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Moving solitons in the damped Ablowitz-Ladik model driven by a standing wave
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We predict theoretically that, via a resonance mechanism, stable moving solitons exist in a discrete (1+1)-
dimensional nonlinear Schrodinger (Ablowitz-Ladik) equation with dissipation and an ac driving term in the

form of a standing wave. Agreement between the predicted threshold (minimum) values of the strength of the

drive which is able to sustain the moving solitons and those measured in direct numerical simulations is
excellent. Our results show an example of multistability in damped, standing-wave-driven systems. The dy-

namical instability for the motion of solitons in the unstable regimes is also analyzed.

PACS number(s): 46.10.+z, 63.20.Pw

As is well known, solitons play an important role as non-
linear collective excitations in various physical systems, es-
pecially for those which can be considered as effectively one
dimensional. In many cases, solitons may be relatively easily
created by application of a sufficiently strong localized initial
disturbance. However, in any real physical system solitons
are attenuated by dissipation. It is necessary to devise special
means to sustain a soliton in the dissipative medium. A
simple example is the driven magnetic flux quantum (fluxon)
in a damped long Josephson junction [1].A dc bias current
uniformly distributed along the junction gives rise to a con-
stant driving force which compensates the friction and forces
the fluxon to move with an equilibrium velocity. It is well
documented that an ac drive may support nontranslating en-
velope solitons [2] or breathers [3] in damped continuum
systems. Generally, translation of a soliton cannot be sus-
tained by a spatially uniform ac drive in homogeneous con-
tinuum systems. However, it is possible to sustain a translat-

ing soliton by a traveling component of the external field,
e.g., moving breathers in the sine-Gordon chain driven by a
traveling wave [4], moving kinks driven by rotating mag-
netic field in an annular long Josephson junction [5], or
driven by a traveling electromagnetic or acoustic wave in a
charge-density-wave conductor [6].

Recently, a great deal of attention has been attracted to
solitons in discrete nonlinear systems, especially after the
discovery of strongly nonlinear localized intrinsic modes in
dynamica'I lattices [7]. In Ref. [8], it was proposed to drive
solitons in discrete systems by an ac external field with the
following mechanism: a soliton moving in a lattice with

spacing a at a mean velocity V passes sites of the lattice
periodically with the frequency 2m. V/ aIf to is the fre-
quency of the external ac field, the moving soliton may be in
resonance with the ac field provided that

As one of the specific examples, the Toda lattice (TL) model
was employed. The analysis there was based only on consid-
erations of energy balance for the translating soliton. How-
ever, this, in general, is insufficient to guarantee that the
predicted motion of a soliton will exist because the momen-
tum balance condition must also hold [9].The TL model is
known in two different forms which are equivalent in the
absence of perturbing terms: the usual form and the so-called
dual one. While the energy balance analyzed in Ref. [8]per-
tains to both, it is only the dual form that makes the addi-
tional consideration of the momentum balance unnecessary,
as in this formulation of the TL the momentum of a soliton is
always zero [9]. Thus, the effect predicted in Ref. [8] can
occur only in the dual version of the damped ac-driven TL.
This was confirmed in direct numerical experiments [10]and
was observed experimentally in an electric transmission line
which is described by the dual TL model [11].In the follow-
ing, we will show that, for a damped ac-driven nonlinear
Schrodinger (NLS) equation with the Ablowitz-Ladik dis-
cretization, this simple resonance mechanism fails to support
the motion of a soliton precisely due to the violation of mo-
mentum balance. Furthermore, we will consider drivings of
the standing-wave type for which a different resonance
mechanism exists to support a moving envelope soliton in

the damped discrete system. The motivation of this study is
to understand the energy transfer mechanism which may be
applicable to various one-dimensional physical systems.
Also, this problem is of obvious general interest as a new
dynamical effect.

We consider the Ablowitz-Ladik (AL) system [12] with

additional terms accounting for dissipation and external ac
drive,

t0. = (0.+t+ W. -t)(1+—It/. I') —tl t/„

+ e cos(k n)e

for the lowest order of the resonance. This idea was devel-
oped [8] for the lattice models without internal degrees of
freedom, i.e., described by a single-component real variable.

subject to the periodic boundary condition p„= t/tz+„with n

the site index. Here I" is the dissipation coefficient, while 0
and e are the frequency and amplitude of the ac drive, re-

spectively. The wave number k of the drive is determined

by the periodic boundary condition, k =(2mm)/N, with m
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being an integer, —N/2~m~N/2. Notice that the driving
term in Eq. (2) has the form of a standing wave. The princi-

pal difference between this system and that considered in

Refs. [5] and [6] is that a soliton here has internal degrees of
freedom.

In the absence of the perturbations, the AL system is com-
pletely integrable [12].It has the one-soliton solution,

For the one-soliton solution, we have

E= —4 sinhp cosu=2ru tanhp,

P=4 sinhP sinu=2PV. (9)

p„= sinhp sech(p[n —X(t)])e (3)

where X(t)= Vt+ (, and the soliton's frequency ro and ve-

locity V are expressed in terms of two real parameters
ac[—m, m] and P~(0, +~):

co= —2 coshP cosa, (4)

sinhP
V=2 sinn

( and o being trivial parameters describing the initial posi-
tion and phase of the soliton.

The simplest analytical technique which allows us to at-
tack the problem, provided that the perturbing terms are
small enough, is based on the so-called balance equations for
the quantities which are integrals of motion in the unper-
turbed system [3].Although the unperturbed AL system for
the infinite lattice has an infinite number of conservation
laws, here we will explicitly utilize the conservation of the

energy, E, and momentum P,

Notice that, for k =—0, the system (2) is the damped AL
system driven by a spatially uniform ac force. It is easy to
show that, for given p, u exists such that the velocity of the
soliton and the resonant frequency of the drive (i.e., 0= co)

satisfy the resonance condition, Eq. (1) (where a = 1).How-

ever, the momentum for this purely ac-driven system decays
according to P= —21'P. Although, by increasing the driving
strength e, a sufficient amount of energy can be pumped into
the system to sustain the amplitude of the soliton, the decay
of the momentum [see Eq. (9)] leads to the decay of the

velocity of the soliton. Thus the resonance mechanism sum-
marized by Eq. (1) is not sufficient to support the translating
motion of the purely ac-driven soliton.

Next we turn to the case of general k . If the uniformly
translating motion of the soliton can be supported by the
drive, it is necessary to have balance conditions for the en-

ergy and momentum. By assuming that the form of the soli-
ton solution (3) is robust under the perturbation and the ex-
cited oscillating background is small, we have

E= —X W. A.*+i+P.*0.+i, (6)
(E)= —2I'(E) —4e(sinhP)(cosk ) IE,

(P) = —2I'(P)+4e(sinhP)(sink ) Ip,

where

00
f +oo

IE= dx sech( px) cos(k y) sin[( ro —0)t —ay+ o ] 1+2g cos(2 msy)
) —00 $=1

00
t +oo

It = dx sech(px)sin(k y)cos[(co —Q)t —uy+ o] 1+2+ cos(2wsy)

with y =x+ Vt, ( ) being the time average. In the following
we ignore the higher resonances with s~1. It can be shown
that, if the resonance condition

4PI' (a~k )me= . cosh
m sincr

(13)

(co—A)=(a~k )V (12)
Therefore, the threshold for driving strength above which a
stable moving soliton exists is

does not hold, IE and Ir vanish. From Eqs. (10) and (11) it
follows that the motion of the soliton cannot be sustained.
However, if the resonance condition holds, we have
IE=I&=[(casino)/(2P)]sech[(a~k )m/(2P)] for a40.
Thus the balances of energy and momentum, i.e., (E)=0
and (P) =0 both lead to

when the resonance condition (12) is

a=+k

(14)
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and the corresponding phase delay is o.= m/2. For a=0,
following the same steps as the above analysis, using the
energy balance condition, leads to the threshold for the sta-
tionary soliton [13]

(16)

0.75

0.50

E= 2I'E+ eE c—os[k~(t)]sin[k~(t) —o.]

X g sech{p[n —X(t)]),

P= —2I'P+ eP sin[k~(t) ]cos[k~(t) —o ]

X g sech{p[n —X(t)]),

where X(t) is the slowly varying position of the soliton.
Approaching the points X(t) such that k~(t) = in, I being
an integer, the translating motion of the soliton is damped
and the energy of the soliton is drained. This indicates that,
for the parameters in this regime, it is impossible for the
drive to lock a translating soliton motion. Note that this re-
gime corresponds to the small k regime. The reason for this
absence of stable solitons is similar to the one observed for
breathers in the spatially nonuniformly driven sine-Gordon
(SG) systems [14].

We have so far not considered the effect of the excited
oscillating background. It is straightforward to show that, by
linearizing Eq. (2), under the resonance condition (15), a

spatially extended wave is excited:

l4'I„=A cos(k n)exp( —icot) (17)

with the magnitude of the amplitude,

which is half of the threshold estimate for a moving soliton.
This can easily be explained by the form of the drive. Be-
cause the external drive can be decomposed into left and
right traveling waves for nonvanishing k, a moving soliton
only resonates with one of the components. Whereas, for
k =0, the nonmoving soliton resonates with the whole
drive. Hence the factor of 2 between the thresholds. The
resonance condition (15) implies that the phase velocity of
the carrier wave of the soliton is equal to the phase velocity
of one of the two traveling wave components of the drive
while the velocity of the soliton is determined by Eq. (5).
This resonance mechanism is, obviously, different from the
one described by Eq. (1).In the limit p~0, the AL equation
approaches the continuum NLS equation. It is easy to check
that, in this limit, the threshold estimate (16) goes over to the
familiar expression for the threshold amplitude of the ac
drive capable of supporting a soliton in the damped NLS
equation [2].

Under the resonance condition (15), in the regime where
2'/(k~V)&&(2n)/ro, and 2m/k &)2/p, the soliton can be
viewed as a damped point particle in a slowly varying exter-
nal potential. The analysis above has then to be modified. In
this regime an adiabatic approximation is valid, leading to
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FIG. 1. Thresholds scaled by I for different values of m. The
solid line is the theoretical prediction for m 4 0. For comparison we
have also plotted (dotted line) the theoretical prediction for m =0.
The crosses are the thresholds measured in numerical simulations
for m 4 0; and the star, for m =0 (see text).

A
4(1—coshP) cos k +I" (18)

For k —m./2, with the driving strength e at the threshold
(14), the background amplitude is of the order of p which is
about as large as the amplitude of a soliton for, e.g. , p- l.
Therefore, in this regime, i.e., k —m/2, it can be expected
that a translating soliton is strongly coupled with the back-
ground wave and will be swamped by a large background
excitation.

We have performed direct numerical simulations of Eq.
(2) with periodic boundary conditions. We chose the param-
eter I = 0.005, and the length of the system N = 200. As for
the initial state, the soliton form (3) was used with p=0.5,
o.= m/2. It is easy to confirm that the system (2) has the
following symmetries: (i) it is invariant under k ~ —k

and (ii) the time evolution of Eq. (2) for 0(k (m/2 is the

same as that for k' = m —k, rnodulo a constant phase, for
the initial condition (3) with the parameters chosen under the
resonance condition (15).Thus, for our simulations, it is only
necessary to consider 0~m~SO, where m is the integer
which determines the wave number k . Our numerical re-
sults have confirmed the features predicted in our analysis
and are summarized as follows: (a) For 7~m~45, the

steady translating solitons riding on the background of a spa-
tially extended wave (17) were observed. A typical set of
threshold measured in the simulations for the driving
strengths for different values of m is shown in Fig. 1, along
with the theoretical predictions given by Eq. (16) for m =0
(the nontranslating soliton), and by Eq. (14) for m40. To
obtain this set of data, we adjusted the value of o. and the
driving frequency 0 to each value of m so that the resonance
condition (15) is satisfied for a constant p=0.5. For all

cases, the final velocity of the soliton at t = 1000 (time units)
and the initial velocity were measured and compared with
the theoretical value of Eq. (5). They differ by less than 3%
from the theoretical values of the velocity. Clearly, the trans-

lating motion is well maintained. As can be seen, the agree-
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ment between the measured thresholds and the theoretical
predictions are excellent, with the relative error in all the
cases less than 0.2% except for m =45 where it is 1%. (b) To
demonstrate that this locking phenomenon is indeed a reso-
nance with the external drive, we started with a soliton with

u, to (=Q) tuned to the resonance condition (15) for
m=30, the threshold was found to be e——0.003 18. Now
keeping all the parameters for the initial soliton and the ex-
ternal driving frequency fixed except for k, which is
changed from k30 to k3& or to k29 in the external drive, we
have observed that the soliton still decays into the oscillating
background, even by increasing e to 0.01. This example
clearly confirms that the resonance mechanism is working.
(c) For small m, i.e., 1~m ~6, as predicted above we have
failed to lock the translating motion of a soliton. (d) For
45&m~50, where k -m/2, the background oscillations
(17) were excited according to Eq. (18), and their amplitudes
become comparable to the amplitude of the soliton, so that it
becomes hard to identify any localized object as the vestige
of the soliton.

In conclusion, we have analyzed the motion of solitons in
the standing-wave-driven, damped discrete (1+1)-
dimensional NLS equation in the Ablowitz-Ladik discretiza-
tion for different stability regimes. The theoretical prediction
for the threshold for the driving strength, above which the
steady motion of a soliton exits, is in excellent agreement
with the numerical results. The general stability features
were confirmed by the numerical simulations. It can be ex-
pected that a similar mechanism should be operating in the

corresponding damped continuum NIS equations driven by
a standing wave. We note that this resonance phenomenon is
also exhibited in the system considered in Ref. [4], where the

governing equation for the perturbed SG chain is

U« —U,„+sinU= —I'U, + e cos(Qt —k„x). (19)

Here k„=2mn/L, with L being the length of the system.
In the low-amplitude, NLS limit, considering the scaling re-

gime in which, b(&1, X= bx, T=(8 /2)t, I'= b y,
and e=4b e, for U=2bp(X, T)exp( —it)+c.c., we have

iver+ Pxx+2~P~ P= iy—t/p e(—X,T), where e(X,T)
=e exp(t12(1 —Q)b" T+k„b 'X]}. According to the reso-
nance mechanism discussed above, a resonating NLS
soliton has the velocity v = (2k„)b t, and frequency
to= 2(Q —1)b . Consequently, the corresponding resonat-

ing small-amplitude SG breather has the frequency Q and
velocity V= k„ in the original coordinates (x,t):

Ub =4 rI sech[ rI(x —k„t)]cos(Qt —k„x), (20)

where rl=/2(1 —Q)+k„. This is precisely the breather
which was generated by the drive in numerical simulations

[4].Thus the resonance mechanism here further clarifies the
velocity selection mechanism for the moving breather ob-
tained in Ref. [4].
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being an integer, —N/2~m~N/2. Notice that the driving
term in Eq. (2) has the form of a standing wave. The princi-

pal difference between this system and that considered in

Refs. [5] and [6] is that a soliton here has internal degrees of
freedom.

In the absence of the perturbations, the AL system is com-
pletely integrable [12].It has the one-soliton solution,

For the one-soliton solution, we have

E= —4 sinhp cosu=2ru tanhp,

P=4 sinhP sinu=2PV. (9)

p„= sinhp sech(p[n —X(t)])e (3)

where X(t)= Vt+ (, and the soliton's frequency ro and ve-

locity V are expressed in terms of two real parameters
ac[—m, m] and P~(0, +~):

co= —2 coshP cosa, (4)

sinhP
V=2 sinn

( and o being trivial parameters describing the initial posi-
tion and phase of the soliton.

The simplest analytical technique which allows us to at-
tack the problem, provided that the perturbing terms are
small enough, is based on the so-called balance equations for
the quantities which are integrals of motion in the unper-
turbed system [3].Although the unperturbed AL system for
the infinite lattice has an infinite number of conservation
laws, here we will explicitly utilize the conservation of the

energy, E, and momentum P,

Notice that, for k =—0, the system (2) is the damped AL
system driven by a spatially uniform ac force. It is easy to
show that, for given p, u exists such that the velocity of the
soliton and the resonant frequency of the drive (i.e., 0= co)

satisfy the resonance condition, Eq. (1) (where a = 1).How-

ever, the momentum for this purely ac-driven system decays
according to P= —21'P. Although, by increasing the driving
strength e, a sufficient amount of energy can be pumped into
the system to sustain the amplitude of the soliton, the decay
of the momentum [see Eq. (9)] leads to the decay of the

velocity of the soliton. Thus the resonance mechanism sum-
marized by Eq. (1) is not sufficient to support the translating
motion of the purely ac-driven soliton.

Next we turn to the case of general k . If the uniformly
translating motion of the soliton can be supported by the
drive, it is necessary to have balance conditions for the en-

ergy and momentum. By assuming that the form of the soli-
ton solution (3) is robust under the perturbation and the ex-
cited oscillating background is small, we have

E= —X W. A.*+i+P.*0.+i, (6)
(E)= —2I'(E) —4e(sinhP)(cosk ) IE,

(P) = —2I'(P)+4e(sinhP)(sink ) Ip,

where

00
f +oo

IE= dx sech( px) cos(k y) sin[( ro —0)t —ay+ o ] 1+2g cos(2 msy)
) —00 $=1

00
t +oo

It = dx sech(px)sin(k y)cos[(co —Q)t —uy+ o] 1+2+ cos(2wsy)

with y =x+ Vt, ( ) being the time average. In the following
we ignore the higher resonances with s~1. It can be shown
that, if the resonance condition

4PI' (a~k )me= . cosh
m sincr

(13)

(co—A)=(a~k )V (12)
Therefore, the threshold for driving strength above which a
stable moving soliton exists is

does not hold, IE and Ir vanish. From Eqs. (10) and (11) it
follows that the motion of the soliton cannot be sustained.
However, if the resonance condition holds, we have
IE=I&=[(casino)/(2P)]sech[(a~k )m/(2P)] for a40.
Thus the balances of energy and momentum, i.e., (E)=0
and (P) =0 both lead to

when the resonance condition (12) is

a=+k

(14)


