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Landau-Ginzburg equation for the cyclotron resonance maser
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A set of collective variable equations are derived that accurately describe the electron and field dynaInics in

a low-efficiency cyclotron resonance maser amplifier up to the saturation of the field amplitude. Using this

collective variable description, it is shown that the evolution of the slowly varying electromagnetic field can be
described qualitatively by a Landau-Ginzburg equation with complex coefficients. This is a model that also
describes the field evolution in an atomic laser. The electromagnetic field evolution can now be described by
an analytical solution far into the nonlinear regime, where numerical integration of the evolution equations was

previously necessary.

PACS number(s): 41.60.Cr, 42.52.+x, 85.10.Jz, 52.75.Ms

INTRODUCTION

Gyrotrons and cyclotron auto resonance masers (CARMs)
are a class of cyclotron resonance maser (CRM). Such de-
vices are important sources of coherent high power micro-
wave radiation.

The radiation source of these devices is a relativistic elec-
tron beam gyrating as it propagates along a uniform mag-
netic field. The radiation emitted by the electrons is con-
tained within a waveguide structure. The interaction between
the gyrating electrons and radiation can give rise to a phase
bunching of the beam and to a coherent, exponentially in-

creasing, radiation field amplitude. A small signal radiation
field can be injected at the beginning of the device to form an
amplifier.

In a low-efficiency cyclotron resonance maser amplifier, it
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where

is possible to describe the coupled dynamics of the electrons
and the electromagnetic field of a single TE „or TM „
waveguide mode using the following set of scaled evolution
equations [1]:
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j is the electron index number, N, is the total number of
(macro) electrons, subscripts J and

~~
represent vector com-

ponents perpendicular and parallel to the waveguide axis,
to is the radiation frequency, (k~, ktt) are the wave vector
components of the mode, y is the electron relativistic factor,
(Rp, 80) are the poilar coordinates with respect to the wave-
guide axis of the electron guiding centers, (vz, vtt) are the
electron velocity components, vg is the radiation group ve-
locity, B0 is the axtial magnetic guiding field, A is a scaled

complex radiation field strength, U„ is the energy per unit
waveguide length of the radiation, Ub is the energy (includ-
ing rest mass) per unit waveguide length of the electron
beam, I is the electron beam current, y' „ is the nth root of
1' (k~R )=0, X „is the nth root ofI (k&R„)= 0, R„ is the
waveguide radius, 8' is the value of p at z= 0, and subscripts
0 indicate initial values at z=0. Other symbols have their
usual meaning. The set of equations (1)—(3) are valid in the
limits p&(1, the low-efficiency limit, and k~rL&(1, which
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allows us to neglect space charge effects and the inhomoge-
neity of the transverse mode profile over an electron gyro-
orbit. For clarity, an initially monoenergetic electron beam
with constant uo has been assumed.

The scaling parameters p and v are the "fundamental
CRM parameter" and the "free energy parameter, " respec-
tively. The linear growth rate of the exponential CRM insta-
bility is proportional to p and the energy available for con-
version from the electron beam to the radiation is
proportional to v. These parameters are combined to define
the "depletion parameter, "

p, —=p/v. For p, sufficiently large
free energy depletion effects are important in the electron-
radiation evolution. When p, && 1 then free energy depletion is
negligible and Eqs. (1)—(3) reduce to those of the Compton
regime free electron laser (FEL) [1].

A COLLECTIVE VA1UABLE DESCRIPTION OF THE CRM

Using the variables

P= P —Bz, P=p —8', A=Ae' ',

Eqs. (1)—(3) can be written in the more compact form
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it is easily shown that
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FIG. 1. Plot of IAI vs z for b=0 and p, =0.1. (a) Numerical
solution of Eqs. (11) and (12). (b) Numerical solution of collective
variable equations (17)—(19). (c) Analytical solution of Eq. (27).
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Equations (5)—(7) have two constants of evolution:
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which is exact if the p have a Gaussian distribution. It can be

seen that if p, = 0, i.e., u = e'~, then (16) reduces to the ansatz
used in [2] to facilitate a collective variable description of the
FEL. Using the definition of u, the constants of motion (8),
(9), and ansatz (16) then it is possible to write d9/dz in

terms of b, 2~', and A only, so closing the system of equa-
tions (12), (14) and (15) to

The variables b and 9' are analogous to the "bunching pa-
rameter" and "energy modulation parameter" of FEL theory

[2].The last term in (15) is proportional to (e '~) and, for
reasons outlined in a similar analysis of the FEL [2], will be
neglected from now on. In order to close the set of equations
it is necessary to use the following ansatz:
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which correspond to conservation of energy and the Hamil-
tonian of the system, respectively.

This set of equations can be further reduced by defining a

complex variable

~l
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which enables the set of evolution equations (5)—(7) to be
written as a set of two complex equations
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Defining the variables

b=(u*), H=(lul'u*),

(12)

where bo=b(z=0) andAo=A(z=0). Figures 1 and 2 show
how IAI varies with z from a numerical integration of the
collective variable equations (17)—(19) compared with a
similar integration of Eqs. (11) and (12) for small and large
values of p, , respectively. It can be seen that the agreement
between these results up to saturation is excellent for the case
where p, =0.1 and good for the case where p, =0.8. At worst,
the field intensities at saturation predicted by the two meth-
ods differ by a factor of 2. The use of (16) and the neglect of
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Neglecting all derivatives of a higher than the first and con-

sidering only the cubic nonlinear term it is possible to write
the equation for a as

FIG. 2. Plot of IAl vs z for b=0 and p, =0.8. (a) Numerical

solution of Eqs. (11) and (12). (b) Numerical solution of collective
variable equations (17)—(19). (c) Analytical solution of Eq. (27).

terms varying as (e z'~) is therefore justified as in FEL
theory when describing the evolution of the system up to
saturation.

where

dQ
ce 'Q 8

dz
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(25)

DERIVATION OF A LANDAU-GINZBURG EQUATION

Successive differentiation of (19) and the use of (17) and

(18) transforms the set of collective variable equations to a

single third-order nonlinear differential equation describing
the electromagnetic field evolution,

d'A d'A dA
3
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which is a Landau-Ginzburg equation with complex coeffi-
cients and has the same form as the corresponding equations
describing the saturation process and the phase transition in
atomic lasers [4]. It can be shown from (26) that the corre-
sponding equations for the field intensity I= lA l

and phase

g where A = lA le'~ are

This allows an equation for the original field variable A to be
written using (21) as
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It has been assumed that Ao is negligibly small and bo =0. It
will be shown here that this equation can be reduced to the
form of a Landau-Ginzburg equation with complex coeffi-
cients. The methods used will be similar to those used in [3].

Neglecting all the nonlinear terms in (20) it is found that

the field evolves as
I(z) = e2kl'Z

i 0
t

2k,z(k;—cgo) 1+
(

e

(29)

From the form of (27) it is apparent that c, is analogous to
the self-saturation coefficient of atomic laser theory [4].The
solutions for the field intensity and phase are

A (z) =a exp( - ikz),

where k is that root of the dispersion relation

k +8k —2@k—1=0

(21)
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where Io=I(z=O) and go=/(z=O). It is clear that as
z~~ then

such that k=k, +ik;, k;&0. It is easily checked using the
variable X.= —k that this dispersion relation is identical to
that obtained in [1]from a linear analysis of the original set
of equations (1)—(3) in the limit p(&1.

Using this linear form to evaluate the nonlinear terms in
(20) and using the further assumption that the amplitude a is
a slowly varying function of the variable z, an approximate
evolution equation for a can be obtained from (20),

k;I~ —,
cr

dg k;c;= —+ —k-
dz ' c„ (31)

The solution of (27) is shown in Figs. 1 and 2 for p, =0.1 and

p, =0.8, respectively. Note that because the Landau-
Ginzburg equation has only been used to model the evolution
of the exponentially growing wave, its solution does not dis-

play the region of "lethargy" at the beginning of the inter-
action, as this is caused by interference of the growing, de-
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caying, and oscillatory waves corresponding to the three
roots of the dispersion relation (22). This is most pronounced
for cases of large p, for which the linear growth rate of the
amplified wave is smallest. Figure 3 shows the variation of
the saturation intensity predicted by (31) with p, for the case
of exact resonance (b=0). This is therefore an analytical
prediction of the effect of free energy depletion [1] on the
saturation intensity of a cyclotron resonance maser. The in-

tensity at the first sah ration peak, ~A„J, is also plotted in
Fig. 3 as calculated from a numerical solution of Eqs. (11)
and (12). The variation of the saturation intensity with p, is
very similar in each case, and validates the use of the
Landau-Ginzburg equation. Note that as p, ~0 the saturation
intensity predicted by the analytical result (29) approaches
1.5. The linear instability threshold for p, of
(27/32)'t =0.95 [1] can also be observed. The elegance of

FIG. 3. Plot of ~A„J2 vs p for 8=0. (a) Numerical solution of
Eqs. (1)—(3). (b) Analytical solution of Eq. (27) in the limit
z~oo

the Landau-Ginzburg model is evident given the simplicity
of the equations and their excellent agreement of results with
those from the full numerical integration of Eqs. (11) and
(12)

CONCLUSION

It has been shown that it is possible to describe the evo-
lution of the electron and field dynamics of a low-efficiency
cyclotron resonance maser amplifier up to saturation of the
field amplitude using collective variables. Using this descrip-
tion, it is possible to reduce the equation for the evolution of
the slowly varying complex field amplitude to a Landau-
Ginzburg equation with complex coefficients. Analytical pre-
dictions of the effect of free energy depletion on the
saturated field intensity show good agreement with corre-
sponding numerical calculations. The Landau-Ginzburg form
obtained here shows that the evolution of the electromag-
netic field up to saturation in a cyclotron resonance maser
can be described by the same equation used to model the
field evolution in an atomic laser.

The results presented in this paper are remarkable from
two points of view: Firstly, the simplicity of the Landau-
Ginzburg equations when compared with the complicated set
from which they were derived, and secondly the similarity
between atomic lasers and cyclotron resonance masers
through the Landau-Ginzburg equation given the obvious
differences between them.

ACKNOWLEDGMENTS

We acknowledge support from the SERC and AEA Tech-
nology. The author would like to thank B. W. J. McNeil for
helpful discussions.

[1]B.W. J. McNeil, G. R. M. Robb, and A. D. R. Phelps, J. Phys.
D 27, 1092 (1994).

[2] R. Bonifacio, F. Casagrande, and L. De Salvo Souza, Phys.
Rev. A 33, 2S36 (19S6).

[3] R. Bonifacio, C. Maroli, and A. Dragan, Opt. Commun. 76,
353 (1990).

[4] M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics
(Addison-Wesley, Reading, MA, 1974).


