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Optimization by multicanonical annealing and the traveling salesman problem
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We propose a powerful and general simulated annealing method to study combinatorial optimization prob-

lems. It combines the multicanonical method, which samples directly the microcanonical entropy of the

system, with an elaborate but straightforward annealing scheme. The information about the local entropy

obtained during short Monte Carlo simulations is fully utilized for optimization in an iterative fashion. We

present results of an extensive investigation of the traveling salesman problem in a unit square. We estimate the

optimal length in the limit of a large number of cities.
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Many optimization problems that arise in various areas of
science and engineering are hard to solve: Many of them

belong to the NP-complete class, where the number of com-

puting steps required to solve the problem increases faster
than any power of the size of the system. One of the well-
known classic examples is the traveling salesman problem
(TSP), which consists of finding the shortest tour connecting
N cities [1].The TSP is widely believed to require comput-
ing time which grows exponentially with N. Perhaps the
most impressive achievement in the TSP has been obtained

by the branch-and-cut algorithm which has found proven op-
timal solutions in reasonable amounts of time for up to
N=2392 [2]. In practice, however, near-optimal solutions
are usually satisfactory, and it is more desirable to obtain
such approximate solutions rather quickly than to find the
true optimal solution. Therefore many studies have been con-
centrated on heuristic methods, which find near-optimal so-
lutions in polynomial time [1].The Lin-Kernighan (LK) al-
gorithm [3] is known to be the best among these methods.

A decade ago some common features between optimiza-
tion problems and disordered spin systems were recognized,
leading to the application of the simulated annealing (SA)
method [4]. This method is based on Monte Carlo (MC)
simulations, which have been very successful in studying
various statistical systems [5].The method also leads to ana-
lytical studies via statistical mechanics [6] as well as other
approaches such as algorithms based on neural networks
[7—9], genetic algorithms [10,11], and simulated tunneling
[12]. In reality, the SA inay be outperformed by the best
heuristic (deterministic) algorithms for a specific optimiza-
tion problem. For example, it has been claimed that the it-
erative LK algorithm finds better solutions of the TSP [13].
Nevertheless, the SA is far superior to the heuristic algo-
rithms in its simplicity and versatility. Owing to this charac-
ter, the SA has been applied not only to the canonical opti-
mization problems such as graph partitioning, graph
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matching, and the TSP [4,14,15], but also to various optimi-
zation problems [16,17]. It is thus desirable to improve the
SA so that it is both efficient and versatile by considering
more efficient algorithms and annealing schemes. Conven-
tional importance sampling [18] may fail to access all the
possible near-optimal configurations if there exist many bar-
riers among them; this is believed to be the case for hard
optimization problems such as the TSP.

Recently, significant progress has been achieved in the
search for more efficient MC sampling algorithms. Valleau
and co-workers [19] introduced umbrella sampling to suc-
cessfully investigate the Lennard-Jones system over a wide
range of temperatures and densities. Berg and Neuhaus [20]
introduced the multicanonical method (MM) to study sys-
tems with strong first-order transitions and demonstrated its
efficiency. A method related to the MM has also been pro-
posed by Hiiller [21].Berg and Celik [22] further applied the
MM to study thermodynamic properties as well as ground-
state properties of the two-dimensional Edward-Anderson
spin-glass model, indicating the relevance of the MM for
disordered systems. Marinari and Parisi [23] proposed simu-
lated tempering as an optimization scheme. Berg also pro-
posed a random-cost approach [24].

In this paper we present a powerful and general SA
method based on the MM [22]. In particular, we follow the
notation of Ref. [25]. The MM allows one to sample the
density of states Q(E) directly by imposing the appropriate
detailed balance condition. One can show [25] the sampling
distribution of E to be independent of E, if the ratio of the
transition probability W is chosen as

W(x~x') =exp —[S(E(x'))—S(E(x))]j,

where the entropy S(E) is defined as S(E)=InQ(E) [26].
The framework of the current optimization method is based
on the feedback of information about the local entropy as
described in the following schematic procedure: (i) Assume
the system is in a particular local minimum A. (ii) Obtain
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new information on the local entropy S near A via a short

MC sampling to update the old value of S. (iii) Modify the

transition probability of the MC move according to the new

S so with a high probability the system is driven out of A and

falls into a new local minimum A'. (iv) Iterate the three

steps until a chosen convergence criterion is met.
This optimization method, which we call multicanonical

annealing, is applied here to the classic traveling salesman

problem. It turns out to be very efficient, yielding better ap-

proximate solutions more quickly than conventional SA. We

consider the classic Euclidean problem of N cities randomly

distributed inside a unit square for N up to 40 000. The mini-

mal tour length 1 (N) was shown [27] to scale as

1 (N) = u+N in the large-N limit. However, there has not

been much progress on the estimate of u(N) = 1 (N—)/+N for

a given N, not to mention the estimate of the limiting value

a(N~~). First, one has to find an "optimal" tour length

1 (N) for a given random configuration of N cities. Then the

variation of l~(N) due to the randomness of the configura-

tions needs to be carefully studied. A commonly cited value

of e(N +~) is —0.749 [27]. In much of the literature

[1,11,14], 0.749 has been considered to be the "optimal"
solution for all N, with which solutions obtained have been

compared. Recently, Krauth and Mezard used the cavity

method to obtain u(N~~) =0.7251 for a different version

of the TSP, where the symmetric distance matrix is distrib-

uted uniformly between 0 and 1 [6(b)].A special case of that

problem was then argued to be mapped onto the current

problem. We find that n(N~~) from our numerical study

agrees reasonably well with 0.7251, and rules out the value

0.749.
In conventional SA, directed cooling is achieved by

slowly lowering the temperature coupled to the function l to
be minimized. Here, we place a hard wall potential on the

other end of the annealing direction, rejecting all attempts

beyond the wall. We define l,„as the location of the wall,

and l;„as the optimal 1 obtained thus far in our annealing

process. Annealing is achieved by reducing the value of
1 (moving the wall in the annealing direction) as a better

value of l . is obtained. This allows one to control the size

of the sampling interval. If the interval chosen is too small,

then ergodicity can be questioned in the MC procedure when

one is interested in finding the equilibrium properties of the

system. For the purpose of annealing, however, it does not

matter as long as one can anneal the system efficiently. For
problems like the TSP, ergodicity is neither satisfied in the

conventional MC procedure, nor in the MM due to the com-

plicated frustration at low temperatures. We choose the size
of the sampling interval to be fixed and large enough to
allow important fluctuations throughout the annealing pro-

cess, whereas the corresponding interval for conventional SA
becomes smaller as the temperature is lowered (it eventually

vanishes at zero temperature).
In general, we do not know the value of the entropy S. In

fact, obtaining the global S is equivalent to solving the prob-

lem. Nevertheless, it is rather easy to approximate S locally

by Eq. (2) below [25].We treat the intercity distance as a real

number while the total tour length 1 is discretized to define

histogram H(l) and entropy S(l). We describe the overall

algorithm as follows.

(1) Start with an arbitrary tour configuration. In the case
of the TSP, we have been able to use the configuration from

the exhaustive two-bond optimization [28], which on aver-

age has about a 5% longer length than the final result. For
conventional SA, the starting configuration is of longer
length. This advantage is due to the point that in the MM the

ergodicity problem can be alleviated to some extent by help-

ing the system escape quickly from local minima by Eq. (2)
below. We set 1 „to be between 1% and 10%%uo longer than

the result from 2-opt heuristics. The precise value of /, „ is
not important as long as it is large enough. Initially the en-

tropy S(l) is set to be a constant for all properly discretized
lengths I. Observing that the distance between neighboring

cities scales as I/+N, we multiply the tour length by 10+%
and set it to an integer. We have also made a lookup table,
which lists the 20 nearest cities for each city.

(2) Use the 2-bond move, which reverses the sequence of
cities for a chosen segment, in order to obtain trial tours.

Suppose that the current tour is given by (c, ,czi. . . , c~).
For a randomly selected city c;, we choose a city c, , one of
the 20 nearest cities of c; excluding the adjacent cities in the

path (i.e., j + i 1). We consider a 2-bond move which

replaces the two bonds (c;,c;+,) and (c, , c,+,) by (c; „c,)
and (c,+i, c,+i). We use the heat-bath MC algorithm by
considering all 20 neighbors from the lookup table. The new

tour of length 1 is chosen out of these trial tours and the

current tour with the probability proportional to exp[ —S(1)].
If the new length is larger than 1,„, the new tour is rejected
(due to the hard wall potential).

(3) Repeat step (2) for M MC sweeps (MCS's) while

obtaining a histogram of the distribution of / from the MN
events. Typically we have used M =25.

(4) The new estimate of S(l) is now given by

S(1)
S 1 =

S(l) + lnH(1)

for H(l) =0,
otherwise,

(2)

This defines one iteration. With the new estimate of S(l) and

l,„one repeats the iteration (2)—(5) until it fails to find a

better tour for 20 consecutive iterations. Here the number 20
is completely arbitrary, and a more elaborate annealing

schedule should improve the results. It is interesting to ob-

serve that Eq. (2) makes the local minimum fiat and helps the

system to escape out of it. The current annealing scheme is

where H(l) is the (unnormalized) histogram of the sampling

and S(l) on the right hand side of Eq. (2) is the old value of
S(l). If 1;„is the minimum tour length obtained so far, then

for S(l) with 1&1;„,S(l) is obtained by linear extrapolation

with the slope [S(1,„)—S(l;„)]/(1,„—1;„).This proce-
dure expedites the movement of the system in the desired

direction. If we choose a steeper slope, the rate of updating

1;„increases in the early stage, but the final result of the

minimum tour length appears to be of relatively poorer qual-

ity than that obtained with a shallower slope. This effect,

along with that of the size of the interval, may be compared
to the fast and slow cooling rates in conventional SA.

(5) The new 1,„ is chosen so that 1;„and 1,„ form a

new interval with a fixed difference of 5+% If the length.
l, of the current tour is longer than the new l,„, the latter is

set equal to l, .
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TABLE I. Performance of the multicanonical annealing for the

TSP with N cities in a unit square. n is the number of independent

random configurations. n. corresponds to the one standard deviation

of the mean a(N).

0.82

50
64
81

100
121
144
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400
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10 000
40 000
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500
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25

8
4

a(N) = I/+N

0.8075
0.7968
0.7886
0.7802
0.7754
0.7704
0.7639
0.7594
0.7515
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0.7362
0.7331
0.7278
0.7239

0.0010
0.0010
0.0010
0.0009
0.0009
0.0010
0.0009
0.0010
0.0010
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0.0007
0.0008
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3300
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5400
8600
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0.74
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FIG. 2. a(N) vs 1I+N. Arrows indicate the commonly cited
value 0.749 in Ref. [27] and the predicted value 0.7251 in Ref.
[6(b)]. Even though 0.7251 is in fair agreement with our estimate
0.7211, the exact value should be somewhat smaller than 0.7211
since this work provides only an upper bound.

based on the learning process by the feedback of information
on the local entropy in Eq. (2).

In Table I, we summarize the performance of the multica-
nonical annealing method, which is mainly due to the elabo-
rate but straightforward annealing strategy of (i)—(iv) with
the cooling scheme as explained above. Note that only
22 000 total MCS's have been used for N= 40 000. It is im-
portant to obtain information about the entropy of the current
local minimum quickly, so that the system can easily escape
from it. This is based on the fact that the systems under
consideration are not ergodic, especially near ground states.
Since there exist many tours with comparable lengths which
do not belong to the same local minimum, it is necessary to
update the information about the local entropy very fre-
quently.

Figure 1 shows the annealed configuration for
N=10 000 with a tour of length 1=72.56. In Fig. 2
we plot a(N)=l/+N as a function of 1/+N, assuming

l(N) = a+N+P [27), where a=a(N~~). We find a good
straight line fit with a=0.7211(3) and p=0.604(5). Our

FIG. 1.Annealed tour for N= 10 000 with I=72.56.

value for a=0.7211(3) is slightly smaller than 0.7251 by
Krauth and Mezard [6(b)]. The commonly cited value

a(N) =0.749 is neither accurate nor appropriate since a(N)
depends on N. We have performed a systematic finite-size
scaling analysis [29] for the TSP. The variance of the true
optimal I is expected not to scale with N [27].The empirical
variance from Table I, [b,l(N)] =Nno -0.05(1), is indeed
independent of N.

Although our data serve only as an upper bound for the
TSP in a unit square, the results are overwhelmingly better
than existing large scale TSP studies [9,14] using the con-
ventional SA method. It should also be noted that the direct
approach by the conventional SA method takes too long to
obtain reasonable results for the large scale TSP, and some
tricks such as the divide-and-conquer strategy are often used
[1,14]. This strategy divides the cities into a set of subre-
gions, and solutions are obtained by combining the solutions
of subregions. The only source we have been able to find for
comparison with our results is Ref [14], w. here the tour
length 1=76.3 was obtained for N=10 000 by dividing the
data into 4096 subdivisions. Our average result 1=72.8 is
shorter than 1=76.3 by almost the perimeter of the unit
square. We also find that the computer time used is quite
small compared to the conventional SA method [8,9,11].For
N)2500, we had to compute the intercity distances each
time due to the limited memory. Notwithstanding this restric-
tion, our results for N= 10 000 took about 7 CPU hours on a
single IBM 340h workstation, which corresponds to 8600
MCS's.

Even though our results represent a major improvement
over those obtained using the conventional SA approach,
there are also other ingenious approaches based on heuris-
tics. For the same realization of N=31623, with 20000
MCS's we found a tour of a(N)=0.723, which is only
slightly better than the average result of the LK heuristics by
Johnson; the latter took about 67 s in a large-memory work-
station. Using the iterative LK procedure, Johnson has ob-
tained a tour of a(N) =0.716 with 16 h of CPU time. Even
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so, we believe that our annealing method is very powerful,
not only due to its versatility but also its efficiency. There are
numerous ways that one could improve our results, for ex-
ample by optimizing the annealing schedule or, more impor-
tantly, by developing more efficient moves than the 2-bond
move we used. Most importantly, our annealing method has
wide applicability, since it can be applied to any optimization
problem to which the conventional SA method is applicable.
Our approach is certainly more general than a particular heu-
ristic algorithm such as the iterative LK algorithm. It should
be very interesting to see our annealing method applied to
various optimization problems with more complicated cost

functions and to compare the results with those from
problem-specific heuristics.
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