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Averaged equations for Josephson junction series arrays
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We derive the averaged equations describing a series array of Josephson junctions shunted by a
parallel inductor-resistor-capacitor load. We assume that the junctions have negligible capacitance
(P = 0), and derive averaged equations that turn out to be completely tractable: in particular, the
stability of both in-phase and splay states depends on a single parameter, b. We find an explicit
expression for 8 in terms of the load parameters and the bias current. We recover (and refine) a
common claim found in the technical literature, that the in-phase state is stable for inductive loads
and unstable for capacitive loads.

PACS number(s): 05.45.+b, 74.50.+r

I. INTRODUCTION

Josephson junction arrays are perhaps the most widely
studied class of coupled nonlinear oscillator systems.
This stems in large part &om their relevance in a num-
ber of applications, including their use as voltage stan-
dards [1] and their potential as submillimeter wave gen-
erators [2] and parametric amplifiers [3]. They also serve
as prime examples of nonlinear dynamical systems with
many degrees of &eedom. Particularly good progress has
been made for a subclass of this category, namely, glob-
ally coupled oscillators. Examples of this type —where
each oscillator is coupled with equal strength to all oth-
ers arise not only in the context of electrical circuits,
but in the fields of laser physics and classical mechanics
as well.

Recent theoretical work has shown that some Joseph-
son arrays have remarkable dynamical properties. The
most striking discovery was made by Watanabe and
Strogatz [4] for the class of arrays depicted in Fig. 1,
namely, one-dimensional series arrays of N identical zero-
capacitance junctions, driven by a constant current and
shunted by a parallel load. Using a clever change of coor-
dinates they showed that the differential equations admit
N —3 independent constants of motion, for any N ) 3.
Furthermore, they found a rigorous reduction of the prob-
lem to a five-dimensional system of differential equations,
independent of ¹

The same technique allowed Watanabe and Strogatz
to completely analyze the dynamics of the ¹ scillator
system

They observed in particular that the central issue
whether the attracting dynamics is the in-phase (i.e. , syn-
chronized) oscillation or an incoherent state —depends
only on the sign of e sin b.

The purpose of the present paper is to derive Eq. (1)
as the averaged version of the Josephson junction array
shown in Fig. 1, and to obtain an explicit expression
for the key parameters K, and b. Our approach follows
closely that of Ref. [5], which treated the special case of
a pure resistive load. Starting &om the full circuit equa-
tions, we apply a first-order averaging method which is
valid in the weakly coupled limit, but holds for a gen-
eral inductor-resistor-capacitor (LRC) load. We also add
some observations about the behavior of the averaged
system. A nice feature of the present analysis is that the
results admit a direct physical interpretation: The com-
bined current of the Josephson junction oscillators acts as
a periodic driving voltage for the LRC circuit, and the
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t Electronic mail address: James. Swiftnau. edu FIG. 1. Circuit schematic for the shunted Josephson array.
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in-phase oscillation is stable when the Josephson junc-
tion frequency is larger than the resonant frequency of
the I.BC circuit. Conversely, if the junction frequency
is smaller than the resonant &equency of the load, then
the manifold of incoherent states is stable. Thus we re-
cover (and refine) an oft quoted piece of conventional
wisdom found in the Josephson array literature, that the
in-phase state is stable for inductive loads, but unstable
for capacitive loads. Bmthermore, we observe that the
way to extract the most energy from the Josephson junc-
tions is to tune their frequency to match the resonant
frequency of the IBC circuit.

Strogatz and Mirollo [6] computed analytically the sta-
bility of the splay-phase states (the most symmetric of
the incoherent states) of the unaveraged system in the
N —+ oo limit. Surprisingly, their results showed excel-
lent agreement with numerical calculations [7] even for N
as small as 4. Though Strogatz and Mirollo did not as-
sume weak coupling, their stability results do not easily
allow a physical interpretation. We show that our results
derived Rom the averaged system (for any N) agree with
their results (for N ~ oo) in the weak coupling limit.
The weak coupling limit also provides us with a simple
physical interpretation of these results.

——NBJIb —+-
C C

so that this becomes

N

IQ+ (R+NRg)Q+ —= RJ—I,) sing~. (6)

l = L/N, r = R/N, c = NC. (7)

Introducing the dimensionless time ~ and charge q de-
fined by

the circuit equations (2) and (6) become

PI + sin/I + eq = n, (io)

In order to compare arrays having different numbers of
junctions, it is natural to de6ne scaled load parameters:

II. DERIVATION OF THE AVERAGED
EQUATIONS

N

q+ '7q+ ~oq = )»n4'j~
j=1

Qi, + I, sin/A, , + Q = Ig,2eBJ

N
QLQ+ RQ+ —= —)C 2e (3)

where k = 1, 2, . . . , N. Here, P~ is the quantum phase
difference across the kth Josephson junction, BJ is the
junction resistance, I, is the junction critical current, Q
is the charge on the load capacitor, Ib is the applied bias
current, I, B, and C are the load inductance, resistance,
and capacitance, respectively, 5 is Planck's constant di-
vided by 2m, e is the electron charge, and the overdot
denotes difFerentiation with respect to time t. Substitu-
tion of Eq. (2) into Eq. (3) yields

N

LQ + (R+ NRq)Q + —= NRgIb —RqI, ) sing~.

Consider the array depicted in Fig. 1. The goal of
this section is to show that, in the limit of large shunt
impedance, the circuit dynamics is governed by difFeren-
tial equations of the form (1), and to evaluate r and b in
terms of the physical parameters of the system.

Our starting point is the Kirchhoff equations for the
circuit. We assume that the N junctions are identical
and have negligible capacitance (P = 0 in the common
notation). The governing circuit equations are

where the overdot now denotes difFerentiation with re-
spect to dimensionless time ~, and where

2eI l'

n = Ii,/I„ (13)

(r + Rg)hy= 2eBJlI, (14)

lc q2eRqI, )

@(P) = 2 arctan
n —1 fPtan

i

—+ —
in+1 (2 4) (16)

Note that p includes the effect of both the junction resis-
tance and the load resistance. Thus p is never zero: in
fact p & e with equality when the load resistance is zero.

Up to this point, Eqs. (10) and (11) are merely scaled
versions of the exact circuit equations (2) and (3). To get
things in a form suitable for averaging, we transform &om
the variables PI, to natural angles @A, [5]. The latter are
"natural" in the sense that, in the uncoupled limit, the
angular velocity P~ is nonuniform, while @i, is a constant.
This is accomplished by the transformation [5]

(4)

It is convenient to shift the load variable Q by a constant
P(@) = 2 arctan

n —1 i2) 2
(17)
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Equation (10) becomes

1 ~ cg%=i-
n —sin(Pi, )

sing(iP) = n— —12

a —cos @

It is convenient to write this even function of g in terms
of its Fourier series

Note that ~ = Qo.2 —1 is the frequency of an uncoupled
junction. It is convenient to rescale time to units where
this frequency is unity, by taking ~ga2 —1 ~ w, so that
Eqs. (18) and (11) become

sin P(@) = ) A cos(ng),
n=0

where, in particular,

(24)

o. —sin(Pg) Ai ——2(n —1 —nga2 —1). (25)

N

7wq + woq = ——) sin Q(Q~)

The system of equations (19) and (20) is exact, and so
far we have not made an assumption of weak coupling.
Notice that Eq. (19) is of the form @~ = 1+ O(e). For
small e, we can obtain the drift of @i, by averaging Eq.
(19) over one period of the oscillation to obtain

N oo

u q+ p(uq+ (uo2q = ——) ) A cosn(r + c~). (26)
2=1 =0

This equation has the steady state solution

N oo

q(7-) = ——) ) B„cos[n(~+ c, ) +P„],
=1 =0

(27)

Note that A1 is a decreasing function of o, with 0 ) A1 )
—1 foro. ) 1.

Combining Eqs. (20) and (22)—(25) yields

1 EQJQ
(@g) = 1 —— . d~.

2vr o n —sin P(gi, )
(2i) where

4.() = +", (22)

We can proceed by using the function q(~) obtained by
solving Eqs. (19) and (20) with e = 0. In other words,
we assume that each Josephson junction's quantum phase
difference is Pg(~) = P(~ + ci, ), with the functional form
given by Eq. (17). This is the solution to Eq. (10), in
terms of the new v, when ej = 0. The cA, are arbitrary
constants. We refer to ej ~ 0 as the weak coupling limit.
Physically, this occurs whenever the load impedance (per
junction) goes to infinity, and very little current flows
through the load. Mathematically, the weak coupling
limit can occur for three distinct reasons: (1) e ~ 0,
with p and wo of order 1, (2) p -+ oo, with e and uo of
order 1, or (3) uo ~ oo, with e and p of order 1. If either
of the last two conditions hold, then Eq. (11) shows that
j is vanishingly small, and the analysis to follow holds
even though e is of order 1.

In terms of the original load parameters (see Fig. l),
these three weak coupling limits are (1) L/N ~ oo, (2)
R/% ~ oo, or (3) NC ~ 0.

The LC load (R = 0) is a special case, because the
impedance of the LC load is zero at its resonant fre-
quency. Thus the LC load system is strongly coupled
near ur = uo, even when e ~ 0. Note from Eqs. (12)
and (14) that e = p for an LC load (R = r = 0). The
positive resistance of the Josephson junction (Rg) makes

p positive and keeps the current finite at resonance.
To find the appropriate expression for q(w), we begin

with the e = 0 solution to Eq. (19):

A2
B

(n2(u2 —(uo2)2+ (gnus)2' (28)

pn~
p = arctan

0n QJ —(d
(29)

Note that B and P are just the well-known amplitude
and phase shift response of a linear damped oscillator
driven at frequency nu. The relative sign between A
and B„determines the correct branch of the inverse tan-
gent. We will choose B to be positive, and since A1 is
negative, we have 0 ( Pi ( m.

The next step is to substitute this expression for q(7 )
back into Eq. (21). Note that the identity Eq. (23)
allows us to rewrite Eq. (21) as

(30)

N

(g&) = 1+ ' ) sin (c, —c& —Pi) .

The final step is to replace the "initial values" cA. by their
slowly evolving counterparts (g~(7)), and drop the angu-
lar brackets to get the first-order averaged equations

Now, since q(r) is 2vr periodic, it is evident from Eq.
(30) that only the fundamental Fourier component of
q(w) contributes to the integral, with the result

where the cA, are arbitrary initial conditions. From Eq.
(17) there follows the useful trigonometric identity

N

@y = 1+ ) cos (iP, —@i, —h),
2N(u

(32)
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where b =
2 + Pq is given by

sinb =

with 2 & b & 2 . This is the main result of the paper.
Note that b is simply related to Pq, which is the phase
shift of the linear IRC circuit [Eq. (10)] driven at the
frequency (cu) of the uncoupled Josephson junctions [Eq.
(»)]

In terms of the parameters in the original equations,
(2) and (3), the important dimensionless frequencies are

( h,

LC (2eR~I, y

&Ibl
'

~I.) (34)

III. IN-PHASE AND INCOHERENT STATES

We start this section by recalling some results of Refs.
[8], [5], and [4]. Equation (32) admits two types of so-
lutions: the in-phase (or coherent) solution, where all of
the angles are equal, and incoherent solutions, where the
"center of mass" of the N angles g;, when they are placed
on a circle, is at the center of the circle. The incoherent
solutions rotate rigidly and have period exactly 2'. [It
is easy to see that the coupling terms in Eq. (32) cancel
out for incoherent solutions. ]

The in-phase solution is unique: In geometric terms,
this periodic orbit is a circle (a one-dimensional manifold)
in the (N + 2)-dimensional phase space. It is natural to
ask "How many incoherent solutions are there?" There is
a unique incoherent solution if N = 2 or 3, but an infinite
number of incoherent solutions if N ) 3. In fact the set
of incoherent solutions is an (N —2)-dimensional man-
ifold for any N & 3, called the incoherent manifold by
Watanabe and Strogatz [4]. The incoherent manifold is
foliated by circles, which are the the incoherent solutions.
Every incoherent solution is neutrally stable to the N —2
perturbations which leave it in the incoherent manifold.
Hence every incoherent solution has N = 2 unit Floquet
multipliers.

We can compute the dimension of the incoherent man-
ifold as follows. Place N —2 oscillators on the circle of
radius 1, so that their center of mass is not at the ori-
gin. (This gives the N —2 dimensions of the incoherent
manifold. ) Then the position of the last two oscillators is
uniquely determined since the center of mass of all N os-
cillators is at the origin. Note that, if the center of mass
of the first N —2 oscillators is farther than 2/(N —2)
&om the origin, then it is not possible to place the last
two oscillators so that the center of mass of all N is at the
origin. (A slick mathematical argument gives the same
result: The requirement that the center of mass of the N
oscillators be at the origin is a codimension-2 constraint. )

A major result of Ref. [4] is that unaveraged systems
with a "sinusoidal" nonlinearity, including Eqs. (2) and
(3), have an incoherent manifold foliated by periodic or-
bits. In other words, any initial condition in the inco-
herent manifold is part of a periodic orbit. Thus the

splay solutions in the unaveraged equations have N —2
unit Floquet multipliers, just as they did in the aver-
aged equations. Incoherent solutions can be de6ned for
unaveraged systems in terms of time delays [8,9].

The most symmetric of the incoherent solutions, with
the angles all equally spaced in time, is called the sp/ay-
@hase solution. The stability of the in-phase and splay-
phase solutions in Eq. (32) is easy to calculate, following
Ref. [8] (Sec. 6). We give the stability of these periodic
solutions in terms of the Floquet exponents, which are
analogous to the eigenvalues of the linearization about a
Axed point. A given periodic orbit has as many expo-
nents as there are phase space dimensions; if any of the
exponents has a positive real part, then a typical pertur-
bation will grow exponentially, and the periodic orbit is
unstable. All periodic orbits have at least one zero Flo-
quet exponent corresponding to a perturbation along the
orbit.

The in-phase solution has a single Floquet exponent
equal to zero, and N —1 exponents equal to

—eBg
&in phase = sin b

2(d

where b is given by Eq. (33) and Bq is

(35)

2u)(Q~' + 1 —~)
Bg ——

v'(~' —~o)'+ (~~)'
(36)

&om Eqs. (25) and (28). The splay-phase solution has
N —2 Floquet exponents equal to zero and a complex
conjugate pair

eBi
A,~~ „= (sin b + i cos b).

441
(37)

We see the crucial role of sin b in the local stability anal-
ysis (e and ~ are positive). If sinb & 0 then the in-
phase solution is stable and the splay phase is unstable.
If sin 8 & 0 then the in-phase solution is unstable and the
spay-phase solution is neutrally stable. Watanabe and
Strogatz [4] showed that these local results hold globally,
due to the existence of a Lyapunov function for Eq. (1):
If sin 8 & 0 then almost every initial condition converges
to the incoherent manifold, and we say that the inco-
herent manifold is stable. Thus these three statements
are all equivalent, provided sin b g 0: (1) the incoherent
manifold is stable; (2) the splay solution is neutrally sta-
ble; (3) the in-phase solution is unstable. In other words,
the incoherent manifold is stable exactly when the splay-
phase state is neutrally stable.

From Eq. (33) we see that the in-phase solution is
stable when u ) u0, and the incoherent manifold is stable
when w & u0. There is no bistability in the averaged
equations. We note that numerical simulations of the
unaveraged array equations show bistability in an LC-
shunted Josephson array [10,11] [i.e. , Eqs. (2) and (3)
with B = 0]. Therefore the averaged equations have
somewhat diferent dynamics than the original system,
though both have an incoherent manifold of solutions.

Strogatz and Mirollo [6] computed the Floquet expo-
nents of the splay state of Eqs. (2) and (3) in the limit
N —+ ao. They found that all but four of the Floquet ex-
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ponents are zero (the fact that Watanabe and Strogatz
later proved is true for finite N), while the other four are
the eigenvalues of a 4 x 4 matrix. In our notation, the
fourth-order characteristic equation is

A +pA +(ufo+~ )A

order the effect of interactions between the load and the
junctions.

Finally, we can see how accurately the averaged equa-
tions capture the transition where the splay states go
unstable. In terms of our own parameters, Eq. (14) of
Ref. [6] gives the transition curve

+[au(y (uz + 1 —(u) + pw2]A+ uro2cu2 = O. (38)
(do = ld + —laI(g(d + 1 —(d).

y
(4o)

(A2 + pA + ~o2) (A' + ~') = 0, (39)

These eigenvalues derived for the case N + oo are in
excellent agreement with numerical calculations [7] even
for N = 4, and it is conceivable that the result is exactly
true for any N. In any event, it makes sense to com-
pare this formula with the eigenvalues derived &om the
averaged system, as we now do.

If we set e = 0, the characteristic equation, Eq. (38)
factors,

Recalling that the averaged system has the corresponding
transition at (dp = M we see there is exact agreement
only for e = 0. However, for e ) 0 the transition curve
determined from Eq. (40) never gets very far from the
diagonal when plotted on the ~-up plane, as shown in
Fig. 2. Note from Eqs. (12) and (14) that e/p = Rg/(r+
Rg) so that this ratio never gets too big: 0 ( e/p & 1.
Moreover, for large w (i.e. , the limit of large bias current
I&) the transition curve always approaches the line w =
wo. Thus, in each of the three weak coupling limits (e —+

0, p —+ oo or ct)p -+ oo) our averaging agrees with the
results of Mirollo and Strogatz obtained for N + oo.

which has a natural physical interpretation, namely, the
erst factor corresponds to the decay of the current in
the LRC branch of the circuit, while the pure imaginary
eigenvalues +in &om the second factor correspond to the
oscillation &equency of a single junction in the absence of
a load. If one computes from Eq. (38) the order e correc-
tion to the Floquet exponents +ice, one Ands precisely
the result for the averaged system, namely, Eq. (37).
Physically, then, the averaged result captures to lowest

2.

1.5.

IV. DISCUSSION

Our main result is the derivation of the averaged sys-
tem (32) from the original Eqs. (2) and (3). Watanabe
and Strogatz have shown that, while the original equa-
tions are unusually tractable owing to the existence of a
great many constants of motion, the averaged equations
are completely solvable [4]. In this paper we derived an
explicit formula for the coupling-phase b, which is the key
parameter governing the stability of both the in-phase
and splay states.

An advantage of the averaged equations is that they
admit a fairly direct physical interpretation of the main
features of the array dynamics. Usually, for a series
LRC combination one identi6es two resonance &equen-
cies, which we can call the natural resonance &equency
wp and the shifted resonance &equency u~. In terms of
our dimensionless units, we have

h)y = (do —f /2,2 (41)

0.5

0.5 1.5

FIG. 2. Bifurcation of the splay state as given by Eq. (40)
for c/p = 0, 0.25, 0.5, 0.75, and 1. The dimensionless parame-
ters cu and ruo measure the frequencies of the Josephson junc-
tion oscillators and the IRC resonant circuit, respectively.
The curve with e = 0 is the result for the averaged system.
The uppermost curve, with e/p = 1, corresponds to an ar-
ray with IC load (R = 0) which is strongly coupled near
resonance.

where uo and p were defined earlier via Eqs. (15) and
(14), respectively. In the presence of a periodic driv-
ing voltage at a &equency u, the current oscillations
(and thus the power dissipated in the load) are greatest
when M = &p while the capacitor's charge oscillations
are greatest when w = wq. Of course, for "high-Q" cir-
cuits, the current- and charge-response curves are sharply
peaked and cup is very nearly equal to uz.

Now, we noted in the last section that the averaged
Josephson array equations display a single dynamical
transition at u = up. It follows that the maximum power
delivered to the IRC load is attained at the transition
point. We also recover an old result found in the Joseph-
son array literature [2,12], namely, that stable in-phase
operation of a series array requires that the load "looks
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inductive:" an IRC load is said to look inductive if its
impedance has a positive imaginary part, which is equiv-
alent to the condition u & uo. We note that the averaged
equations admit an analogous stability principle for the
splay state: the splay state is stable if the load impedance
has a negative imaginary part (i.e. , if the load looks ca-
pacitive).
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