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Relativistic self-focusing and channel formation in laser-plasma interactions
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Nonparaxial wave propagation theory is used to study relativistic self-focusing and channel formation in the

propagation of an intense, short-pulse laser through an underdense plasma. The stable on-axis channel pre-
dicted by paraxial theory is found to break up into on-axis channel remnants and off-axis rings.

PACS number(s): 52.40.Nk

Currently there is much interest in the propagation of an
intense laser pulse through a plasma. The interaction accel-
erates the electrons to relativistic energies. The behavior of a
single electron in the presence of a laser field has long been
studied both in quantum [1] and classical dynamics [2].
More recently, from the point of view of the design of a
practical device such as a wake-field particle accelerator,
theorists [3] have studied laser interaction with an under-
dense plasma, in which the electrons collectively respond as
a fluid. Other theorists [4], concerned with nuclear fusion,
have studied laser interaction with an overdense plasma, in
which the electron response is modeled by particle-in-cell
theory.

Sun el al. [5] used a relativistic Maxwell-fluid model to
predict relativistic self-focusing and channel formation in the
passage of an intense laser pulse through a preformed

plasma. The result is based on the dynamical behavior of the
fluid on average over one optical cycle, whereupon pondero-
motive exclusion and electrostatic restoring forces are pre-
dicted to be in equilibrium. More recently Borisov et al [6].
have performed extensive modeling calculations based on
this theory [5], and an experiment [7] on the observation of
self-channeling has been reported.

In addition to the cycle-average approximation to the fluid
dynamics the theoretical result depends on the paraxial-wave
approximation to Maxwell's equation. However, quite gener-
ally Feit and Fleck [8] have shown that the paraxial approxi-
mation breaks down in a region of strong self-focusing be-
cause the beam undergoes wide-angle scattering, as required
by the wave uncertainty principle when the beam diameter
becomes small, i.e., of the order of the optical wavelength.
Retention of the full rather than the transverse Laplacian in
the scalar wave equation makes scattering through the entire
m rad possible. In their model [8] approximations are made
such that the maximum scattering angle is m/2 rad, where-
upon the nearly collapsed components of the beam attenuate
exponentially, i.e., these components can no longer propa-
gate in the forward direction. This results in an abrupt on-
axis power loss in the region of self-focus, bringing into
question the achievement of the critical power [5,6] needed
to form a stable on-axis channel. In this paper I study chan-
nel formation and beam stability using a nonparaxial theory.
The method of solution is general enough so that scattering
through the entire m rad is described. I find that nonparaxi-
ality has a profound effect on beam shape and stability, lead-
ing eventually to beam breakup and filament formation.

The model [5,6] suitably generalized to include non-
paraxiaiity, is described by the equations
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where the square of the plasma frequency is defined as
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where n, is the electron density and k~=to~/c, k=ctt/c,
where to is the optical frequency. In Eqs. (1) y is the tempo-
rally slowly varying part of the Lorentz factor consistent
with the definition of the Maxwell field,

A=-'(Me ' '+ A*e' ') (3)

where we have ignored the second-order time derivative on
the slowly varying envelope, M. In the nonrelativistic limit,
when y=1, Eq. (1b) reduces to the familiar result for the
square of the refractive index from the Drude model. In Eq.
(la) the Laplacian is written in cylindrical coordinates
where, for an assumed azimuthally symmetric problem, the
envelope depends only on the longitudinal coordinate z and
the radial coordinate p. The paraxial problem is recovered by
rewriting Eq. (3)
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and deriving the equation for the envelope u neglecting
second-order t and z derivatives. In steady state, where the
time derivative is zero, Eq. (1a) reduces to the Helmholtz
equation studied by Feit and Fleck [8].Rigorous treatment of
the physics demands that the vector set of Maxwell equations
be solved; however, as pointed out in [8] the scalar Maxwell
equation describes the diffractive loss of on-axis power with-
out explicitly accounting for where it goes.

Equations (1) are scaled to the variables t, = oI~t,
z, =k~, and p, =k~p, where the subscripts are hereafter
omitted. The plasma density is n, =7.5X10 ' cm and the
optical frequency is the same as that in [6], namely
7.44X10 s . This corresponds to a plasma which is
(to/to&) -2.4 times underdense, in contrast to the plasma of
[6], which is about 24 times underdense. It is not feasible to
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FIG. 3. Average on-axis power. Top: paraxial. Bottom: non-

paraxial.

malized electron density and pulse at maximum time or at
(80+170)k ' on the z scale.

In paraxial theory the pulse widens in z (Fig. 1) as it

collapses in p (Fig. 2). This unphysical behavior is probably
caused by the absence of reflection in the paraxial approxi-
mation. The average on-axis power spuriously increases
(Fig. 3). However, in nonparaxial theory the opposite hap-
pens: the pulse narrows in z and eventually breaks up into

two main fragments (Fig. 1). The average on-axis power
shows an expected decrease (Fig. 3) with propagation length.

In paraxial theory a stable on-axis channel does indeed

form (Fig. 2). In [5] it is shown that channel formation can
be inferred from the paraxial equation steady in z, which is

cast in the form of a radial eigenvalue problem. Channel

formation commences below a critical eigenvalue, which is

positive, and the channel width increases as the eigenvalue

decreases to zero. Thus the width observed in Fig. 2, which

is smaller than the optical wavelength, is consistent with an

eigenvalue close to critical. The oscillations in the radial pro-
file of the electron density which are situated outside the

channel are observed to have approximately the plasma

wavelength. These same oscillations occur in the radial pro-
file of the pulse just outside the channel and are observed to
focus and defocus, respectively, with the valleys and peaks
of the density as required by refraction. The pulse is indeed

contained within the channel and has about a 50-fold in-

crease in intensity over input. However, in nonparaxial

theory the beam breaks up (Fig. 1), and the radial pictures
corresponding to the same z point (Fig. 2) show that now the

peak intensity is confined in a narrow off-axis trough in the

electron density. Thus the beam forms an intense ring around

the axis. The ring intensity is reduced about sixfold relative

to the paraxial on-axis channel. The nonparaxial on-axis
channels (not shown) now exist only in the positions of the
on-axis beam remnants shown in Fig. 1. Thus beam breakup
has resulted in the formation of ring filaments.

In conclusion, strong relativistic self-focusing is accom-
panied by wide-angle scattering through m rad such that the
paraxial approximation is no longer valid. Wide-angle scat-
tering results in a loss of average on-axis power and eventu-

ally leads to beam breakup and filamentation. Future work
should examine the reliability of the cycle-average approxi-
mation to the plasma dynamics.
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