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Elastic excitable medium
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A type of excitable medium —an elastic excitable medium —has been created by incorporating the Belousov-
Zhabotinsky reaction into a polyacrylamide-silica gel. It permits one to address the problem of how the cardiac
muscle contractions affect the dynamics of rotating spiral waves. Investigations of the effects of mechanical
deformations on the excitation wave propagation exhibit a resonance dynamics of vortices. For equal frequen-
cies of deformation and of vortex rotation, vortices drift. The drift velocity is about 3% of the excitation wave

velocity, for a 50% elongation. The direction of the drift does not coincide with the stretching direction and can
be varied by changing the phase shift between deformations and vortex rotation. Numerical calculations

suggest that the effects of mechanical deformations on excitation wave propagation are independent of the

exact nature of the excitable medium.

PACS number(s): 82.20.Mj

In a skeletal or cardiac muscle, a mechanical contraction
is initiated by an electrochemical wave propagating along the
excitable membranes. The sequence of processes triggered
by the excitation wave and resulting in muscle contraction is
known as an electromechanical coupling. A mechanoelectri-
cal coupling has been found as well [1]: the contraction
modifies the propagation of the excitation wave. An interac-
tion between mechanical contractions and wave propagation
is supposed to underlie some mechanisms of morphogenesis
(pattern formation) in biological systems [2,3].

We have designed an excitable system which permits to
study the effects of mechanical deformations on wave propa-
gation. The Belousov-Zhabotinsky (BZ) reaction provides a
paradigm for a well controlled excitable system [4].The me-
chanically deformable substratum for this reaction has been
obtained by creating an appropriate elastic gel. Hence the
elastic excitable medium is made of the BZ reaction incor-
porated into a new gel: complex polyacrylamide (PA)—
silica (Si) gel.

The gel combines useful properties of Si gel [5], which
incorporates the catalyst (ferriin) but is fragile, and the PA
gel [6,7], which is elastic but does not immobilize the cata-
lyst. This gel is prepared as a PA gel [7] to which the catalyst
and sodium silicate (without any polymerizing agent) are
added. At 0 'C, 4 ml of acrylamide (Merck, 2M), 4 droplets
of N, N'-methylene-bis-acrylamide (Merck, 2% wt/vol. in
water), 4 droplets of ammonium persulfate (Merck, 0.88M),
4 droplets of trietanolamine (Merck, 2M) are mixed with 4
droplets of sodium silicate (Prolabo), and 15 droplets of fer-
riin (Sigma, 0.008M). The gel is immersed into the standard
BZ solution without a catalyst: H2SO4 (0.3M), malonic acid
(0.1M), NaBr03 (0.225M), KBr (0.039M) in water. The ex-
citability of the medium is controlled by changing the con-
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centrations of malonic acid (MA) and sulfuric acid (SA). The
gel does not noticeably lose the catalyst during a 1.5 h ex-
periment (at 20 'C).

The gel is fixed to a special device made with a standard
plastic caliper. This allows for a reproducible stretching of
1.5 times the rest size along a fixed direction (X direction).

Our aim is to study the influence of mechanical contrac-
tions of an elastic excitable medium on the behavior of vor-
tices, since it is similar to what might happen in cardiac
muscle. Rotating vortices (spiral waves) underlie various
phenomena in natural excitable media; for instance, they are
involved in the control of morphogenesis in colonies of the
social amoebae Dictyostelium discoideum (see [2]). In the
heart, rotating vortices are a major cause of life-threatening
rhythm disturbances such as tachycardia and fibrillation

[8—11].
One of the qualitative changes in the behavior of vortices

which might be expected under periodic contractions is the
initiation of the vortex drift. Drift of vortices was observed
under different influences: external excitation waves [12],
periodic illumination [13,14], a parameter gradient [9,15], dc
[16,17] or ac [18]electric field.

Let us describe a physical mechanism which might induce
the drift of a vortex in an elastic medium. The motion of the
spiral is studied through the motion of the point of maximum
curvature of a given isoconcentration line. This point is
called the tip. The unit vector pointing outwards and or-
thogonal to the tangent at the tip is called the direction of the
tip. Since the spiral waves in the experiment appear as thin
lines, the tip is simply the end point and the direction is just
the (properly oriented) tangent to the curve at the end point.

Note that for large stepwise deformations, Jt (It.&)1) of
the gel, any displacement which occurred in the stretched gel
will be diminished K times when the gel comes back to the
unstretched state. Now, it is easy to find a condition for a
vortex drift —we should stretch the gel when the vortex tip
moves in one direction, and contract the gel when the tip
moves in the opposite direction. As a result, total displace-
ment of the vortex in one preferential direction will be ob-
served.
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A rotating vortex is created in the experiment by breaking
a wave. In a first experiment, the gel is stretched when the
direction of the tip is parallel to the X direction (we will say
that the tip is parallel to the X direction), and contracted
when the tip is antiparallel to the X direction. Hence the
frequency of the periodic stretching of the gel is equal to the
frequency of the vortex rotation. Then the instantaneous cen-
ter of rotation of the spiral drifts along a straight line (Fig. 1)
with a drift velocity of 0.06 mm/min, about 3% of the wave
velocity. In the next experiment, after 40 min of forcing with
the same initial phase as in Fig. 1, the phase of the forcing is
reversed, and the vortex starts drifting in the opposite direc-
tion (Fig. 2). Note that drifting does not only occur along the

forcing direction, but also has a component perpendicular to
it (similar to [19]).

In Fig. 3(a), four spirals with different phases are shown

just before forcing starts. After 22 min of forcing at resonant
frequency, they have drifted in different directions depending
on the initial phases [Fig 3(b)].

We have also numerically investigated the effects of me-

chanical deformations on a standard model of an excitable
medium (two variable Oregonator model [20,21]). The
stretching of the medium is modeled by changing the size of
the grid in the X direction. The explicit Euler method with no
flux boundary conditions is used. The diffusion coefficient is
taken as constant during deformations.

The dependence of the drift direction on the phase shift
between the vortex rotation and forcing is shown in Fig. 4.
All directions are accessible. The maximum drift velocity
takes place for phase shifts of 0' and 180'.

A simple kinematical model provides an understanding of
the main observed features. We just write that the tip is fol-
lowing its own motion in a reference frame which is moving
because of the stretching. Since the X coordinate of any fixed
point x(0) of the medium is changing according to

x(t) =x(0)((t),

where g(t) describes the deformations of the medium, the

entreatment velocity of the corresponding point is simply

d In/(t)
V,(x(o))=x(0) (2)

By writing the composition of velocities, one gets the
kinematic equation for the motion of a vortex tip:

dx(t) d In/(t)
dt

=V„(r)+x(r) dt
dy(r) = VY(r), (3)

«V (~)
x(t) =x(0)+ g(r) dr.

Jo
(4)

If g(t) is a periodic function with pulsation tot, one sees
in Eq. (4) that drift occurs for cot= co and, in general, for
subharmonics of ao. Nevertheless, for special symmetries of

where V (t) and VY(t) are the components of the velocity of
the unforced spiral tip. Since the spiral is normally rotating
along a circle [21],V„(t)and V~(t) are usually purely sinu-

soidal, and at least periodic functions with pulsation co. The
solution of this equation is

FIG. 1. Vortex behavior under periodic stretching of a gel with

incorporated BZ reaction. (a) Initial state of the spiral wave in the

unstretched gel. (b) Same spiral, after stretching of the gel [9 s after

the frame (a)]. (c) Final state of the spiral after 33 min of periodic

stretching of the gel at resonant frequency. The spiral has drifted

over 2.8 mm (grid size is 4 mm, period of the spiral T&, 84 s, ——
[SA]=0.2M, [MA]=0.05M).



50 ELASTIC EXCITABLE MEDIUM R669

3

FIG. 2. X and Y positions of a vortex tip ver-
sus time for resonant forcing. At t=2500 s, the
direction of the drift is reversed by increasing the
phase of the forcing by 180'. (Period of the spiral
T@=60 s, [SA]=0.2M, [MA]=0.1M.)
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the forcing with respect to the velocity, drift can be zero for
subharrnonics (this special case is the one that has actually
been simulated). Equation (4) also shows that the spiral
should undergo a random walk when forced with low fre-
quency noise.

Following [22], one can write

V„(t)= V„sinrut+ V,costut,

VY(t) = —V„cosset+Vpintut,

where V, and V„arethe tangential and normal velocities of
the vortex tip. For small periodic deform ations
g(t) =1+k si naut, k(&1, Eq. (3) is easily integrated. When
at resonant frequency, averaging over fast rotations yields to
leading order in k,

dI 8 RS

dx t V„ dy t

This result demonstrates the influence of deformations of
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FIG. 3. Drift of several spirals in the same gel at resonant fre-
quency. (a) Initial position. (b) Final position after 22 min of forc-
ing. Since forcing was in phase with spiral A, spirals B, C, and D
drifted differently (see arrows). (Period of the spiral T@ 84 s, ——
[SA]=0.2M, [MA]=0.05M, grid size 10 mm. )

FIG. 4. Dependence of drift velocity on the phase shift (the units
are in space units/time units, i.e., s.u./t. u.). Hodograph of drift ve-
locities at resonant frequency. Modulus and direction of the drift
velocity are plotted for different phase shifts between forcing and
vortex rotation. (Numerical calculation with the Oregonator model,
parameters a=0.05, q=0.002, f=1.4, D„=1,D„=0.6, maximum
elongation =3.)



R670 A. P. MUNUZURI et al.

an elastic excitable medium on vortex dynamics. A nonzero
phase can be added to the periodic deformations. Basic alge-
bra then provides a cosine dependence of the drift on the

phase shift between the spiral rotation and the periodic forc-
ing. This agrees qualitatively with the numerical results
shown in Fig. 4.
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