality, all the surface ‘“‘charges” (1/4;) have the
same sign in the present case. The statistical mechanics
of such systems is rather peculiar because they cannot
undergo any kind of phase transition, contradicting the
experimental facts [37]. This leads us to conclude that
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the hydrodynamic (“Coulomb-like”) interactions present
in Eq. (C2) should be screened at finite concentrations.
The extent of this screening cannot be arbitrary because
of the consistency condition Eq. (2.31). It is well known
[9] that the preaveraging approximation leading to Eq.
(2.27) works rather well even in the critical regime. In
this regime Eq. (2.27) produces the formal result Eq.
(2.40), where £ is the correlation length which also enters
the general relationship Eq. (2.41). We may be able to
obtain the result Eq. (2.27) with the help of Eq. (C2) only
if the electrostatic energy W is additionally averaged in
accordance with the rules of statistical mechanics, e.g., as
they are outlined in our previous work [36]. Even
without doing the explicit calculations, it is clear that the
extent of the hydrodynamic screening should be compati-
ble with the length £,. This follows from the consistency
condition Eq. (2.31).
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