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Width distribution for random-walk interfaces
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Roughening of a one-dimensional interface is studied under the assumption that the interface configurations
are continuous, periodic random walks. The distribution of the square of the width of interface, w2, is found to
scale as P(w?)=(w?)~1d(w?(w?)) where (w?) is the average of w2 We calculate the scaling function ®(x)
exactly and compare it both to exact enumerations for a discrete-slope surface evolution model and to ®’s
obtained in Monte Carlo simulations of equilibrium and driven interfaces of chemically reacting systems.

PACS number(s): 05.40.+j, 05.70.Ln, 61.50.Cj

Interfaces (invariably called surfaces, reaction fronts, ac-
tive zonmes, etc.) play an important role in our under-
standing of a large number of physical, chemical, and
biological processes. Apart from practical importance such
as, e.g., the quality of a growing crystal being determined by
the properties of its moving surface, interest in interfaces
stems also from the realization that pattern formation in
the wake of a moving front is a rather general phenomenon
[1]. Two-dimensional equilibrium systems as well as non-
equilibrium steady states frequently display rough interfaces
and there are many examples where the width w (defined as
the root mean square fluctuation in the position of the inter-
face) is proportional to the (length)!? of the interface. The
w~ (length)”2 scaling is a basic feature of random walks and
the connection actually runs deeper since random-walk mod-
els [2,3] (and their generalizations to higher dimensions [4])
have been very successful in describing various features of
interfaces. Our aim here is to return to this “old but peren-
nially alive topic of random walks” [3] and derive the prob-
ability distribution P(w?) for interfaces describable by such
walks. We do this because w? is one of the simplest and
certainly the most investigated quantity in the theory of
growing surfaces [5]. The way of achieving a more detailed
description is usually the investigation of static and dynamic
structures factors. Here we suggest that another path for de-
tailed characterization of the surface is the study of the dis-
tribution of the width and, as a first step along this path, we
calculate P(w?) for random-walk interfaces. The results
show that P(w?) contains a single scale which is the average
(w?), and so the probability distribution is obtained in terms
of a universal scaling function P(w?)=(w?)~l®(w?%
(w?)). We then calculate this scaling function ® for a
discrete-slope surface-evolution model as well as for the in-
terfaces emerging in Monte Carlo (MC) simulations of cata-
lytic reactions. In both cases, we find excellent agreement
(without using any adjustable parameters) with the random-
walk results.
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We turn now to the derivation of the main result. As a
continuum model for a one-dimensional fluctuating surface,
consider Brownian paths {A,} in the time interval 0<¢<T
and require the paths to be periodic with period T. The cor-
respondence between a path {4,} and a surface configuration
is given by identifying &, as the height of the surface over a
substrate of length T with ¢ being the coordinate along the
substrate. The surface roughness of a configuration {4,} is
characterized by the square of the width of the surface, w?,
defined as the mean square of height fluctuations:

wX{h})=h>~h, 2, )

where the average f of a function f(h,) in a configuration
{h,} is defined as
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The calculation of the probability density P(w?) for the ran-
dom variable w? is done by writing P(w?) as a path integral
[6,7]:

P(w2>=W‘f .@[h]a(wt[ﬁ-h_,z])exp(—;h_%), 3)

where [ Z[h] stands for sum over all periodic paths, ./ is a
normalization constant, and h,=dh,/dt. It should be noted
that the above expression could have been the starting point
of our discussion had we assumed that the interface was a
random Gaussian surface [4].

The Laplace transform of the probability density deter-
mines the generating function for the moments of P(w?):

GN)= f:dz P(0)e™™, @)

and one finds that G(\) is the following Gaussian functional
integral:

G(M=/Vf Ah]exp —gh_f—w?—h—,z) )
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This functional integral can be calculated by standard meth-
ods [7]. For periodic paths, we write &, in terms of a Fourier
series

©

h,= 2 Cnezwim/T’ c_,=c* (6)

n?
n=-—x

and Eq. (5) reduces to a product of Gaussian integrals over
the coefficients c,, :

*® 2
G(x)=./1~'f _‘Z)[c]exp[—z ((21;") +2)\)|c,,|2]

n=1

(7)

The integration with respect to the homogeneous mode cg
generates an (infinite) constant which can be absorbed into
the normalization factor, and the remaining integrals over the
real and imaginary parts of ¢, (n=1,2, ...) give

T2
sinh(VAT/2)

Note that we have obtained an expression which is similar to
the partition function of the harmonic oscillator [7]. This is
expected from the form of Eq. (5); differences are due to the
boundary conditions. The moments of P(w?) can now be
calculated and one finds the average of w? as

o

AT |\ 71!
an=11 (1+(27m)2)

n=1

®)

T

:E . (9)

A=0

Comparing now (8) and (9), we can see that G(\) is a func-
tion of the product (w?)\ only and thus the inverse Laplace
transform of G(\) yields P(w?) in a scaling form:

o dX\ 2 1 2
P(w2)=j 37 O = ¢(<%2—>). (10)

— i 2

The inverse Laplace transform and, consequently, the scaling
function ®(x), can be easily calculated since G(\) has only
simple poles at A\=—2(nm7)%/T (n=1,2,...) . Collecting
the contributions from the poles, we find

2 ® 2
bx)=3 3 (—1)"-1n2exp(—f6—n2 ) (an

n=1

Finite-sum approximants to the above expression converge

quickly for any finite x>0 since significant contributions

come only from the first 1/\/; terms. For x=1.5, the sum is
dominated by the first term

m m

<1>(x)~-5-exp( —r x), x=1.5 (12)

and Fig. 1 shows that the large-x asymptotics is indeed in-
distinguishable from the ‘“exact” result [obtained by retain-
ing 10’ terms in (11)] in this regime. It is remarkable that
®(x) is very well approximated by a simple analytical form
in the O=x=1.5 interval as well, using the method of sta-
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FIG. 1. Scaling function for the width distribution of periodic
random walks given by Eq. (11). Small- and large-argument asymp-
totes, Egs. (12) and (13), are also shown.

tionary phase. In calculating the integral (10), the path of
integration may be chosen as a parabola [ReA=a(1— v,
Im\=2ay] where —*<y<=x= and a=3(w?/(2w?). As a
result, one finds the following x— 0 asymptotics:

[ 6 .
D(x)~ ;T?(3—x)e"3"3~“’{1+0(e‘°”-‘>}. (13)

One can see from Fig. 1 that the leading term in the small-x
asymptotics is indistinguishable from the exact scaling func-
tion for x<1.5. Thus the small- and large-x asymptotics
[(13) and (12)] provides us with simple expressions which
together describe ®(x) very accurately for all 0<x<<<c.

We shall now examine various surface-evolution models
and compare their scaling functions ®(x) to the result ob-
tained above.

First, consider the discrete-slope [8] (or single-step [9])
model which is a solid-on-solid type deposition-evaporation
model. The height of the surface is characterized by a single
valued function A; at sites i=1,2,..., L and periodic bound-
ary conditions 4;,; = h; are imposed. The height differences
(i.e., the slope of the surface) are restricted to
h;+1—h;=*1 and the evolution consists of particles being
deposited at local minima or evaporating from local maxima
of the surface. If the deposition and evaporation rates are
equal, the model belongs to the universality class of the
Edwards-Wilkinson model [10] while for unequal rates the
universality class is that of the Kardar-Parisi-Zhang (KPZ)
[11] equation. The steady state, however, is the same in both
cases, namely, every state (surface configuration) is equally
probable [9]. Since the surface configurations are discretized
versions of random walks, it is natural to start our compari-
sons with this model.

After taking the L — oo limit and rescaling both the coor-
dinates and the heights appropriately, the surface configura-
tions become continuous random walks. Thus it would not be
surprising to get good agreement between the ®(x)’s for
large L’s. What is surprising is that Fig. 2 shows excellent
agreement with the continuum result already for L =32. We
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FIG. 2. Scaling function for the finite (L = 32) single-step model
as compared with the result for the periodic random-walk model.

have chosen L = 32 because it was the largest L where ®(x)
could be calculated exactly by enumerating all the states
(without requiring an excessive amount of computer time).
Similar results can be obtained for L <32 but the fluctuations
become larger since the finite number of possible values of
w? becomes more prominent.

The single-step model is closely related to both the Eden
model [8] and the ballistic deposition model [9]. Thus one
expects that both of these models display the same scaling of
their width distributions. Furthermore, the universal scaling
function (11) should already be well approximated for char-
acteristic system sizes (L ~100) studied in MC simulations.

As a second example, we studied the fluctuations of the
interface in a model of catalytic reactions on a surface [12].
Here the interface exists between two reactant species A and
B which occupy the sites of a strip of width L on a square
lattice. In the initial state, the A (B) particles completely fill
the left (right) side of the strip with two columns of sites left
empty between the A and B domains. The dynamics consist
of the following steps: (i) Particle A or B is chosen with
probability p or 1—p for attempting an adsorption at a ran-
domly selected empty site; (ii) the particle is adsorbed with
probability s”, where n is the number of nearest neighbor
sites occupied by particles of the opposite species and
s§<1; (iii) if the adsorbed particle has nearest neighbors of
the opposite species, then it reacts with one of those ran-
domly chosen neighbors-and both particles leave the surface.

Extensive simulations of this system have been carried
out [12] for p=13 and various values of s. On the average,
the interface does not move for p=1 and the simulations
indicate that the dynamics of fluctuations can be described
by the Edwards-Wilkinson equation [10]. For p # 3, on the
other hand, more particles of one species are adsorbed and,
as a result, the interface moves with a uniform velocity. It is
expected (but has not been demonstrated) that this case is
amenable to analysis in terms of the KPZ equation [11]. If
this is true then P(w?) should be the same for both standing
and moving interfaces and their scaling functions should co-
incide with @ calculated for the random-walk model. In or-
der to check this point, we have simulated the above

FIG. 3. Comparison of scaling functions for the catalytic reac-
tion model (p= %, standing interface) and the periodic random-walk
model.

catalytic-reaction model for both p=3 and p=1 and have
chosen s to be 3. This latter choice was motivated by the
observation [Fig. 2(b) of [12]] that the interface is sharp for
s =3 and thus there are no difficulties in defining its position.

The results of our calculations of the steady-state distri-
bution P(w?) obtained from runs of 3.2 10° MC sweeps on
strips of width L =64 and 128 are displayed in Figs. 3 and 4.
In order to emphasize the quality of collapse, we plotted
In®(x) vs x. It should also be noted that there are no fitting
parameters in collapsing the MC data and the theoretical
scaling function. As one can see, the agreement between the
theory and MC data is excellent and we can conclude that the
random-walk description of these surfaces works not only on
the macroscopic level of width ~(length)!? scaling but also
on the level of distributions of the width.

We conclude by speculating on two obvious extensions of
this line of inquiry. One is to consider the distributions of
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FIG. 4. Comparison of scaling functions for the catalytic reac-
tion model (p=1, moving interface) and the periodic random-walk
model.
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higher powers of the width. In particular, using the generat-
ing function approach and considering g as the variable con-
jugate to w*, we are led to consider the partition function for
an anharmonic oscillator G(\,g). This quantity is known to
have rich singular structure in g [7], so that we expect
P(w*) to inherit very interesting behavior as well. The other
conspicuous generalization is the study of two-dimensional
interfaces. In addition to having a different scaling
[w2~In(length)], there is the possibility of roughening tran-
sitions [13], and other types of phase transitions in nonequi-
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librium surface-evolution models [5]. We hope that the study
of width distributions will lead to new insight on a variety of
“old” problems.
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