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Dynamical model of traffic congestion and numerical simulation
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We present a dynamical model of trafFic congestion based on the equation of motion of each
vehicle. In this model, the legal velocity function is introduced, which is a function of the headway
of the preceding vehicle. We investigate this model with both analytic and numerical methods.
The stability of traKc How is analyzed, and the evolution of trafFic congestion is observed with the
development of time.

PACS number(s): 64.60.Fr, 02.60.Cb, 05.70.Fh, 05.70.Jk

I. INTRO DU CTION

TraSc How problems have been given much attention
with considerable interest for decades. Many investiga-
tions have been done with diferent points of view to con-
sider the various aspects of traKc phenomena. There are
several ways of studying the traffic problem [1—3]. In the
viewpoint of trafFic dynamics, each vehicle obeys the com-
mon equation of motion. This equation is determined by
relation to other vehicles moving in traffic ffow [1,4—8].

One of the most impressive problems of traHic dynam-
ics is traffic congestion (traffic jam). Many works have
been concerned with the static relations between vari-
ables and densities of vehicles in the trafBc How with
congestion. Our interest is in the dynamical evolution of
congestion. We think that congestion exists which is in-
duced by a small perturbation without any specific origin
such as a trafBc accident or a traKc signal. This kind of
congestion is often observed in a highway or freeway. We
can regard this congestion phenomena as the instability
and the phase transition of a dynamical system. We shall
concentrate our attention here on such congestion. For
the studies of this problem, we introduce the dynamical
model of traKc How that induces trafBc congestion.

Many authors have adopted the following strategy to
build a dynamical model. The equation of motion of
each vehicle is based on the assumption that each driver
of a vehicle responds to a stimulus from other vehicles
in some specific fashion. The response is expressed in
terms of acceleration, which is the only direct controllable
quantity for a driver. Generally, the stimulus and the
sensitivity may be a function of the positions of vehicles,
their time derivatives, and so on. This function is decided
by supposing that the drivers of vehicles obey postulated
traKc regulations at all times in order to avoid traffic

accidents.
There are two major types of theories for regulations.

The first type is based on the idea that each vehicle must
maintain the legal safe distance of the preceding vehicle,
which depends on the relative velocity of these two suc-
cessive vehicles [4]. These theories are called the follow-
the-leader theories. The other idea for regulation is that
each vehicle has the legal velocity, which depends on the
following distance of the preceding vehicle.

Most of the earlier works of traKc dynamics have been
done along the former direction. This approach has to
take into account the time lag of the driver's response to
become a realistic theory [1,4,5].

In this paper we investigate the equation of trafBc dy-
namics based on the latter assumption and find a realis-
tic model of traKc How. In our model the stimulus is a
function of a following distance and the sensitivity is a
constant. Moreover we do not introduce the time lag of
response.

In the following sections, we introduce our dynamical
equations for traffic How. The instability of the steady
state How of traffic is investigated in an analytic way
(Sec. II). Next, we propose two models, a simple model
(Sec. II A) and a realistic model (Sec. II B). We shall see
that the latter model works very well for our purpose.
The numerical simulations of this model are performed.
Section IV is devoted to a summary and further discus-
sion.

II. DYNAMICAL MODEL OF TRAFFIC

A. Dynamical equation of trafBc

Now, a dynamical model of trafFic is presented by the
idea mentioned in the Introduction. For simplicity, we ig-
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nore the length of vehicle and consider the case in which
all the drivers have common sensitivities. We assume
that each vehicle has the legal velocity V and that each
driver of a vehicle responds to a stimulus from the ve-
hicle ahead of him. He must control the acceleration by
putting on or getting oK the accelerator and the brakes
in such a way that he can maintain the legal safe velocity
according to the motion of the preceding vehicle.

Then the dynamical equation of the system is obtained

y be a small deviation from the steady state flow of
identical car spacing, x

+y ly I
« 1.

After neglecting higher terms of y, the linearized equa-
tion is obtained as

= aIf~y —y-f,

where

x„=a (V(~x„) —x„),

&~n = &n+X —&n ) (2)

where f is the derivative of U at 6,

f = V'(6).

The solution of this equation (6) is obtained by ex-
panding the Fourier series with e' " as an orthonormal
set,

for each vehicle number n (n = 1, 2, . . . , N). N is the
total number of vehicles, a is a constant representing the
driver s sensitivity (which has been assumed to be in-
dependent of n), and x is the coordinate of the nth
vehicle. The dots denote differentiation with respect to
time t. We assume here that the legal velocity V(ax) of
vehicle number n depends on the following distance of
the preceding vehicle number n + 1. When the head-
way becomes short the velocity must be reduced and
become small enough to prevent crashing into the pre-
ceding vehicle. On the other hand, when the headway
becomes longer the vehicle can move with higher veloc-
ity, although it does not exceed the maximum velocity.
Thus, V is a function having the following properties:
(i) a monotonically increasing function, and (ii) lV(ax)

l

has an upper bound. V = V(nx ~ oo). Further,
we set the periodic boundary condition: vehicles move
on a circuit with length L and the (N + 1)th vehicle is
identical to the first vehicle. So far as we consider the
case of a large enough number of vehicles N with enough
circuit length L, this boundary condition is not essential
for both analytical and numerical investigations. The
detailed analysis of this eKect is given in a subsequent
paper.

yk(n, t) = exp (ingn+ zt),
2~

og = k (k = 0, 1, 2, . . . , N —1),

where z = u+ iv (u and v are real) satisfies

z +az —af(e' " —1) =0. (10)

I

2

The discreteness of o.k comes from the periodicity of the
indexes of vehicles, y(n, t) = y(n+ N, t). Each nA, cor-
responds to the eigenoscillation mode yI, (n, t), which de-
scribes the "density wave" of car distribution. The u and
v are determined as the solutions of Eq. (10) for each nl.„.
Thus, for a given f of Eq. (7) we have a complete set of
the eigenmodes, (nk). This set of solutions can be pre-
sented in the (f, cr) polar coordinate plane. Each solution
for nk (A: = 0, 1, 2, . . . , N —1) is on the circle of radius f
in this plane, which is shown in Fig. 1.

Let us discuss the stability of the steady state flow x
Since yk(n, t) is the deviation from the steady state flow,

B. Stability in linearized theory
1.5

It is apparent that the following solution of steady state
flow satisfies the above dynamical equations of traKc,

0.5

~~'~ = Sn+ ~t —0.5

with

6 = L/N, c = V(b),

where 6 is the constant spacing of two successive vehicles
and c is the constant velocity of the steady state of traKc
flow. Hereafter we call this solution the "steady state
flow" without congestion, in which vehicles are uniformly
distributed with identical car spacing and move with the
same constant velocity.

Let us investigate the stability of the state of this so-
lution by linearizing the original nonlinear system. Let

—1.5
= a/2) a/2

1 line
I I

—2 —15 —1 —05 0 05 1 15 2

Fit . ].. The region of stability criteria in the (f, n) polar
coordinate plane. The thick line is the critical curve. Two
examples of the sets of solutions for o.q, f = a/2 (the circle is
attached on the critical curve: the dashed line) and f ) a/2
(the thin line).
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the state is unstable if the amplitude of y@(n, t) blows

up with time evolution. So, the criterion is the signature
of u in yy(n, t). If u ) 0, the osciHation of this mode
is enhanced with time evolution and the state becomes
unstable. On the other hand, if u ( 0, the oscillation
of this mode shrinks and the state tends to initial steady
flow. The (f, n) plane is separated into stable (u & 0) and
unstable (u ) 0) regions by the critical curve u(o. , f ) = 0,

G

2 cos 2

which is also shown by a thick line in Fig. 1. In order
for the state to be stable, every u corresponding to the
complete set of nl, (k = 0, 1, 2, . . . , K —1) must be nega-
tive. Even one positive mode (u ) 0) is enough to make

the steady state flow solution x unstable. As we can(0)

easily see, if the circle (on which the set of (ak) for a
given f is located) intersects with the critical curve, then
there exists at least one positive u(ng) solution and so
the state becomes unstable.

Thus, the stability criteria for this steady state are
summarized as follows. (a) f & 2, the state is stable,
because u & 0 for all modes nA, , (b) f = 2, the state is
marginal; and (c) f ) —;the state is unstable, because
at least one u ) 0 mode solution exists.

Note that the above criteria is valid in models with any
legal velocity function V. The stability is determined by
the values of the sensitivity constant a of a driver and the
derivative of the legal velocity function V(ax) at constant
car spacing 6 of steady state flow x„(0).

those enhanced amplitudes necessarily becomes apprecia-
ble. The evolution of each amplitude is then governed by
nonlinear equations which we cannot study analytically
and we can study only by numerical simulation.

III. MODELS AND NUMER. ICAL SIMULATION

A. Sin.pie model

First, we simply take the function V as

V(ax) = tanh(ax). (16)

x, (O) = x,"+O.1,

x„(0) = x~"l for n g 1,
x„(0) = 0.

(»)
(»)
(19)

The numerical studies are made by taking the typical
stable and unstable cases.

(i) Stable case: L = 200, K = 100,

This legal velocity function has the properties given in
Sec. II A. Without any loss of generality, we can set a = 1.
For the technical reason of numerical simulation, we set
the car number N = 100. The average density 6

KjL is then dependent on L. In the following we analyze
the stability by setting the initial small disturbance in
such a way that vehicles move according to solution (3)
except one vehicle which shifts with 0.1 unit length ahead
from this solution:

f = V'(6) & —.

C. Stability and Fourier analysis

(12) 6= —=

f = V'(t)

= 0.077

2

= 1 —tanh (6),
Q 1

2 2
(21)

We have discussed the stability of the steady flow state
within the framework of the linearized theory. Actually,
if one wants to study the system far oK the perturbative
region, we have to investigate numerically. In such cases,
it is convenient to define the amplitude of Fourier mode
0!)

(ii)Unstable case: L = 50, K = 100,

6= —=0.5,I.
N

G 1f =0.786& —= —.
2 2

(23)

1V

C „+iS „=) yk(n, t) exp( —incan),

A „= C2„+S2„, (14)

(k = 0, 1, 2, . . . , % —1),

where C „and S „are, of course, time dependent func-
tions. Note that those Fourier modes are introduced just
in a parallel way to Sec. IIB. If the corresponding solu-
tions u are all negative, then all their amplitudes shrink
and so the system is stable. On the other hand, if the
modes exist in which the corresponding u is positive, then
in the early stage the relevant amplitudes are enhanced
whereas the other amplitudes (with negative u) shrink.
As the time evolves, however, the nonlinear efI'ect due to

I.et us check the behavior of the Fourier modes defined
in Eqs. (13)—(15). Figures 2(a) and 2(b) show the time
evolutions of several typical modes for the above stable
and unstable cases. In Fig. 2(a) (stable case), we can
see that all the amplitudes monotonically shrink with t.
On the other hand, in the unstable case [Fig. 2(b)j the
amplitude of the positive u mode increases, while the
others decrease.

Figure 3 shows the time dependence of the traKc dis-
tance of the 50th vehicle for both cases (stable and un-

stable) and examples of typical behavior of vehicle move-
ment. The curves stand for the traveling distance of the
vehicle with time development.

In the stable case (dotted line), the vehicle moves with
constant velocity, i.e. , the distance increases linearly. On
the other hand, in the unstable case (solid line) we ob-
serve a vehicle moving backward. This always happens
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whenever the solution of this model is in the unstable
region [see Eq. (12)]. As long as we take the models of
a single lane, this means a crush of two successive vehi-
cles. The above behavior indicates that, instead of con-
gestion, such traKc accidents occur everywhere. Then,
by choosing an appropriate legal velocity function, we
modify the model so that a vehicle never moves back-
ward (see Fig. 4).
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Now let us choose the following function for the legal
velocity as a more realistic model: 400
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FIG. 3. Trajectories of a vehicle (the 50th vehicle) in two

typical cases. The stable case defined in Eqs. (20)—(21) (the
dotted line) and the unstable case defined in Eqs. (22)—(23)
(the solid line).
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V(ax) = tanh(az —2) + tanh 2 . (24)

I I

0. 03-
In this case, a driver controls the vehicle by gradually
accelerating or braking in such a way that it never passes
the preceding vehicle. We shall see that this model gives
the expected behavior of traffic flow, and the congestion
phenomena appears instead of accidents.

We present a typical result of traKc congestion induced
from this realistic model. Let us take the parameters,
% = 100 and I = 200. We set the same initial distur-
bance as the previous model [Eqs. (17)—(19)]. Numerical

0.02-

0.01-
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t ime

0. 14

0. 12-

0. 1-
3

0.08-

0.06-

0
00.04-
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time

FIG. 2. (a) Fourier mode evolution of the simple model in
the stable case defined in Eqs. (20)—(21). The amplitudes of
five typical modes for nq, A: = 10, 20, 30, 40, and 50. (b)
Fourier mode evolution of the simple model in the unstable
case defined in Eqs. (22)—(23). The amplitudes of five typical
modes for nI„k = 10, 20, 30, 40, and 50.

I I I I I I I

0 10 20 30 40 50 60 70 80 90 100
traffi c

FIG. 4. The snapshot of velocity configuration of all vehi-
cles at t = 300 in the unstable case of the simple model.
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In a subsequent paper, we will develop extensive nu-
merical simulations and investigate the feature of the or-
ganization of congestion as well as the structure stability
of congestion in more detail [12].

IV. SUMMARY AND DISCU SS ION S

flow. The capacity of transportation may be defined as
the number of vehicles passing through a point in unit
time. This value is roughly estimated as N/T, where N
is the total number of vehicles on the circuit, and T is
the period in which a vehicle starts at a certain point
and arrives at the same point after running through the
circuit. In the typical case of congestion, N = 100, L =
200,

First we want to comment on the transportation of
vehicles. We can make the comparison of the transport
for the flow of congestion with that for the steady state

N/T = = 0.48 .
100
208

(25)

0. 3

0.25-

0.2-

On the other hand, the flow with no congestion denotes
a steady flow of uniform distribution of vehicles, moving
with the common velocity V(b), where b = L/N. The ca-
pacity of transportation in this situation is N/T', where
T' = L/V(b). In the case of N = 100, L = 200,

N/T' — tanh
~

——2
~
+ tanh2) 0.48 . (26)

L qN

0.15-

0. 05-

60

50-

40-

E ~

f.
1'.

I
1 I
(I

I I I I

0 2 4 6 8
I I I I I

10 12 14 16 18 20
time

"mode10"

It seems strange that the existence of congestion does not
afI'ect the capacity of transportation. A further discus-
sion about this problem is given in a subsequent paper
[12].

Next, it would be instructive to answer the question of
why the simplest model does not generate congestion. In
the solution of the steady state flow of uniform car dis-
tribution, once we fix the headway b (= L/N), the cor-
responding vehicle velocity V(b) is uniquely determined
[Eq. (3)]. And the slope of this function f = V'(b) de-
termines the stability of the steady state flow. It must
be remarked that the initial steady state flow is stable or
unstable depending on in which region this 6 exists. If
6 is on the stable region, the state is not afFected by a
small perturbation, and the structure of the trafFic flow
remains unchanged. On the other hand, if 6 is on the
unstable region, in which cases we have investigated in
Sec. II, each vehicle is driven to shift to either in the left
and right sides of stable regions.

For the case of the realistic model (Fig. 10), as in
Sec. III B, 50 among 100 vehicles approach ax; = 0.32,

30-
stable

I

unstable stable

20-

10-
(1

r

~~~iiiikN~aS!~kigliD~rfa'~sat@~~~&~ j+
I I

'
I

' ''
1

200 400 600 800 1000

0.5

0
time

FIG. 9. (a) Fourier mode evolution of the realistic model in
the first 20 time steps. The amplitudes of five typical modes
for ng , k = 10, 20', 30, 40, and 50. (b) Fourier mode evolution
of the realistic model in the whole 1000 steps. The amplitudes
of Gve typical modes for n&, A: = 10, 20, 30, 40, and 50.

FIG. 10. In the realistic model, the stable and unstable re-
gions are sketched on the figure of the legal velocity function;
V(a2:) = tanh(ax —2) + tanh 2 . The initial car spacing b, the
headway ax; of high concentration, and that of low con-
centration ax in the How with congestion, are indicated
by arrows.
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stable unstable stable

FIG. 11. In the simple model, the stable and unstable re-
gions are sketched on the figure of the legal velocity function;
V(ax) = tanh(ax). In comparison with the realistic model,
the corresponding headway ax; and ax are indicated
by arrows.

the others &x = 3.68 as indicated by the arrows in
Fig. 10. It is just the existence of the stable region around
ax = 0.32 (= 0) that guarantees the congestion forma-
tion. On the contrary, the simple model (Fig. 11) does
not provide the stable region around &x = 0. Instead the
stable region is around ax,„=—]ax

[
( 0, where

the vehicles move with negative velocity. This is why the
model necessarily yields trafFic accidents. In the simple
model, this seems the essential reason why there occurs
no "spontaneous" congestion formation.

We have presented a possibly simple but realistic
model of trafBc flow, which induces the traKc congestion
spontaneously. We regard the dynamics of traffic flow as
the collective motion problem. The evolution of traKc
congestion is an appearance of this substantial property.
This phenomena may be regarded as some kind of phase
transition induced by the nonlinear effect of dynamical
equations of motion. We have seen that our toy model
of Sec. IIIB provides us with an excellent example of a
dynamical model of congestion. This model has the de-
sired properties which guarantee that the congestion is
generated spontaneously and remains stable.

In earlier works of trafFic dynamics, the attention of
many investigators has been focused on the time lag of
the driver's response to the stimulus from other vehi-
cles. As mentioned in the Introduction, it has long been

a common understanding that there is a high correla-
tion between the response of a driver and the relative
velocity. The stimulus was, therefore, taken as this rela-
tive velocity. The response (acceleration) is controlled by
this stimulus (relative velocity). So, most models of traf-
fic flow have been essentially the first order differential
equations with respect to time. However, the solution of
this differential equation shows far from the realistic be-
havior of vehicles. People were then led to think that the
equation should be changed to the differential-difference
equation. In practice, there exists the time lag of the
driver's response and so they introduced the time lag in
their equations of motion. On the contrary, our model
accounts the effect of time lag through the second order
differential equations based on the equation of motion in
physics. This is the main characteristic feature of our
model.

We can consider various ways of modifications of our
simple realistic model for further studies. For example,
the present model assumes that the sensitivity of drivers
are identical and has no dependence of velocity, headway,
or the relative velocity of the preceding vehicle. One
could adopt the model in which a depends on each driver,

x„=a„(V(~x„)—x„). (27)
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The legal velocity function can also be dependent on
drivers, with different maximum speed or the slope of
this curve.

Another aspect of further studies of our model are some
physical and mathematical characteristics; chaotic struc-
ture of nonlinear equations, properties of clusters of con-
gestion, etc.

Note added. After finishing this work, we found sev-
eral works with respect to the spontaneous formation of
congestion from different viewpoints. These studies are
based on hydrodynamical or cellular automaton models
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