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Density patterns in two-dimensional hoppers
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Recent experiments by Baxter et al. [Phys. Rev. Lett. 62, 2825 (1989)j showed the existence of density

waves in granular material Rowing out of a hopper. We show, using molecular dynamics simulations, that this

effect is a consequence of static friction and find that these density fluctuations follow a 1/f spectrum. The

effect is enhanced when the opening angle of the hopper decreases.

PACS number(s): 46.10.+z, 05.60.+w, 02.70.Ns

Moving dry granular med~a, like sand, show a rich variety
of rather astonishing and scarcely understood phenomena

[1,2]. Famous are the so-called "Brazil nut" segregation
[3—5] and the heap formations that occur under vibrations
[6—8]. More recently a series of experiments have given evi-
dence that under certain circumstances density patterns are
generated inside the flowing medium. Baxter et al. [9], for
instance, visualized wavelike patterns emanating from the
outlet of a two-dimensional wedge-shaped hopper using x
rays. Also previous authors [10—12] had noted the formation
of similar structures. Brown and Richards [13]explained the
density fluctuations during the outflow with nonrandom dila-
tant waves but their experiments with a single layer had limi-
tations due to irregular sticking to the plate. Similarly rather
erratic shocklike density waves have been observed in flow
through pipes [14] and down inclined planes [15].Another
experimentally observed ubiquitous phenomenon in granular
media seems to be 1/f noise. Liu and Nagel [16] recently
measured the acceleration of a particle inside a bulk of glass
beads that were excited by a small amplitude vibration. Its
Fourier spectrum in time showed power law decay over
many orders of magnitude. Baxter et al. [17] also observed
power law decay in the frequency dependent forces that act
on the wall of a hopper. For avalanches going down the slope
of a sandpile theoretical considerations of self-organized
criticality [18]led to the proposal that th=ir size and lifetime
distributions were power laws which was in fact only veri-
fied experimentally on very small piles [19].

The existence of these erratic density and force inhomo-
geneities is intimately related to the ability of granular ma-
terials to form a hybrid state between a fluid and a solid:
When the density exceeds a critical value which some au-
thors call the critical dilatancy [20,21], granular materials are
resistant to shearlike solids. In regions where the density is
below this value they will behave almost like fluids which,
e.g., can be seen under vibrations and flow through a pipe. In
the presence of density fluctuations the rheology therefore
can become rather complex. Two microscopic facts seem to
be responsible for the strong density fluctuations: On the one
hand, one has in granular media solid friction between the
grains. This means that when particles are pushed against
each other a finite force is needed to start or maintain a
relative tangential motion between them. On the other hand,
a granular material is internally disordered giving a natural
source of noise. We conclude from our molecular dynamics

studies that the strong nonlinearity coming from friction pro-
duces instabilities in the density which enhance the fluctua-
tions coming from the noise.

Various attempts have been made to formalize and quan-
tify the complicated rheology of granular media. Continuum
equations of motion [22], a cellular automaton [23], and a
random walk approach [24] have been proposed. But none of
them has yet been able to explain these heterogeneous
waves. This is why we chose to study these phenomena us-

ing molecular dynamics (MD) simulations of inelastic par-
ticles with static and dynamic friction in two-dimensional
systems. In fact, MD simulations [25] have already been ap-
plied to granular media to model segregation [5], outflow
from a hopper [26,27], shear flow [28], convection cells on
vibrating plates [29,30], avalanches on a sandpile [31],flow
through a pipe [14], and others.

We consider a system of N spherical particles of equal
density and with diameters d either all equal or chosen ran-
domly from a Gaussian distribution of width w around
do=1 mm. These particles are placed into a hopper having
an opening angle 8 and at the bottom an opening of diameter
D. When two particles i and j overlap (i.e., when their dis-
tance is smaller than the sum of their radii) three forces act
on particle i.

(1) An elastic restoration force using a Hertzian contact
law

~here Y is the Young modulus and r;j points from particle i
to j.

(2) A dissipation due to the inelasticity of the collision

fsI~= —ym, rt(v;, r;, )(r;;/lr;";~ ), (1b)

where y is a phenomenological dissipation coefficient and

v;, = v; —v, the relative velocity between the particles.
(3) A shear friction force which in its simplest form can

be chosen as

fdt„'l=—y,m,rt(v;;. t;;)(t;;/(r;,.( ),
where y, is the shear friction coefficient and

t;; = ( r~, ,r";;) is the v—ector r;,. rotated by 90'. Equation (2a)
is a rather simplistic description of shear friction which is
proportional to the relative velocity of the particles. In order
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to allow for static situations of blocking in a hopper due to
arching it is important to include real static friction, i.e.,
which does not depend on the velocities but rather the rela-
tive angle of the surfaces [32]. When two particles start to
touch each other, one puts a "virtual" spring between the
contact points of the two particles. Let 8's be the total shear
displacement of this spring during the contact and It, Bs the
restoring frictional force (static friction), then this reads

%mt,yr:;-

(i)
friction (2b)

{a)

where Bs is the shear displacement integrated over the entire
collision time. The maximum possible value of the restoring
force in the shear direction is then, according to Coulomb's

criterion, proportional to the normal force F„:=f (', I+ fd(;,I
multiplied by the friction coefficient ttt [5,31]. Cast into a

formula this gives a friction force

(2c)

where the sign s is taken from the sum of the forces in the

shear direction. When particles are no longer in contact with

each other the spring is removed. Since we found that omis-
sion of the rotational degree of freedom for our model does
only slightly change the results quantitatively [26,29] we do
not consider it here in order to save some computer time. In

fact, when particles have strong deviations from the spherical
shape, rotations are strongly suppressed.

When a particle collides with a wall the same forces act as
if it would have encountered another particle of diameter

do with infinite mass at the collision point. The walls are in

fact made out of small particles themselves and in order to
introduce roughness on the wall these particles are chosen
randomly from a distribution of two radii. The only external
force acting on the system is gravity g= —10 m/s .

As initial positions of the particles we considered that

they are placed at random positions inside a space several
times as high as the dense packing. The initial velocities are
set to zero. After that the particles are allowed to fall freely
under gravity. Using a Hertzian type elastic force in Eq. (la)
does not give a well defined collision time and we took a

Young modulus of I'= 10 g/s and a time step of
At = 2 & 10 s and ran our program on 8 or 16 processors
of an Intel iPSC/860 and an IBM RS/6000-550.

In Fig. 1 we see a snapshot of the outflowing particles at

four different time steps for material parameters consistent
with the experiment of Baxter et al. [9].We clearly see that
close to the outlet large holes appear which then propagate in

an attenuated form upwards. These patterns quickly vary in

time. When the opening angle 8 of the hopper is reduced the
contrast in the patterns becomes more pronounced. The holes
are in general stretched in the horizontal direction but their
shape seems rather random. Particularly striking are these
structures when watched in a movie. %hen the static friction
p, between balls is switched off and we use a low shear force

(y, (~ y) the structures disappear and the density of the out-

flowing particles becomes homogeneous. This agrees with
Baxter et al. 's experimental observation that density patterns

only occur for rough and not for smooth sand. When the

friction with the walls is switched off the density waves also
disappear since there is nothing left to support them.

(c)

L ~-

FIG. 1. In this sequence, we show the outAow behavior with static fric-

tion for an initial configuration of roughly 1500 particles. The parameters

were chosen as the following: @=500 Hz, y, = 100 Hz, k,.= 1000

g/s, tl=30', D=8d„, p=O. S. (a) Initial configuration, (b) after l0 000

iterations. (c) after 100000 iterations, (d) after 140000 iterations

A more quantitive approach can be made by measuring
the local densities p. %e binned space in units of 1.56do and

counted the number of particles that have their center of
mass inside the box averaged over 100 consecutive iteration

steps. This density is plotted in Fig. 2 as a function of time
and space. %e see that the low density regions form curved

stripes pointing downwards and indicating rather short living
waves. This agrees well with Baxter et al. 's observation that

for small opening angles the density waves flow downwards.
We see no regular structure in the distance and magnitude of
the waves in our simulations. They rather look like indepen-
dent shock waves with random amplitudes coming in a ran-

dom sequence. Larger waves usually have small densely
packed precursors. Strong similarities can in fact be seen
with space-time plots of the density of granular media in

pipes [14] and of cars on highways having traffic jams [33).
In Fig. 3(a) we see the density profile as a function of

time for a point six particle diameters above the outlet. In the

beginning, the rather flat region indicates a near blocking but

generally no regularity can be seen. The Fourier transformed
data averaged over four components are shown in a log-log
plot in Fig. 3(b). Clearly they fall on a straight line over

nearly two decades. The slope is about —2.7~0.2 obtained
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FIG. 2. This figure shows the spatial density fluctuations (vertical axis) for a typical outflow simulation as a function of time (horizontal axis) for y=100
Hz, y, =500 Hz, k, =1000 g/s, 8=10, D= 1 Od t,tand p=05. Dark areas mark regions with lower densities.
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by a least square fit. This means that we have found 1/f
noise which might give rise to alternative experimental veri-
fications since such 1/f fluctuations in hopper outflows are
not yet, to our knowledge, clearly experimentally established

[9,13,17].We checked the stability of our algorithm and the
reliability of our data by using different time steps At and

found that the power spectrum did not change for time steps
smaller than 5X10 s.

When particles of equal size are taken we observed
equally well developed density patterns and find roughly the
same power law decay of the spectrum. The effect is reduced

when the diameter D of the outlet becomes too large. If it is
too small the flow of sand can entirely stop due to arching.
The critical diameter Dp when this arching sets in has been
studied before with similar techniques [26] where it was
found that D p is larger when the particles have the same size.
When we consider smooth walls, i.e., all wall particles hav-

ing the same radii, we do not find density waves and the

power spectrum looks significantly different. It shows an up-
wards curved slope with increasing frequency which one also
finds when configurations block during the outflow. A similar
effect was also found in simulations of flow on an inclined
plane [34].

Baxter et aI. also observed that there exists a critical angle

Hp above which stagnation regions exist next to the walls of
the container. We also found these regions; one example is
shown in Fig. 4.

We have observed in a very simple modelization that den-

sity waves are generated and distributed with frequency like

1/f . Two ingredients were found essential to generate them:
static friction and a large enough surface roughness of the
walls. The static friction tends to align the particles, i.e., to
form fronts of particles moving exactly with the same verti-
cal velocity. These fronts are nucleated randomly at the
walls. Their size distribution (density contrast) comes by it-
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FIG. 3. We consider an outflow sequence for the same parameter values

as in Fig. 1 but we constantly fill in particles from above. {a) Shows the

density fluctuations 6do above the hole. One clearly sees a quite random

behavior after an initial near blocking. (b) Shows the log-log plot of the fast

Fourier transform (I Vl) analysis of the density fluctuations. A straight line

with slope —2.7 is drawn obtained from a least square fit.

FIG. 4. Due to static friction, 314 particles remain in the hopper for an

opening angle of 8=150 (y=100 Hz, y, =0 Hz, k, =1000 g/s, D=10d,
and p,=0.5).
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self into a critical state, namely, a power law distribution. It
therefore has the properties of self-organized criticality
(SQC) [18].It is, however, very important to notice that our
simulations were made for rather small systems as compared
to real systems. It could therefore be that for systems of
millions of particles a cutoff exists in this power law.

We have shown in this paper that similar to the ava-
lanches that one observes on the surface of a sandpile also
inside the bulk of granular material one has avalanche be-
havior which, like the ones on the surface, shows self-
organized criticality on small scales [19].Surface avalanches
for large piles, however, seemed to have a characteristic size
due to inertia [35].In fact, avalanches in the holes rather than

in the mattered substance could be relevant here and one
might speculate that the bulk avalanches might be a better
example for asymptotic SOC than the ones on the surface.
The mechanisms that generate the patterns are similar but not

identical to the original sandpile models. While the static
friction similarly generates waiting times with a threshold it

is not the motion of the sand itself that constitutes the ava-

lanches but it is the group velocity of the holes between
them: An individual particle can easily go from one dense

region to the other by flying fast through a region of low

density. There is therefore a backAow of information similar
to the jamming on highways [33].

Although our simulations are two dimensional, we think

that they do capture the essential mechanisms that occur also
in three-dimensional experiments. It should be mentioned
that in fluidized beds (low Bagnolds number) where the

granular medium is surrounded by a Quid and the hydrody-
namic interactions become important a similar phenomenon
to the one described here, called slugging, is observed [36].
The mechanisms involved seem, however, quite different.
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