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The spontaneous magnetization of a corner spin on a square planar Ising ferromagnet with free boundary

conditions is obtained exactly, confirming conformal predictions.

PACS number(s): 05.50.+q

About a decade ago, conformal field theoretical ideas [1]
were applied to predict the critical behavior of the spontane-
ous magnetization m, of a spin in the corner of a wedge-
shaped lattice with free boundaries (i.e., no applied fields or
modified bonds) for systems in the same universality class as
the planar Ising ferromagnet. For an opening angle of u, the
result is [2] m, ~ t ' where t=(T,—T)/T, . This is ob-
tained from the critical correlation between an apical spin
and an edge spin as given conformally, followed by an ap-
plication of scaling, With a= m, the historically important
exact result of McCoy and Wu [3] is recaptured. This was an

exact result indicating that special critical behavior might be
found at the boundaries of lattices.

The case of cr= m/2 has received much attention, none of
it entirely successful, beginning with the work of Barber,
Peschel, and Pearce [4]. The difficulty is that, although the
spectrum of the free-edge transfer matrix is known [5], stan-
dard methods [6] reduce the correlation function between an
apical spin and one in the edge a distance n away to an n X n

determinant which, because of intrinsic lack of translational
symmetry, does not have Toplitz structure [7], unlike in [3].

In [4], an alternative approach [8]was used, in the special
case of the Hamiltonian limit, to generate equations for cer-
tain matrix elements which the authors did not solve. Subse-
quently, Kaiser and Peschel [9] conjectured an analytic ex-
pression for m, by numerical analysis of these equations. In
this work, we shall confirm this conjecture by an exact cal-
culation, and also obtain the spontaneous magnetization
m, (j) at any distance j along the edge from the corner, as
well as the scaling function which interpolates between m,
and the edge magnetization m, (~).

Using standard transfer matrix ideas [6] [with spins
a(m, n) =.~ 1 at Cartesian coordinates (m, n) with
1~m~M and I~n~N and vertical (horizontal) interac-
tions Ki (K2) in units of kT], we have

&0~ M(v, v, )"-'v,&~0)
( ") 'N ) (o~(v, v, p-'v, ~o)

over all states of a free edge with the implied equal ~eight.
We shall work with the symmetrized transfer matrix
V = V] V2V], which can be written as

(3)

where the Fermi operators XI, are given by

2M

&k=g y, kr (4)

coshy(k) = cosh2K,*cosh2K2 —sinh2K, *sinh2K2cosk (5)

with y(k)~0 for k e R.
The values of y j z are given from an eigenvalue problem

[5] as

y 2/, k N(k) s'n[k j ~pa(k)1

y2, , k= iN(k)sin[kj —ip, (k)],
(6)

where N(k) is taken real positive and fixed by

~~y~~2= 1/g2. The phase angles are

—1.I ~ —1~ 1/2

e i tIpp(k) 'ie"—A ')
r e

—ik 8) i/2
e'"I

elk 8 )

with q&0(0) = 0 and q&, (0)= m for 8~ 1, where
A = exp[2(K, +K2)] and 8= exp[2(K, —K2)]. Finally, the
wave numbers are quantized on the finite lattice by

in terms of the spinors I 2;,=f, +f, , I'2, = i(f, f,)— . —
with f, =P; irr,

+
w. here P0=1 and P, =Ilik, ( irk) for-

j~1. This last step is the Jordan-Wigner transformation to
fermions ft and f, . Evidently ~0) is the f, vacuum. The
function y(k) was given by Onsager [10]:

with iMk ~

(k) is*{k) (8)

r
M

) r
M i

V, =exp —K,*g tr/, V, =exp K, g a", a", , (2)

where e I = tanhK& is the usual dual variable and
a.~o) = —~0) for any 1~j~M. This is appropriate to sum

where 8*(k)= 7r+ cpo(k)+ cp, (k) —k is an element of On-
sager's hyperbolic triangle and cr(k) = ~i, this being related
to reflection invariance by y2M 2; „=—ct(k)y2, ik. It is.
crucial to note that with 8)1 (T(T,), (8) has an imaginary
wave number solution with n = i given by
e'"=8 '+O(B™),for which y(k) =O(B™),evidently a
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source of asymptotic degeneracy in the spectrum of V'. The
operator for this mode is denoted X, and the associated

y/, are (to order 8™)
1(e2vo 1 ) 1/2e —

jv&&
R

combination of Lk and Lk, including X, which anticom-

mutes with Xt leaving (0~4). We get for 1~j «M

j&/'(k) e' kjK(k) = i(e '&& 1—)
'

y = ( 1 e
—2"

&&) 1/2e —™/)v&&
2J,C

with Uo=lnB. We find that

(9) k e( —m, m)

a(k) = -i

X (e v&&/ —e VI&e &M /)v&&)

where

where ~4) is the Xk vacuum and maximum eigenvector of
V'. To derive this result, note that both ~0) and ~4) are

eigenvectors of p& with eigenvalue 1.
The matrix element is determined by noting that

(0~ftXt~ci) =0 because ~0) is the f, vacuum. Inverting (4)
by using the canonicality of the transform gives ft as a linear

e
—iy&&(k) + e

—iy&&k) (0~XtXt~ g))

W(k) (0 ~
C&)

(12)

Multiplying by e 'q/, with e' q= —iu(q)e' q), u(q)=
+ i, summing over j=1, . . . ,M, and finally taking M~~
gives two equations for K:

p t
~ i(k q) B

—1 —i 8*(q) I)

dk, k (1+e'1 ' ' 'q' )K(k)= —4i(e "&& 1)"—
& )+s(k q) ) e'q 8' e—'q Bj '— (13)

p r~ i(k q) / 8 —
1 e

—ib* iq))

2K(q)+ — dk, .
k (1 —e' ' ' '1'))K(k) = —4i(e "&& 1)"—

&

~j &,
e' 8' e'—Bj—(14)

The integral operator on the left-hand side (lhs) of (13) was

encountered by Yang [11]in his derivation of the bulk spon-

taneous magnetization. Yang's equation has

b'(k) = yo(k) —yi(k) in place of II&*(k), but this change

involves replacing B by B '. The spectrum of Yang's opera-
tor for T)T, [11]allows inversion of (13) for T(T, using

the theory of Jacobi elliptic functions [12], to give

ex2(2 sinh2K, )' sinh(uo/2)(1+e )
( ) [( ik g)(eik 8)]l/2(eik 8 —1)

which may be checked by direct substitution. An alternative
and more direct route to derive (15) is to take the difference
of (14) and (13) giving

K(k) (MK) (k) =4i(1—e"')" (e' —e"')—

Bz8(z ') z8(z)
z8(z)g(z)-8(z ')g(z ')=—

(19)

where

~z-W I
'"

8(z) =
I, z —Bj

.*&k)so that e'"*"'=, (20)8e

Using a Wiener-Hopf technique on the right-hand side (rhs)
of (19) allows us to identify each of the two terms on the lhs

up to some constant, since the first term is analytic for z
inside the unit circle and the second one is analytic for z
outside. The constant is obtained by imposing that g(z) has

no pole in z=o.
Applying the inversion of (4) to the magnetization for-

mula (10) gives

where .P~' denotes the Hilbert transform. This means that

g(e' ) =K(k) —2i(1 e" )2'/—&2&(e'k e'&&) '— (17)

has no singularity inside the unit circle. We now recall that

Y,. k is an odd function of k, which gives a symmetry require-
ment for the matrix element leading to

m, (j)=m, —e &

+ 2(2 sinh2K1*)'/ sinh(uo/2)I(j),

~here

j—1 t/ g —1) lj2

I(j)=— dx
m'J g

—I 1 —XI,B —X)

(21)

(22)

K( —k)=e'1 + )K(k). (18) and [3]m, = e & [sinh2(K2 —K,*)/sinh2K2]" .
For j=1 the integral is elementary and gives

Substituting (17) into this equation gives a relation between

g(z ') and g(z) m, = ex2 (e'"& —1)'"sinh(u&)/2) (23)
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as conjectured in [9].For large j, we have

m, (j)-m, —e &e "p' ' (mj sinh2Ktsinh2K2) ' (24)

2b
X

(b +Co J

(2S)

where tan8(to) = to/b.

in accordance with a simple bubble picture of the generic
dependence of magnetization [13,14]: the edge magnetiza-
tion near a corner (but sufficiently far away on a scale of the

correlation length) deviates from the j~~ because lines
which separate oppositely magnetized phases and which sur-

round the point (j,0) can intercept the vertical line x=0.
Assuming such bubbles have no overhangs with respect to
the (0,1) direction and the solid-on-solid weight

exp( bLJ —+ax) where LJ is the length of the vertical lines

(assumed continuous), then a straightforward transfer-

integral calculation gives

m (j) t" 2=1—e '"
dy — dco sin8(to)sin[8(to)+ coy]

m Jp rr J

For j large, this gives the asymptotic contribution

1
m, (j)=m, 1 — e

2/mx I

(26)

in qualitative agreement with the exact result.

Finally, we have the scaling function

—x 1+um, (x/Up) 2 ""1—e
F(x) =s —lim

m, m&0 1+u du. (27)

The small x behavior is F(x)-2(x/sr)" which means that

a correction to scaling contributes to the corner magnetiza-
tion near T, .
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