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Motion of a polyelectrolyte chain hooked around a post
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The release kinetics of a single DNA molecule hooked around an obstacle in the presence of an electric field
is investigated. A kinetic model which includes both electrical and stretching forces is introduced and used both
in computer simulation and in the development of a simple analytic argument. These predict two regimes
which depend on Y=N/P, where N is the number of chain segments and 1/P is the dimensionless field
strength. For short chains, Y&1, the characteristic unhooking time scales as N, whereas for long chains,
Y&1, it scales as N. %'ithout introducing post friction, the model is able to reproduce recent experimental
observations.

PACS number(s): 87.15.—v, 82.45.+z, 36.20.Ey, 0.5.60.+w

Gel electrophoresis is one of the most widely used tech-
niques for size-separating charged molecular chains such as
nucleic acids or synthetic polyelectrolytes. The separation is
achieved by driving the chains through a gel, usually agarose
or polyacrylamide, by an external electric field. As a result of
the field-driven mobility and the obstacles that the gel pro-
vides, small chains pass through the gel quickly while longer
molecules move more slowly. For very long chains, e.g.,
DNA in excess of 30 kilobase pairs, the mobility has only
weak dependence upon chain length, eliminating any possi-
bility of separating very long chains. In a pulsed field, this
saturation zone is postponed to larger chain lengths, but the
mobility can also be nonmonotonic with chain length and
can prevent a simple separation.

In an effort to understand and eventually to control the
size-dependent mobility of electrophoresis, several research-
ers have concentrated upon dynamics of the simplest inter-
action between a chain and an obstacle in an electric field,
i.e., a polyelectrolyte hooked upon a post [1—4]. Such hook-
ing occurs when a chain, translating uniformly with the field,
encounters an obstacle whose size is small in comparison to
the size of the chain. The electric field rapidly unravels the
coil on each side of the obstacle, forming a hairpin or a U
shape (Fig. 1) [5]. The chain-length dependence of hairpin
formation and hairpin release is an important model problem
for the design of obstacle arrays which exhibit optimal elec-
trophoretic separation.

In this Rapid Communication we model the release kin-
etics of a hooked polyelectrolyte chain taking account of
both the electrical and chain stretching forces. Following
the model dynamics using computer simulation and explain-
ing the results with simplified analytic arguments, we are
able to reproduce recent experimental results [2,4].The poly-
electrolyte is modeled as a chain of N freely jointed links of
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length l, [6]. The chain is freely draining [7] and, for the
stretched chains considered here, excluded volume effects
can be neglected. The applied electric field is E, the effective
charge per unit length is )i, [8], and the temperature is ex-
pressed in Boltzmann units, kT. The dimensionless quantity
p= kT/(El„k—) is the ratio of thermal to electrical energy for
a single link. The quantity Y=N/p desc—ribes the relative
importance of the temperature and the field on the scale of
one chain. We consider values for Y for which the chain is
significantly distorted beyond its ideal radius, Ro-1+'/z.
For N ' &Y(1 the field stretches the chain considerably
beyond this ideal radius but not to its fully stretched contour
length, 1+.This is the Gaussian or weakly stretched regime.
For Y&1 the chain is close to its fully extended length. We
then have the Langevin or strongly stretched regime.

Our model shows that inclusion of the stretching energy
provides different chain-length dependences for the kinetics
of hook unwinding in the regimes Y&1 and Y&&1, i.e., the
weak and strongly stretched regimes. This is important as
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FIG. 1. Geometry of hooked polyelectrolyte (inset) and r/P
versus Y =N/P where the points are simulation results for
32&N&192 with 10(P(110 and the line is the prediction of
Eq. (8).
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strong chain-length dependence is sought for size separation
in electrophoresis. In addition, the predictions recover ex-
perimental results of chain and arm extension without invok-
ing assumptions of static equilibrium [2].Moreover, we find
that the experimental chain unhooking [2] can be explained
without invoking friction between the chain and obstacle.
This is of importance as there has been some debate in the
literature about post-chain friction [9].

Before investigating chain dynamics, it is instructive to
examine the statics of a chain. Consider a polyelectrolyte
chain of N segments in an electric field with one end,
n =0, tethered to a point and the other end, n =N, free [10].
Let I„z(n) be the upfield distance between the nth monomer
of the chain and the tether point [11].The free energy of the
chain is written as
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The static or equilibrium trajectory of the tethered chain is
obtained by taking the functional derivative of F,
BF/By(n) =0, which gives

y(n) = M((N n)/P)— (3)

This provides the stretching of the chain along its contour.
Note that y has a maximum at the tether point, n = 0, and that
the stretching decreases monotonically from the tether point
to the chain's free end. The extent of the chain in the field or
z direction is found from R,=l,fodny(n) [10]. In the

weakly stretched limit, Y~ 1, the chain length has a strong
dependence on the field, R,= 6/, p 'N; and in th—e strongly
stretched limit, Y&) 1, we find R,=Nl„[1—Y 'ln(2Y)], i.e.,
the chain is almost fully stretched.

The dynamics of hairpin unwinding can now be found by
equating the hydrodynamic drag on a segment moving at
speed v, A yl, v, to the force on the segment

Bz(n)
W ql,' Bt

BF(z(n))
Bz(n)

(4)

Here S(u) —=fodU~(U), where the function ~ is the in-

verse of the Langevin function, M(x)—=coth(x) —1/x, so that

~(y) =3y for y(&1, and ~(y) =1/(1 —y) for y —+1. The
first term in (1) is the electric potential energy, and the sec-
ond term is the entropic Bee energy. This latter term de-
scribes the loss of entropy encountered whenever a chain is
stretched [12].For a uniformly stretched chain (which ours is
not) the stretching energy reduces to the familiar Gaussian
result, ',kTR /(Nl„-), where R=l~(N), provided the degree
of stretching, y= dz(n)/d—n, is less than about 0.5. However,
in practice chains may be stretched somewhat more than this
and the fuB Langevin elasticity, or its strong-stretching limit,
must be used. In the strong-stretching limit y~1, the chain
is almost stretched to its full contour length Nl„, and the
stretching energy becomes very large. Noting that

z(n)= fodpy(p) the free energy can be written in a more
convenient form for analysis:

FIG. 2. Simulated chain extension, in units of link length, versus
time for polyelectrolyte of N=100 segments and dimensionless
field P=100. Total extension of chain, z(l)+z(N), ( —); exten-
sion of advancing arm, (—~—); extension of retracting arm,

(—+ —); difference in arm extension, Lk=z(1) z(N), (-—- - - -).
Simulated chain extensions for Y~1 and Y~1 show very similar

behavior when scaled with maximum extent and unwinding time.

where r/is the fluid viscosity, A a dimensionless drag con-
stant, and the extra factors of l„arise to render dimensional
consistency. Inserting Eq. (1) into (4) yields

Bz(n) 1 8 ' 8z)
Vp = —+ —~

p ~tt (~~)'

where ro Al, r//(kT). ——Brownian forces are neglected; as
discussed below, they are unimportant, except at early times
for hairpins with equal arm lengths. The hooking post is
assumed to be a point that transmits the force between neigh-
boring pivot segments, i.e., there is no friction between chain
and post. The adopted initial condition is a hairpin with arms
of N/2+ 2 and N/2 2segments, with b—oth arms set close to
the equilibrium trajectory of a tethered chain (3).

A set of equations, consisting of Eq. (5) expressed for
each nth segment 2&n&N —1 and solved numerically over
several time steps, forms the dynamic simulation. The simu-
lation shows that at early unhooking time, the difference in

length between the two arms, A=z(l) z(N), is app—roxi-
mately exponential in time (Fig. 2) such that the unhooking
dynamics can be expressed as db/dt = b,/r, , where r, is the
characteristic unhooking time [4].For the strongly stretched
regime, Y)1, 5 is purely exponential up until the final un-

hooking. Moreover, the total length of the chain z(1)+z(N)
is constant throughout most of the unhooking dynamics, ex-
cept towards the final unhooking. These simulation results
coincide with the experimental observations in the strong-
stretching regime [4]. Now consider the chain extension at

late stages of the unhooking, i.e., t~ 1050 in Fig. 2. 5 is not
a pure exponential; the total chain extension decreases no-

ticeably; and the retraction of the short arm is much faster
than the advance of the long arm (the retraction is exponen-
tial in time while the advance is linear). Each of these obser-
vations was found in the weak-stretching experiments of
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FIG. 3. Simulated stretching ~y(n)~ versus segment n along

polyelectrolyte of N = 100 segments and dimensionless field

p=100 for various times, t=O.OT, 0.2T, 0.4T, 0 6T, and. 0.8T
where T is the time for complete unwinding of the hooked chain

from the obstacle. The initial stretching profile is set close to equi-
librium stretching, Eq. (3).The pivot segment (where the derivative

is discontinuous) advances along the contour of the chain until the

chain "falls off" of tbe obstacle. The maximum stretching coincides
with the pivot segment at early time, but lags behind the pivot at

later times.

Song and Maestre [2] and these were interpreted correctly as
being related to chain elasticity. However, in interpreting the
faster retraction, Song and Maestre introduced friction at the
pivot point and assumed that the stretching in the arms fol-
lowed that of an equilibrium, tethered chain, Eq. (3). Neither
friction nor a quasiequilibrium were required in the simula-
tion to reproduce the experimental observations. Figure 3
demonstrates that the simulated chain departs markedly from
two tethered, equilibrium arms. The discontinuity in the de-
rivative of the stretching occurs at the pivot link of the chain.
Note that as unhooking progresses, the maximum stretching
occurs upfield of the pivot point, along the long arm, and not
at the pivot point as (3) would suggest. Our frictionless
model reproduces the experimental results without an addi-
tional equilibrium assumption of each of the arms. Friction is
thus an unnecessary addition in describing the unhooking
kinetics of experiments [9].

We now examine the dependence of r, upon N and P. If
the data are plotted as r, /P versus Y =N/P all the points
fall on a universal curve (Fig. 1).Two regimes are apparent:
for Y ( 1, r, ~ N2, and for Y)1, r, ~ N/P. For afixed
the field strength dependence is as follows (Fig. 4): at high
fields (small P) r, ~ P, and at low fields (large P), r, ap-
proaches a constant.

The dependence of the characteristic time upon N and P
can be understood from the following theory. Noting that the
total extension remains constant for most of the unhooking
time, changes in the stretching energy at early times are
small in comparison to changes in electrical energy. There-
fore we can neglect changes in stretching along the contour
and approximate the tension at each point in the chain by its
initial, equilibrium value, i.e., ~y(n) ~

=W(n/P) for n(N/2,
~y(n))=M((N —n)/P) for n)N/2 The stretching o.f each

FIG. 4. The characteristic time r versus p. Simulation results

for polyelectrolyte of N=100 segments (0) and predictions of
Eq (8) (—).

segment is assumed invariant with time; however, the mono-
mer position, P, of the pivot point and the electrical energy
of the chain does change. Figure 2 shows that this is only an

approximation, but our results (Figs. 1 and 4) indicate that
the approximation is a good one. With this assumption, the
total electrical energy of the chain is

F
X,El„

/2 n ~N —n~
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where we have assumed P)N/2. The difference in arm ex-
tension (measured in units of I„) is

/'N/2 l n ) 1'P /N n i i N — /N —nli
dna —+ dna — dna
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The unhooking dynamics of 5 is found by equating the drag
in moving the chain [13] to the free energy change

N rgl„(dh/dt) = —(dF/dh) = (dF/dP)(dh/dP— )

This theoretical prediction of characteristic time, r, ,
agrees well with the results of the dynamic simulation (Figs.
1 and 4) and experiments. This is particularly true for Y)1.
For Y(1 the time is overestimated slightly, since chain con-
traction can take place. Thus at Y( we find 7,= ,'2rpN2, i.c., —
the time constant depends on the square of the molecular
weight and is independent of the field. For Y&)1 we find

Evaluating the derivatives and expanding the result
in a Taylor series about 5= 0 gives d 5/d t
=2k/[rp/3'(N/(2P))]. Thus at early times the decay
will be exponential with -time constant

T&= 2TppNM(N/(2p))= 2rpp YM(Yl2).
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7'= rp( 2PN 1) . This is similar to the linear relation found
earlier [4], although we dif'fer from [4] by a factor of 2 in
the slope.

In the above we have examined the potential-driven mo-
tion of the arms. Random thermal forces causing diffusive
motion of the arms have been ignored [4], as diffusion is
generally not important, except at very short times. The dif-
fusion constant for 5 is Dq;r=2kT/(A rll, N) and, without a

potential, the distance diffused in time t is 5- gDt. If we
set t= v, , then the distance diffused in one decay time for
Y(1 is 5-l„/N/6, i.e., about one ideal radius. This is

much smaller than the typical arm length -l+ /P. In the

strongly stretched regime the distance diffused is b -l„+P,
again much less than an arm length l+/2. Thus in both
cases diffusion is unimportant, unless we examine very early
times for equal-armed hairpins.
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