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Investigation of the geometry of thermodynamic state space, based upon the differential geometric ap-
proach to parametric statistics developed by Chentsov [Statistical Decision Rules and Optimal Inference
(Xauka, Moscow, 1972)], Efron [Ann. Stat. 3, 1189 (1975)],Amari [Ann. Stat. 10, 357 (1982)], and others,
provides a deeper understanding of the mathematical structure of statistical thermodynamics. In the
present paper, the Riemannian geometrical approach to statistical mechanical systems due to Janyszek
[J. Phys. A 23, 477 (1990)] is applied to various models including the van der Waals gas and magnetic
models. The scalar curvature for these models is shown to diverge not only at the critical points but also
along the entire spinodal curve. The critical behavior of the curvature derived from the Fisher informa-
tion metric turns out to coincide with that derived from the entropy differential metric by Ruppeiner
[Phys. Rev. A 20, 1608 (1979)].

PACS number(s): 05.20.—y, 02.40.—k, 02.50.—r

I. INTRODUCTION

Thermodynamics and statistical mechanics provide the
basic tools for understanding the observed macroscopic
physical world. The geometrical structure of the phase
space of statistical thermodynamics was explicitly studied
by Gibbs back in the 1870's [6].

In the area of parametric statistics, a number of recent
investigations [1—3,7,8] has shown that a useful and il-
luminating approach to the study of statistical inference
consists in regarding a statistical model A, as a
differential manifold equipped with a Riemannian metric
i„,. A statistical model is a subset of the totality of proba-
bility distributions on some fixed sample space, and sta-
tisticians assume that a particular model under con-
sideration includes the true distribution of the observed
data. The shape of this particular model within the total-
ity of probability distributions, i.e., the geometry of the
situation, then plays an important role. This geometry
reAects the underlying structure of the physical model de-
scribed by the distribution. The local properties (mutual
distances, fiatness, or curvature, etc.) of a statistical mod-
el are of especially great interest in the theory of asymp-
totic inference, and are representable in terms of the
above mentioned metric.

The geodesic distance derived from the Riemannian
metric i„, (defined below) has been extensively studied for
a number of parametric families of probability distribu-
tions and interpreted as a measure of dissimilarity of dis-
tributions [9]. This distance has also been considered by
physicists, and has been referred to in the physical litera-
ture as the distinguishability metric [10]. This difFerential
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geometric analysis of the relevant parameter space of sta-
tistical mechanical models, rather than phase space, has
also been pursued in terms of other Riemannian metrics.
In 1979, Ruppeiner extended Einstein's theory of fIuctua-
tions in order to describe the geometrical structure of
thermodynamic parameter space [5] (see also [11]) in
terms of the Riemannian metric,

BH
BO"BO'

where H is the entropy for the thermodynamic model un-
der consideration. This metric was originally introduced
by Rao and is known as the entropy differential metric.

In the present paper, we consider the Riemannian
geometrical structure for statistical models arising natu-
rally from embedding of the probability density into Hil-
bert space. That is, one fixes a convenient measure v
(e.g. , v is the Lebesgue measure) on a configuration space,
which we denote by (X, V), where X is the sample space
(i.e., configuration space) and V a cr algebra of subset of X
[12], and embeds the totality I' of the probability mea-
sures p on (X,V), which are absolutely continuous with
respect to v into the unit sphere S of the Hilbert space
L (X, 7, v) by the mapping,

p f(p)—= dp
dv

where dp/dv denotes the Radon-Nikodym derivative.
The unit sphere S is a Hilbertain manifold [13,14] and the
Hilbert space norm induces a natural Riemannian metric
i on S. If [pa~9&At] CI' is a family of probability mea-
sures parametrized by a smooth finite-dimensional mani-
fold AL and if the mapping

4:At ~S,@(0):f(ps)—
is smooth, then the pull back
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i(8) =We(i) (3) differential 1-form with values in the space of random
variables. This differential 1-form is

is a Riemannian metric on JR, known as the expected
(Fisher) information metric [15].

If we assume that the derivative
d l= g (p)dO",Bl

r
(12)

d p(9 =p(x, O), x EX,OEA, , (4)
where l (p ) = lnp.

In the models of statistical mechanics, we generally
deal with Gibbs measures of the form

Bl(x, O) (3l(x, O)
i„, 80 =

ae" ae' p (x, 80)d v(x),
e=e,

(5)

where l(x, O) =lnp(x, O) is the log likelihood function and
[8"j is any admissible local coordinate system on A, .

where p (x, 8) is a probability density which is positive al-
most everywhere with respect to v, is a smooth function
of 0 in the appropriate sense, then the explicit formula
for i (8) is

es( )

p(x, O) =e " /Z(8), (13)

where the functions S„(x) determine the form of the ac-
tion, Z is the partition function, and the parameters [8 j
are the coordinates of the Riemannian manifold defining
the thermodynamic state of the system, which may in-
clude temperature, pressure, etc. Thus, in formula (6), we
may take c (x) =0 and

P(8) =lnZ(8) . (14)
II. STATISTICAL MANIFOLD

In a purely statistical context [3], given a family of
probability densities depending smoothly upon a parame-
ter 0 and expressible in the form

p(x, O) =exp c(x)+ g 8"S„(x)—g(8) (6)

r „„(8)=-,'a„a, a, @(8) (8)

and the Riemann-Christoffel curvature tensor is, there-
fore,

z„„,(8)= [r, ,(8)r„„(8)—r„,(8)r„„(8)]i "(8) . (9)

The scalar curvature is defined, as usual, by

E =R i&'iqr
pqrs 7

and the expression of this in terms of P(8) in two dimen-
sions is given in the Appendix.

The tangent space TzA, of the parameter manifold is
spanned by the natural basis [B„j= [(3/BO"j, however, it
is convenient [3] to deal with the image N, (TzA, ) of the
tangent space T&JR under the map N, induced by the
embedding 4& in Eq. (2). The image of the natural basis
is [B„l(x,O) j, and for exponential models of the form
given in Eq. (6),

B„l(x,O) =S„(x)
—B„g(8) .

In the statistical literature, this basis [B„lj is usually
called the score, and one can also regard the score as a

where the variable x ranges over the sample space, or in
physical terminology just the configuration space, the fol-
lowing results are easily verified [3]. Using the integral
expression for the quadratic term in Eq. (5), in local coor-
dinates, the Fisher metric tensor is given by

i„,(8)= E[B„B,l(x—, 8) ]=B„B,Q(8),

where E [ ] denotes the expected value with respect to
the probability p(x, O) and B„=(B/BO"). The Christoffel
symbols for the metric connection arising from i are

From this and the above Eq. (7), if one refers to this g or
entropy 0 as the potential function for the metric, then
for statistical mechanical models, the potential function
for the Fisher metric and entropy differential metric are
related by the Legendre transformation.

It is interesting to note that Barndorff-Nielsen [8] has
established a way to use the observed information matrix
Jrs~ i.e ~

j„,(x, O) = —B„B,l(x, O),

rather than the expected information i(8). His method
does not involve an integration over the sample space, as
is required in Eq. (5), and he demonstrated the existence
of an "observed geometrical structure" paralleling the
"expected geometrical structure" given by i. However, in
application to statistical mechanics, the probability densi-
ties assume the exponential form of Eq. (6), hence j =i
Therefore, his approach appears to provide no particular
refinements regarding statistical mechanics. However, it
might be useful in possible applications of information
geometry to quantum mechanics, where the probability
densities such as the square of the wave function may not
be given by an exponential form.

III. CLASSICAL IDEAL GAS

p(q, p, V;a, P) =Z '(a, P)exp[ —P&—a V],
where the partition function Z(a, P) is

(15)

Z(a, P)= 3z f dV I exp( P&)dq dp exp—( —aV),

(16)

P= 1/kT, a=P/kT, h is the Planck constant, and N is
the number of particles. The Hamiltonian & is

First, as a fairly trivial example of the Riemannian
geometrical representation of statistical mechanics, we
shall describe the case of the classical ideal gas.

In this case, we consider a P T(pressure-tempe-rature)
distribution of the form
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N p.
X 2

z(P, V)=
N! pb'

3N/2

(V b—N) exp(aPN /V), (25)

and after integration the partition function becomes
3N/2

—(N+1)Z(a, P)=
2

Thus, the quantity f(8)=g(a, p) for one particle, in the
thermodynamic limit, becomes

g(a, P) = lim N lnZ(a, P)=—,
' ln —lna, (19)

27Tm

N~ oo h

is the partition function for the canonical distribution,
obtained by the mean field approximation, and a is a pos-
itive constant arising from the q integration.

Since the volume integral cannot be calculated exactly,
we shall evaluate p(a, p)=N 'inZ(a, p) in the limit
N —+ ~ using the method of steepest decent. Writing the
integrand in (24) as

exp( —a V)z(P, V) =exp[Nb (a,P, U )],
and the components of the Fisher metric tensor can easily
be calculated, with the result

where v = V/N and

h(a, P, u)= —av+ln 2Am

ph

3/2

(U b) +-pa
V

(26)

3p 2
2

(20)

Using the given expression for the scalar curvature (see
Appendix), one can also easily calculate that, for a classi-
cal ideal gas,

p(a, p) becomes, after taking the limit,

P(a, P) =h(a, P, U ) = —au+lnz(P, U ), (27)

+cl. ideal gas (21)

a'=ina, P'= Q—,'lnP,

This result is also obvious by the following coordinate
transformation:

where U =u(a, P) is a function of a and P, which maxim-
izes h(a, p, v), and is the solution of the van der Waals'
equation of state given in the Appendix. Since we have
obtained a closed form for f(a,p), although the form of
the function v is not known, we can calculate the com-
ponents of the metric tensor i„,with the result

which takes (20) into the Euclidean metric. Although
this result was obtained from P-T distribution, the same
result (K =0) can be obtained from the usual canonical
distribution in which the coordinates are p= 1/kT and
a=v, where u is the volume per a particle. Moreover, by
solving the geodesic equations for either distribution, one
recovers the usual equation of state along adiabatic
curves.

IV. van der WAALS GAS

1

D
a/u

D

a/U 3 1 (a/U )

D 2p2 D

D(a,P)= 2aP
U (U b)—

where the function D (a,P) is defined as

(2&)

(29)

Z(a, P) =
3& f d V f exp( —P&)dp dq exp( —cr V),

(22)

where the Hamiltonian is

i =1 (ij)

d
"

d
(23)

with r,&=q; —
q and d is some constant. After integra-

tion over phase space, the partition function becomes

Z(a, P)= f dVexp( —aV)z(P, V), (24)
bN

where

In the previous sections, we have seen how geometrical
quantities such as the metric tensor and scalar curvature
can be calculated for noninteracting classical particles.
Now, we shall examine a case with interactions between
classical particles, namely, the van der Waals gas.

Here, we shall again start from the P-T distribution
with the partition function,

The scalar curvature for the van der Waals gas can then
be calculated, and after some algebra, we obtain

K„dw =— (30)
V

where

F(a,P) = D. —a
—3
V

A more detailed derivation of the metric tensor and the
formula used for calculating the scalar curvature is given
in the Appendix. The above expression for K„d w differs
from the corresponding result obtained in [4], since the
coordinate transformation used for this purpose in [4]
was not performed correctly, whereas our result was cal-
culated directly without any coordinate transformation.

From the above expression, E„d~, it is clear that the
scalar curvature diverges along D =0, i.e., the spinodal
curve (see Appendix), which includes the critical point.
On the other hand, the system does not return to the
same thermodynamic state after following an
infinitesimal closed contour around the critical point, or
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straddling the spinodal curve, and conversely, Maxwell's
relation guarantees that any other infinitesimal closed
contour is thermodynamically trivial. Thus, we conjec-
ture that divergent curvature is physically characterized
by the property of inducing a change in the thermo-
dynamic state of the system v upon following an
infinitesimal closed contour in the parameter space which
encloses a point of divergency.

Also, K, d w vanishes along the I' =0 curve, and this
sign smoothly changes from positive to negative as one
decreases the temperature, in the (u, P) plain.

Note that the P Tdist-ribution with (a,P) as coordi-
nates is used in this section rather than the canonical dis-
tribution with (u, p) as coordinates, and this change of
thermodynamic parameters is efFected through the
Legendre transformation in Eq. (27), rather than a coor-
dinate transformation using the equation of the state.
The physically meaningful results concerning divergent
curvature presented above cannot be obtained in terms of
the canonical distribution. An analogous situation
occurs in classical mechanics, where canonical transition
from Lagrangian variables (p, q) to Hamiltonian vari-
ables (q,p ) is only possible through a Legendre transfor-
mation, and not through an ordinary coordinate transfor-
mation.

M=tanh[PqM+a] . (34)

q
2

'2

(35)

where, for simplicity, only the first term in the expansion
of M is considered. Using the formula for the scalar cur-
vature in the Appendix, one can easily calculate that

(qP —1)' (36)

Clearly, this scalar curvature is negative for p (p„posi-
tive for p) p„and diverges at the critical point p, = 1/q.
Owing to the neglect of the higher terms in the expansion
of the magnetization in Eq. (34), one loses the informa-
tion concerning the n dependence of the spinodal curve,
which degenerates into a single straight line P=const.
Next, for comparison, we shall present the result for the
exact Ising model.

Expanding this function and substituting into Eq. (33),
one obtains

2

g(a, P) =
—,
' ln4 —

—,
' ln 1—

V. MAGNETIC MODELS

Magnetic models such as the mean field model or the
Ising model are illuminating prototypes of critical phe-
nomena in statistical mechanics or quantum field theory.
In this section, we derive an expression for the scalar cur-
vature of the Ising-type mean field model in the lowest
order approximation, and also present for comparison the
results for the exact one-dimensional Ising model ob-
tained by Janyszek and Mrugala [16].

B. The Ising model

For the case of the Ising model, we have

N

p(o;a, P)=exp Pgo;o +a g o; Ng(a, P)—, (37)
(ij) i =1

where a and P are defined as in the mean field model, and
g=lnZ for the one-dimensional (1D) Ising model is well
known to be

A. Mean field model g(a, P)=P+ln[cosha+(e ~+sinh a)'~ ], (38)

ger, o. Hg o, ,
—qJ

N —1 (,j)
(31)

where q is the number of neighbors, J the exchange in-
teraction strength between spins, and H the external
magnetic field. The probability density for this model
can, therefore, be written as

p(cr;a, P)=exp[ —(kT) '& P(a, P)], —(32)

where T is the temperature of the system, and (a,p) can
be chosen as a=H/kT and P= J/kT, respectively. Us-
ing the mean field method (see, e.g. , Baxter [17] for de-
tails), g(a, p) can be calculated as

g(a, P) =
—,
' ln

4
1 —M

—
—,'PqM (33)

where the magnetization M(a, P) is given by

In the mean field model (MFM), interactions between
spins are replaced by a field obtained by averaging over
all spins. Consider a system of N spins [o'; ] with the fol-
lowing Hamiltonian:

in the thermodynamic limit. Again, using the same for-
mula in the Appendix, the scalar curvature for the (1D)
Ising model becomes

(39)

See [16] for the components of the metric tensor and oth-
er details. The scalar curvature is positive everywhere
and diverges at the trivial fixed point p, = oo ( T, =0) with
n =0.

C. The scaling hypothesis

In the preceding examples, we observed that the scalar
curvature diverges along the spinodal curve, which in-
cludes the critical point. The critical behavior of thermo-
dynamic quantities such as specific heat can be analyzed
by introducing the notion of the scaling, whereby these
quantities are described in terms of the reduced tempera-
ture t = T/T, —1, and this approach is also applicable to
the scalar curvature.

Consider an Ising-type magnetic model with a proba-
bility density expressible in the form of Eq. (13),
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2

p(o, 8)=exp g 8"S„(cr) —g(8)
r=1

&(&s, )'&

&(b,s, )(ss, ) &

&(bs, )(bs, )&
'

&(as, )'& (40)

The expected information metric can then be written as

&(&S, )"(AS, ) &
—J d"r(t' )"(t~) A(rr")

—
~

r
~

n ( I —a)+ mP —dv

which is valid when m+n is an even integer and A is
some scaling function, the behavior of the metric tensor
near the critical temperature is as follows:

(41)

where b,s;=S;—&S;& and &S;& denotes the mean value
of S, Using the following formula:

Again, using the formula in the Appendix, the scalar cur-
vature can be written as

&(as, )'& &(as, )(ss, ) & &(as, )'&

&(as, )'& &(as, )'(ss, ) & &(as, )(ss, )'&

&(as, )'(ss, ) & &(as, )(ss, )2& &(as, )'&

(42)

hence, the behavior of this quantity near the critical tem-
perature is

K(t) gati (43)

where ~=2—a in terms of the usual critical exponents
[18]. This scaling behavior is identical to the one ob-
tained by Ruppeiner [5] although the method is some-
what different. He also pointed out the fact that this crit-
ical behavior of the curvature is the inverse of that of free
energy. Since ~)0, this result shows that the scalar cur-
vature diverges at the critical temperature in a more gen-
eral context than the examples presented in the preceding
sections. Note that the scaling law implies that all six
terms in the determinant of Eq. (42) have the same criti-
cal exponent, and, therefore, detailed calculations of
these terms are not necessary in order to derive the result

in [4].

VI. CONCLUDING REMARKS

In the previous sections, we have shown through vari-
ous examples how expected information geometry can be
applied to statistical mechanics. However, the usefulness
of this approach will remain limited until the emergence
of a generally valid physical interpretation of geometrical
quantities such as the scalar curvature. In statistics, the
usefulness of this geometrical approach is well known,
e.g. , Edgeworth expansions of estimators, etc. [7,8].
However, these notions have not been applied in theoreti-
cal physics.

A number of investigations (see [4,5, 11,16] and refer-
ences cited therein) have been conducted in this direction
and the following conclusion has been stated by Janyszek
[4], namely, "the scalar curvature diverges at the critical
point and the inverse of the scalar curvature K ' is a
new quantity to measure the stability of the system. " Al-
though this statement does seem plausible, there still ex-
ists no rigorous argument showing that the scalar curva-
ture diverges at the critical point. Moreover, as was

shown in Sec. IV above, the scalar curvature for the van

der Waals gas in the P-T distribution diverges not only at
the critical point but also along the spinodal curve, and

this is also true for the magnetic models.
However, Eq. (42) shows that the scalar curvature

K(8) is expressible in terms of second and third order
correlation functions, i.e., E(8) is a combination of func-

tions which measure the Quctuations of the system,
hence, the quantity E(8) itself must reflect the Auctua-

tions of the system, which led to the above quoted inter-

pretation of Janyszek. On the other hand, in the simple

case of the classical ideal gas, as calculated above,
K(8)=0, whereas other quantities which measure the
fluctuations, such as specific heat, do not vanish. Thus,
the simple interpretation stated above must be modified.

Divergent curvature implies that the integral of the
scalar curvature over the surface bounded by a closed
loop (contour) may not vanish in the limit as the size of
the loop approaches zero. On the other hand, the thermo-
dynamic state functions of the system, such as mean
volume U or magnetization M, change when the parame-
ter point 0 follows an infinitesimal closed contour sur-
rounding a critical point or straddling the spinodal curve
in the parameter space, and, as mentioned in Sec. IV, the
spinodal curve is a locus of divergent curvature. This sug-
gests a relation between curvature and nontrivial thermo-
dynamic changes.

From the geometrical viewpoint, curvature can be in-
terpreted as the rotation of a tangent vector after a paral-
lel translation along a closed curve, and the angle of this
rotation is the integral of the scalar curvature over the
area enclosed by the curve. Therefore, the solution of the
open problem of providing a general physical interpreta-
tion of the scalar curvature first requires consideration of
the physical significance of tangent vectors and parallel
transport in statistical manifolds. The problem of provid-
ing a rigorous proof that the scalar curvature diverges at
critical points (or a counterexample to this conjecture)
also remains open. Furthermore, the physical
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significance of the sign of the curvature is still unknown.
It is interesting to note that Ruppeiner proposed the hy-
pothesis that the scalar curvature represents the correla-
tion volume of the thermodynamic system [11]. He also
argued that the curvature is a measurement of interac-
tions, however, a general proof of this remains to be an
open problem.
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APPENDIX

The derivation of the metric tensor for the van der
Waals gas is as follows. The function f(a,P) was given in
Eq. (27) by

g(a, P) =h(a, P, v ) = —av+lnz(P, V),

in terms of an unknown function U. However, we can
determine (Bv /Ba), (Bu /c)P), etc., in the following
manner. First, define Q as

BhQ=—— =o, —
Bv

1 a+P =0.
U
—b v

The relation Q=O is, in fact, the equation of the state for
the van der Waals gas. Now, we take the total derivative
ofQ,

where D is defined by (29).
As is well known the spinodal curve which constitutes

the boundary of a semistable region in the parameter
space is given by the condition (Oct/Bu)=0. Thus, from
the above equation, the spinodal curve is given by the
condition D =0. Using the above results and the chain
rule of differentiation, one can easily calculate i„=B„B,h
with the result given in (28).

Although the general expression for the scalar curva-
ture is given by (10), in two dimensions, which is the only
case considered in the text, if the metric tensor takes the
form as (7), then the scalar curvature assumes the follow-
ing simple form:

4» 11 0» 12 4» 22
1

P» 111 P» 112 0» 122
2l

P» 112 1» 122 0» 222

t)ct c)p t)v

and thus obtain

where i =det(i„, ). All the results concerning the scalar
curvature presented in the preceding text are calculated
using the above formula.
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