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Some simple chaotic flows
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A systematic examination of general three-dimensional autonomous ordinary differential equations with

quadratic nonlinearities has uncovered 19 distinct simple examples of chaotic flows with either five terms and

two nonlinearities or six terms and one nonlinearity. The properties of these systems are described, including

their critical points, Lyapunov exponents, and fractal dimensions.

PACS number(s): 05.45.+b, 47.52.+j, 02.60.Cb, 02.30.Hq

One remarkable feature of chaos is that it can occur in

very simple low-dimensional nonlinear equations. The
Poincare-Bendixson theorem [1] requires that autonomous
first-order ordinary differential equations (ODE's) with con-
tinuous functions be at least three dimensional to have
bounded chaotic solutions. Two standard examples are the
Lorenz [2], i= —o.x+oy, y=rx xz —y, z—=xy bz, —and
Rossler [3] systems, i= —y —z, y=x+ay, z=b+xz cz-
These cases are characterized by seven terms and either two
quadratic nonlinearities or one quadratic nonlinearity, respec-
tively.

It is interesting to ask whether there are systems of au-
tonomous ordinary differential equations with one or two
quadratic nonlinearities and fewer than seven terms whose
solutions are chaotic. Such cases would in some sense be
simpler than the Lorenz and Rossler equations and would
cha11enge Lorenz's claim that Rossler's example is the sim-
plest known chaotic flow [4]. The simplicity refers to the
algebraic representation rather than to the physical process
described by the equations. Such equations would be of
mathematical and practical interest. For example, it has been
proposed that chaotic electrical circuits could be used for
real-time enciphering and deciphering of speech for secure
communications [5,6]. An appropriate system could be cho-
sen from a catalog of simple chaotic equations to optimize
factors such as robustness to errors in the parameters and
immunity to noise.

Consider general three-dimensional ODE's with
quadratic nonlinearities of the form x=a+ X; ~b;x;
+ Z,. ,X, ;c; /x;x, , where x=(x,y, z) is a real three-
dimensional state-space variable, and a, b, and c are real
three-dimensional coefficient vectors. The numerical proce-
dure [7] was to search hyperplanes of six or fewer dimen-
sions in the 30-dimensional control space of coefficients for
bounded chaotic solutions as evidenced by a positive
Lyapunov exponent [8].The calculations were performed us-
ing a fourth-order Runge-Kutta integrator with a step size of
At =0.01.

The six (or fewer) nonzero coefficients were assigned val-
ues in the range —5 to 5 in increments of O.l, giving the
order of 10 cases, of which about 10 were randomly cho-
sen for examination. Note that the coefficient range can be
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chosen arbitrarily since time can be rescaled. Several thou-

sand chaotic cases were found, 33 of which are distinct in the
sense that their functional forms are different and not related

by a trivial transposition of variables. By performing various
algebraic transformations on these cases, 15 additional cases
were found that satisfy the above criterion of simplicity. Of
the 48 total cases, only 19 appear to be distinct in the sense
that there is no obvious transformation of one to another. For
each case, as many of the coefficients were set to ~1 as
possible. It is generally possible to normalize four of the
coefficients by rescaling each of the four variables (x, y, z,
and t). Consequently, equations with six or fewer terms have
at most two independent control parameters.

The nineteen distinct cases are shown in Table I. Cases
A—E have five terms and two nonlinearities, while cases F—S
have six terms and one nonlinearity. Many cases with six
terms and two nonlinearities were found, but they are more
complicated than these cases and hence are not listed. No
cases were found with five terms and one nonlinearity or
with fewer than five terms and any number of (quadratic)
nonlinearities. Case A is a volume-conserving system, and
the others are dissipative systems with strange attractors. Ini-
tial conditions of x=y=z=0. 05 suffice for the attractors,
and a chaotic solution for case A is obtained, for example,
with initial conditions of x=(0,5,0).

Figure 1 shows a Poincare section for case A in which
points are plotted where the trajectory punctures the z=0
plane for various initial conditions. The quasiperiodic orbits
are surrounded by a chaotic region. This case has no critical
points (where x=0), although there are periodic orbits.

The (x,y, z) coordinates of all the critical points are given
in Table I. The linear stability of each critical point was
determined by calculating the eigenvalues of the linearized
Jacobian matrix. Most cases have one real eigenvalue and a
complex-conjugate pair (a so-called saddle focus). Case L
has three real eigenvalues (a so-called saddle node). Such
saddle points admit homoclinic orbits for certain values of
the parameters near which chaos results [9].

The complex cases are denoted in Table I by c (center) if
the real part is zero or f (focus) if the real part is nonzero.
The saddle node (case L) is indicated by n The digit fo. llow-
ing c, f, or n is the instability index (the number of eigen-
values with a positive real part, or, equivalently, the dimen-
sion of the unstable manifold or "outset"). Those cases with
an index of zero are neutrally linearly stable (they have ei-
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TABLE I. Algebraically simple three-dimensional ODE s with chaotic solutions.

Case

B

D

F

H

L

M

N

0

P

R

Equations

x=y
y = —x+yz
z=1 —y

x=yz
y=x
z=1 xy

y=x —y
2=1 x2

x= —
y

y =x+z
z=xz+3y

i=yz
y=x —y
z= 1 —4x

i=y+z
y = —x+0.5y

Z=X Z
2

i=0.4x+ z

y =xz —
y

z= —x+y
x= —y+z
y =x+0.5y

Z=X Z

x= —0.2y
y=x+z

z=x+y —z

X=2Z

y = —2y+z
z = —x+y+y

X=Xy Z

y=x —y
z =x+0.3z

i=y+3.9z
y =0.9x —y

Z=1 X

X= Z

z= 1.7+ 1.7x+y

x= —2y
y=x+z

z=1+y —2z

y=x —z
z=x+xz+ 2.7y

x=2.7y+z
y= —x+y

z=x+y

y=x —y
z=3.1x+y +0.5z

x=0.9—y
y =0.4+z
Z=Xy Z

x= —x —4y
y=x+z
z= 1+x

Critical points

none

f2(1,1,0)
f2( —1,—1,0)

c0(1,1,0)
cO( —1,—1,0)

cO(0,0,0)

c0(0.25, 0.063,0)

f2(0,0,0)
f1(-2,-4,4)

f2(0,0,0)
f1(-2.5,-2.5, 1)

f2(0,0,0)
f2( —2,4, —2)

f2(0,0,0)

f2(0,0,0)

f2(0,0,0)
f1(-3.333,-3.333,11.111)

81(1,1.111,—0.231)

f1(2.406, —5.791,0)
f2( —0.706, —0.499,0)

f2(—0.25,0,0.5)

fl(0,0,0)
fo( —1,0, —1)

f2(0,0,0)
f2(1,—1,2.7)

f2(0,0,0)
f1(—3.1,—3.1,0)

f2( —0.444, 1.111,—0.4)

f2(—1,0.25, 1)
f1(—1,0.25, —1)

Lyapunov

exponents

0.014
0

—0.014

0.210
0

—1.210

0.163
0

-1.163

0.103
0

-1.32Q

Q.078
0

—1.078

0.117
0

—0.617

0.034
0

—0.634

0.117
0

—0.617

0.012
0

—1.012

0.076
0

—2.076

0.038
0

—0.890

0.061
0

—1.061

0.044
0

—1.044

0.076
0

—2.076

0.049
0

—0.319

0.087
0

—0.481

0.109
0

—0.609

0.062
0

-1.062

0.188
Q

—1.188

Dimension

2.174

2.140

2.072

2.190

2.054

2.190

2.012

2.037

2.042

2.057

2.042

2.037

2.154

2.181

2.179

2.Q58

2.151



50 SOME SIMPLE CHAOTIC FLOWS R649

FIG. 1. Poincare section at z=0 for the conservative chaotic
case A in Table I.

FIG. 3. Stereoscopic plot of the trajectory for the case N chaotic
attractor in Table I.

genvalues whose real part is zero), but they are nonlinearly
unstable with a saddle point, as must be the case with qua-
dratic nonlinearities.

Cases B and C resemble the Lorenz attractor in that they
have two symmetrical critical points (at x =y = ~ 1, z =0) .
However, the origin is not a critical point as it is for the
Lorenz attractor, but rather it has a strong uniform flow in the
+z direction. Figure 2 shows a stereoscopic plot of the tra-

jectory for case B. Case C is similar except that the orbit
spirals outward more slowly because the critical points are

only weakly unstable. In these stereoscopic plots, you are
looking down on the xy plane from the +z axis. Cases D—S
all have similar structure and topologically resemble the
Rossler attractor in that they are dominated by a single
folded band. Case N is typical and is shown in Fig. 3 as a
stereoscopic plot.

The three Lyapunov exponents were calculated numeri-

cally for each case. The largest exponent is positive as re-

quired for chaos. Indeed this is the criterion whereby chaotic
solutions were identified. The procedure was to perturb the
initial condition in an arbitrary direction by a small displace-
ment ap and calculate the separation a& after one iteration
time step At. The perturbed orbit was then readjusted after

each time step back to a separation of ap along the direction
of the separation. The largest Lyapunov exponent was calcu-
lated from X., =(ln(a&lao))lbt, where the brackets denote an

average over at least 10 iterations (total time of 10 ), and

8p was taken as 10 . The first 32 000 iterations were dis-
carded to ensure that the orbit was on the attractor and that
the separation was along the direction of fastest growth. The
calculation was done in extended (80-bit) precision, and it
was verified that the result is not sensitive to aa, ht, initial
conditions, or the number of iterations. The long calculation
time helps ensure that the solutions are steady states rather
than chaotic transients. The procedure was tested with the
Lorenz attractor. Note that the exponents are base e rather
than base 2 as is sometimes used [10].

Continuous flows necessarily have a zero Lyapunov expo-
nent (hz =0) corresponding to the direction of the flow. The
third exponent X3 must be negative for a conservative or
dissipative system. The sum of the three exponents is the
average rate of fractional volume expansion along the trajec-
tory, and it is easily calculated from the trace of the Jacobian
matrix J, which is the divergence of the flow:

1 dV Bx By Bz=Trj=—+—+—=X,+X,+X,.
V dt Bx By Bz

FIG. 2. Stereoscopic plot of the trajectory for the case B chaotic
attractor in Table I.

This quantity is constant for most of the cases in Table I. The
exceptions are cases A, D, K, 0, and P. For those cases, the
average value of TrJ along the trajectory was calculated nu-

merically to determine the average rate of volume contrac-
tion. The Lyapunov exponents are given in Table I. All digits
are significant.

From the spectrum of Lyapunov exponents, the Lyapunov
dimension can be calculated from Dr =2 k, lk3. It has-
been conjectured [11]that Dr is the same as the information
dimension for typical attractors. Values of DL are given in
Table I.

The capacity dimension [12] and correlation dimension

[13]were calculated for each case. They were found to agree
with the Lyapunov dimension with a root-mean-squared er-
ror of about 6%. However, the values are much less certain
than the Lyapunov dimension and may be subject to system-
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atic errors. Consequently, these other dimensions are not re-
ported here but will be the subject of further study.

The basins of attraction have not been examined in detail
for the various cases. However, a very large sphere (radius
10 ) was constructed around each attractor, and the fraction
of the area of the sphere for which the How vector is outward
was calculated for each case. In most cases the result was
50%. The exceptions are case A, where it is 100%, and case
B, where it is 32%. Thus it appears that none of the cases
attracts the entire state space.

Time was also run backward for each case beginning with
an initial condition on the attractor. The resulting orbit was
unbounded for all the dissipative cases, escaping in a few
thousand iterations, con6rming that the attractive basin ex-
tends to inanity in at least one direction for each case. The
only exception is case A, whose time-reversal invariance is
evident from the equations.

For each case, at least one parameter in the equations was
varied over the range —5 to +5 in small steps to test the
robustness of the solution to small parameter changes and to
look for evidence of riddled parameter space [14]. In each
case the largest Lyapunov exponent is positive and smoothly
varying in the vicinity of the value listed in Table I. For some
cases, the window of chaotic behavior is very narrow, and
the Lyapunov exponent changes rapidly but smoothly within
the window. A common circumstance is for the chaotic re-

gion to be sandwiched between regions of periodic solutions

(X,=O) and unbounded solutions and to have embedded
windows of periodicity. Case B with the 1 in the z equation
replaced by a constant in the range of —1 to —2 has limit-

cycle solutions riddled with stable critical-point solutions.
Over most of this range the largest Lyapunov exponent X&

fluctuates from zero to a large negative value for very small

(& 10 '
) parameter changes with what appears to be self-

similar structure. Other cases show similar examples of such
riddling but over smaller ranges of their parameters.

It is interesting to ask how the chaotic solutions are dis-
tributed throughout the 30-dimensional control space. With

only a few thousand samples distributed along five-
dimensional (5D) or 6D hyperplanes, it is difficult to draw

general conclusions. However, a previous, more extensive
study [15] involving about 35000 chaotic cases showed
them to be clustered in a region whose fractal boundary has
a dimension about half the dimension of the space. In that

study, three-dimensional ODE's with general quadratic non-
linearities had bounded solutions over about 20% of the con-
trol space and chaotic solutions over about 0.1% of the

space. For the cases studied here, the fraction of bounded
solutions ranges from about 10% to 30%, and the fraction of
chaotic solutions ranges from about 0.03% (for case S) to
about 3% (for case 8). The attractors with five terms (cases
8—E) and those with six terms (cases F—S), respectively, are

arranged in Table I approximately in descending order of the

probability of their having chaotic solutions for randomly
chosen coefficients.

The method employed cannot guarantee that these are the

simplest chaotic systems of ODE's or that all the chaotic
systems of three-dimensional ODE's with five terms and two

quadratic nonlinearities or with six terms and one quadratic
nonlinearity have been discovered. However, the cases with

five terms appeared early and often in the search, and it is
likely they have all been found. New cases with six terms
were still occasionally being found when the search was ter-

minated after about 2000 h of computing, and thus additional
such cases probably exist. Furthermore, because of the te-

dious calculations required to test algebraic equivalence, it is

possible that some of the cases listed in the table are not
distinct. The algebraic simplicity of these systems should
invite further detailed study, and they might serve as better
examples than the ones invariably used to illustrate chaotic
Aows.

I am grateful to Adam Fleming for independently calcu-
lating the Lyapunov exponents and for numerous stimulating
discussions.
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