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Self-defocusing nonlinear media can support dark solitary waves with ring symmetry that are robust but

slowly change their parameters. This alternative type of optical dark soliton is investigated numerically and

analytically, and it is shown that in the small-amplitude limit such solitons are described by the so-called

cylindrical Korteweg —de Vries equation known, e.g., from plasma physics. Ring dark solitons may coexist with

other types of dark solitons, displaying almost an elastic interaction.

PACS number(s): 42.81.Dp, 42.50.Rh, 42.65.—k

Dark spatial solitons are known to exist as low-intensity

dips on a background field that do not diffract as the beam
propagates [1] (see also the review paper [2] and references
therein). These solitons are the reflectionless modes of the

optical waveguide they induce whereas bright spatial solitons
are the bound modes [3]. In the case of two transverse de-
grees of freedom such solitons may be observed as dark-
soliton strips or grids with the properties similar to those of
two-dimensional dark solitons [4]. Dark solitons of circular
symmetry (optical vortex solitons) have been predicted and
shown to be stable [5,6], and they have already been ob-
served experimentally in self-defocusing materials [7]. On
the other hand, dark soliton strips are unstable to transverse
long-wavelength modulations [8]. Such instabilities are
caused by the unbounded soliton as can be appreciated from
simple physics [9].Numerical calculations show that due to
that instability a dark strip decays into a sequence of optical
vortex solitons of opposite polarities [10,11].The instability
band is characterized by the maximum wave number Q,„of
transverse perturbations [8], so that a soliton strip is stable to
transverse modulations Q~ having a short period, i.e., for
Q~&Q,„.Let us consider a loop formed by a quasi-two-
dimensional dark soliton of length L, . Then, in the first-order
approximation we come to the conclusion that transverse
instabilities can be suppressed provided the condition
L &2m/Q, „holds. The soliton of the lowest energy is natu-

rally expected to have a circular symmetry, therefore one
may observe stable dynamics of ring dark solitary waves in
bulk self-defocusing materials. The present paper aims to
introduce this type of optical dark soliton and to describe its
properties analytically and numerically. As follows from our
analysis, in the small-amplitude approximation such solitons
are described by the cyhndrical Korteweg —de Vries (KdV)
equation that resembles famous cylindrical (or ring) solitons
in collisionless plasmas investigated more than 15 years ago,
both theoretically [12,13] and experimentally [14,15]. We
derive also a general formula describing the internal dynam-
ics of ring dark solitons.

As is well known, propagation of monochromatic trans-
verse electric field E(x,y, z) in a nonlinear self-defocusing
medium with the intensity-dependent refractive index

where b, i is the transverse Laplacian which can also
include the effects of positive temporal dispersion,
b~=B /Bx +B /By +(D 2)B /B—t, where D=2, 3 is the
dimension parameter (the case D=3 includes dispersion-
induced effects through the second-order time derivative
which is important for such phemomena as light bullets; see
[16]).Here we use the following notations: u=E/En is the
dimensionless electric field normalized by the background
amplitude En, the dimensionless longitudinal (z) and trans-
verse (x and y) coordinates are normalized by the spatial
scale Ln = (nn/nz)' /(kEn), k being the wave number.

We note that for the solutions with radial symmetry which
depend only on the radius r the transverse Laplacian may be
written in the form

B (D —1) B
2+

Br r Br

so that Eq. (1) looks like a standard two-dimensional NLS
equation (which obviously supports dark solitons) provided
the term -r ' is small. Therefore we may look for dark-
soliton solutions of circular symmetry in the form of a dark-
soliton ring with slowly varying parameters,

u(z, r) =e "(cos9ItanhZ+ ising),

Z=cos(P) [r—R(z)), (4)

where P= P(z) (~ P~(m/2) and R(z) are the slowly varying
soliton angle and the coordinate of its center, respectively.
The physical meaning of these parameters is rather simple:
the soliton angle 4 describes the contrast of a dark soliton,
cos 4, and it is connected with the phase jump across the

soliton, 2$ (see Ref. [17]for more details), and R(z) is the
soliton ring radius on the distance z. Evolution of the soliton
parameters may be analyzed in the framework of the so-

n=nn nz~E~ —(nz&0) is described by the nonlinear Schro-
dinger (NLS) equation which may be written in the form

Bu 1
i + b—~u ——~u~'u =0,

Bz 2
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called adiabatic approximation of the perturbation theory for
dark solitons [17],considering the term -r ' as a perturba-

tion. The resulting evolution equations derived from the

perturbation-induced dynamics of the system Hamiltonian
take the form

dP (D —1) dR
cosP, = sing.dz 3R dz

Combining these equations, we And the radial velocity of the

ring dark soliton as a function of its radius R,
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where o =sgn[sin@0)]= ~1, P(0) and R(0) being the ini-

tial values of the parameters. Equation (6) shows that the
minimum radius of the ring dark soliton is

R;„=R(0)[cos4I(0)]

0.6-

and at R=R;„the dark soliton has the maximum contrast.
Depending on the initial value P(0) of the soliton phase @,
the dark soliton can collapse to reach R;„,or it diverges
decreasing its contrast.

The linear stability analysis [8]predicts that the dark soli-
ton strip is stable when the condition (in our notations)

'o 0.4-
0
4J

C$

cd
0C 02

Q~&Q, „(@)=[2v'sinP+cos P—(1+sin P)]'~z (8)

is satisfied, Q~ being the wave number of the transverse
perturbations. The result (8) shows that the instability band
vanishes for small-amplitude dark solitons when cosg~0.
Thus the dark soliton is expected to be always stable, even

expanding, when the limit length of the ring 2';„is
smaller than the minimum wavelength 2m/Q, „(0)for the
instability region, i.e., provided

R;„Q,„(0)&1.

We have made numerical simulations in the framework of
Eq. (1) for both the cases mentioned above, and the results at
D = 2 are presented in Figs. 1 and 2. Figures 1(a) and 1(b)
show the evolution of the absolute value of the radial soliton
velocity W vs the current value of the soliton radius R(z).
We present here two particular cases, sin@0)&0, when the

ring soliton simply diverges [Fig. 1(a)], and sin@0)&0,
when it first collapses to reach the minimum value R,„[Fig.
1(b)]. Solid lines in Figs. 1(a) and 1(b) represent the results
given by our approximate analytical solution (6), which
seems to be in excellent agreement with numerical simula-
tions. When the dark soliton collapses, at the turning point
the validity of our adiabatic approximation is destroyed and
the dark ring slightly changes its radial velocity, and subse-
quently it expands along an effectively shifted theoretical
dependence [see Fig 1(b)]. Ne.vertheless, this solitary wave
is highly robust and it perfectly conserves its radial symme-
try as is shown in Fig. 2 where the dependence of the soliton
contrast cos P vs propagation distance is also presented.

We have also tried to analyze the robustness of the ring
dark solitons in collisions with other ring dark solitons, dark-
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FIG. 1. Radial velocity
~ W~ = ~sing of a ring dark solitary wave

for (a) sin@0))0 and (b) sin@0)&0 vs the soliton radius R. Solid
lines are results of the analytical approach given by Eq. (6) and the

marks indicate results of numerical simulations.

u(z, r) =[1+a(z, r)]exp[ —iz+i 8(z,r)],

where a(z, r) and 8(z, r) are assumed to be presented in the
form of formal asymptotic series,

soliton strips, and vortex solitons. Figure 3 shows, as an

example, interaction of two dark-soliton strips and a ring
dark soliton. Dark-soliton strips were generated by an even
initial condition similar to the purely two-dimensional case,
and they always displayed the plane symmetry. The interac-
tion looks almost elastic, however, the cross points produce a
phase shift (see Fig. 3) characterizing, e.g., interaction of
stable bright solitons on a plane.

It is interesting to compare the ring dark solitons de-
scribed here with the other types of quasiplane solitons of
radial symmetry known in nonlinear physics. As a matter of
fact, the so-called cylindrical acoustic solitons were shown to
propagate in collisionless plasmas [12],and they were inten-
sively investigated experimentally (see, e.g., [14,15]).To get
a deeper insight into the physics of ring dark solitons, we
consider the so-called small-amplitude approximation [18]to
Eq. (1), looking for solutions in the form
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similarity between the type of dark solitons described in the
present paper and a special class of ring bright solitons
known, e.g., in plasmas. This allows us to expect an experi-
mental verification of our results similar to the experiments
[14,15]which confirmed the existence of cylindrical plasma-
wave solitons.

Lastly, we would like to note that we do not see at the
moment any serious restriction on the conditions to observe

such solitary waves experimentally. In fact, it seems one
should simply make a phase mask of circular symmetry in

the experiments which reported earlier discovery of dark
soliton strips [4].

We are indebted to Professor A. W. Snyder for fruitful
discussions. This work was supported by the Australian Pho-
tonics Cooperative Research Centre (APCRC).
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