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The evolution of two-dimensional spatial Fourier harmonics in a compressible plane Couette flow is con-

sidered. A new mechanism of energy exchange between the mean How and sound-type perturbations is dis-

covered.

PACS number(s): 47.20.Ft, 47.15.Fe, 47.40.Dc, 43.20.+g

Usually the stability of hydrodynamic flows is studied by
common modal analyse: perturbed quantities are expanded
in full Fourier integrals. The modes are assumed to have an

exponential time behavior, and if an imaginary part of a fre-

quency is positive, the modes will grow in time, leading (in
the sense of the classical linear theory) to an instability.
However, this conclusion is correct for the operators with
orthogonal eigenfunctions (normal modes). But the operator
arising in the Couette flow is exponentially far from normal

[1,2] and the eigenfunctions are not orthogonal to each other.
Therefore, in accordance with linear algebraic theory [2], the
linear system may be amplified by arbitrarily large factors,
even if the imaginary parts of all eigenfrequencies are nega-
tive. Hence, the usage of the full spectral (Fourier or
Laplace) expansion may be misleading in this context.

The nonmodal approach to the studying of the hydrody-
namic instabilities in free shear flows, originated from Lord
Kelvin [3], becomes recently well established and exten-
sively used [2,4—7]. In the Kelvin formalism one considers
the temporal evolution of spatial Fourier harmonics
("Kelvin modes" [4]) of the perturbations without any spec-
tral expansion in time. The wave number of each spatial
Fourier harmonic (SFH) along the flow shear varies in time:
in the linear approximation there exists a "drift" of SFH in
the plane of wave numbers (k-plane) [4—6]. The method
establishes itself as an effective and convenient "tool" in the
study of the wide range of physical processes occurring in
shear flows including anomalous processes of energy ex-
change between the mean flow and the perturbations —the
shear energy extraction by SFH in different kinds of hydro-
dynamic and magnetohydrodynamic (MHD) shear flows
[4-61

Until now, this approach was predominantly applied to the
study of incompressible flows. In the present paper we con-
sider one rather simple kind of compressible shear flow—the
two-dimensional (2D) Couette flow of the continuous, com-
pressible medium. It is well known [8] that in such a case the
medium between the planes should move with the velocity
Uo=(U0 =Ay;0;0). Here we choose the direction of

the X axis along the regular velocity vector, while the Y axis
is directed along the shear. Note that the constant positive
parameter A =Vo /L—)0, where Vo is the velocity of the mov-

ing plane and L is the distance between the planes [8].
The basic system of linearized equations governing the

evolution of the small-scale perturbations in this flow is

(8,+Ay 8,)d+ B„u„+Byuy= 0,

(8,+AyB„)u„+Auy= —c,B„d,

(8,+Ay 8„)uy = —c,Byd,

(2)

(3)

8, d+ B„u„+(By A t r 8„)uy =0,— (4)

Bg Q~+AQy — cs Bz d,

8, uy= —c, (8» At, B„)d. —

The coefficients of the initial system were spatially
inhomogeneous —they depend on the spatial coordinate y. In
new variables this inhomogeneity turns into a temporal inho-

mogeneity. This circumstance allows us to perform the Fou-
rier analyses of (4)—(6), expanding unknown functions with

respect to only spatial variables x& and y&,

ux

dk„dk
d

u„(k„,ky, t, )
'

uy(k„, k , tr) ~

d(k. ..ky, tr)

x exp[t(k„x, + ky y, )],

where d=—p'/po. Note that in Eqs. (2) and (3) we have used
the polytropic equation of state p=Kp~ to express the pres-
sure perturbation by means of the density perturbation. Mak-

ing the following substitution of variables [5],x, =x —Ayt,
y, =y, t, =t, we can rewrite Eqs. (1)—(3) in the following
form:
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and reduce these equations to the following ones:

D")= u, + P(r) v Y,

v = —Rv —D(&)
X

(8)

the temporal variability of Ip(r)l is determined by the "lin-
ear drift" of SFH, (16) is valid at all stages of the evolution
of the SFH.

When condition (16) holds, the approximate solution of
the homogeneous Eq. (15) may be written as

v,'"=—P(r)D, (10) v ( r) =a( r) sin[&@( r) + po], (17)

where hereafter F~"~ will denote the nth order time deriva-
tive of F and D—=id, R A/(c, k„), r= c,k,—t, , p(r)

kz(0—)/k„Rr=—Po —Rr,—u„=u„—/c, , and vY= uY /c-, .
Note that the wave number of a SFH along the flow shear

[kY(r)=k~(0—) Rk„r—] varies in time. This process of the
linear drift of SFH in the k space below wi11 be referred as
"the linear drift. "

Evaluating the expression for the R parameter we find that

R=(Vo/c, )(l„/L). Since we are considering only small-
scale perturbations (l„=—1//k„(&L), it is clear that if we con-
sider the subsonic flow (Vo(c,), then R«1.

It is interesting to note that (8)—(10) may be rearranged in
such a way as to get an important algebraic relation between
the perturbation functions: uY

—p(r) v„=RD+const, where
const is some constant of integration. Using this expression
we are able to write [basing upon the system (8)—(10)] one
second-order differential equation for u„(r),

vt )+ to (r)v„= —p(r) Xconst,

r 1
y(r)= ~(r)dr= — [P(r)cu(r)+InIP(r)+ ~(r)l].

(18)

v„(r) = const X g R "y„(r),
n=0

(19a)

Since not only co(r) but also cut')(r) varies adiabatically,
the same is true for a(r) and a ' (r) [9].That is why there
exists an adiabatic invariant a (r) a&(r) = C, and the ampli-
tude a(r) is simply expressed through the angular frequency
co(r) [9].The C parameter manages, as we shall see below,
the "weight" of the homogeneous solution in the general
solution of Eq. (11).

The approximate special solution of the inhomogeneous
equation (11) may also be derived owing to the smallness of
the R parameter. In particular, the solution may be expressed
by the following series [10]:

and relations, expressing v~ and D through v„and its first

derivative v ~'~,
yo(r) = P(r)/~'(—r), (19b)

u
Y
= [const+ p( r)u„Rut "]/(1+—R ),

D = —(R[const+ p( r) v„]+v, }/(1+R ),

(12)

(13)

where cu (r) =1+P (r) = [—k„+kr ( r) )/k„= k( r)/k, . —
The total energy density of the perturbations in the k

space we define as

+ lull )/2+ IDI (14)

u„' )+to (r)u, =0. (15)

This equation is rather well known in mathematical phys-
ics. It describes the linear oscillations of the mathematical
pendulum with variable length [9]. The quantity ao(r) has
the meaning of the angular frequency of the oscillations.
Equation (15) is solved approximately when co(7.) depends
on r adiabatically [9].Mathematically this condition may be
written simply as

I co( r) t')
I
(& ru ( r) or, taking into account

the definition of co(r), as

RIP(r) I
&~'(r) =[1+@'(r)]"'. (16)

For subsonic Couette flows, R«1 and the condition (16)
holds for all possible values of

I p(r) I. In other words, since

The crucial point of the solving process should be the
solution of Eq. (11). Its general solution is the sum of the
special solution of this equation and the general solution of
the corresponding homogeneous equation

y.(r = —„2(,) qp2
(19c)

Since R&&1, the terms with higher powers of R are negli-
gible and the general solution of the inhomogeneous equa-
tion (11) may be written approximately as

u„(r)=u„(r)+ u, (r)—

C p(r) X const
»n[V(r)+ Vo]—

(o( r) QJ r (2o)

When C/const(&1 the SFH may be treated as a mainly
incompressible and vortical perturbation, while when
C/const)&1 it is mainly of the sound type. It must be noted
that though (20) is the approximate solution, the actual ac-
curacy of the solution is extraordinarily high. In purpose to
check the accuracy we have performed a numerical solution
of Eq. (11) and compare the results with the ones obtained
through (20). The coincidence was excellent even for the
R=0.1 case and was even better for more small R's. It
means that the adiabatic approximation is fully relevant to
the solution of the problem under consideration.

Having the expression for v„(r), we can certainly calcu-
late its derivative vt (r) and then, in turn, we can find all

characteristics of the perturbation by using Eqs. (12)—(14).
The most interesting and important result appears for the
total energy density of the perturbations E(r). Using (14),
and dropping the negligible terms, we get the following
simple result:



50 HYDRODYNAMIC STABILITY OF COMPRESSIBLE PLANE . . . R4285

1 t' const)
E(r)= —Cto(r)+'

2 ( to(r) ]
(21)

According to (21) there exists an unusual nonexponential
enhancement of the energy in the 2D Couette flow. When the
perturbation is incompressible, C =0 and (21) reduces to the
well-known expression, describing the "transient" growth of
the energy of SFH [3,4,6]. For the sound-type

(C/const&1) perturbation, E to-(r) = $1+(Po Rr—) . Ini-
tially, for kr(0)k, &0 (Po&0), at 0&r(r~=~Po~//R, the

energy decreases and reaches its minimum at v = ~~ . After-
wards, it begins to increase at ~~&~&~, when the SFH
"emerges" into the area of k plane in which kY(r)k„&0 (the
area may be called the growth area" for the sound-type
perturbations). If the SFH is in the growth area from the
beginning (Po(0), its energy increases monotonically. In
the general case the "transient growth" and the "sound-
type" evolution are superimposed on each other. Thus we see

that the compressible 2D perturbations can extract the energy
of the mean (regular) compressible shear flow.

The possibility of the shear energy extraction by SFH may
have important and far-reaching consequences. According to
the concept outlined in [6] the unusual linear mechanism of
shear energy extraction, which exists for the incompressible
perturbations, may be a base for the transition to turbulent
state and its maintenance in free shear flows. For sound-type
perturbations we find another, also quite effective "channel"
of the shear energy extraction, which may be responsible
energetically for the onset of compressible turbulence. The
further, more detailed study of the phenomena will be pre-
sented elsewhere, in a more detailed and extensive publica-
tion.
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