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We investigate polyampholyte chains with random sequences of positive and negative charges using simple

scaling arguments. We show that Coulomb interactions between charges of opposite signs in a single chain lead

to formation of a globule. Due to a net charge the globule might be strongly elongated depending on the value

of the net charge. This effect is especially pronounced for chains with long-range correlations in the sequence
of charges. When the net charge is strong enough the radius of gyration may even grow as the temperature

decreases.

PACS number(s): 36.20.Ey, 64.60.Cn, 82.35.+t, 87.15.By

The problem of polyampholytes has recently received
much attention [1—7]. Polyampholytes are linear molecules
composed of positively and negatively charged monomers. If
the overall charge per monomer is nonvanishing in the ther-

modynamic limit, then electrostatic repulsion due to this
overall charge results in a completely stretched rodlike con-
formation of the chain [8].The case in which, in the thermo-

dynamic limit, the net charge per monomer vanishes is more
subtle. This happens when the sequence of charges is random

with equal probability of positive and negative charges. It
was shown [1]that electrostatic interactions in such statisti-

cally neutral chains result in the collapse of those chains. A
detailed analysis of the collapse by means of scaling argu-

ments and the so-called "uniform expansion method" was
done by Higgs and Joanny [3].Their analysis was based on
the assumption that the equilibrium distribution of charges in

space is similar to that in a simple ionic solution. Accord-

ingly, the contribution of Coulomb interactions can be esti-
mated from the Debye-Huckel theory. The same result was
obtained [7] within the framework of the random phase ap-

proximation.
It should be mentioned that the approaches used in Refs.

[3,7] do not distinguish between the quenched and the an-

nealed sequences. In particular, they do not take into account
the effect of the random net charge. At the same time, it was
shown [4] numerically and by means of scaling arguments

that electrostatic repulsion due to a net charge imbalance
must not be neglected and may lead to a stretched rather than

a collapsed state.
In this paper we address the problem in more detail. Our

conclusion is that the presence of charges of opposite signs
does result in a globular state. At the same time, the globule
may be strongly elongated due to a random charge imbal-

ance, the shape of the globule being strongly dependent on
the value of the net charge.

The model under consideration is a linear chain composed
of a random sequence of N positive and negative charges

qo occurring with equal probability. The size of a charged
monomer is a. If the sequence of charges is uncorrelated,
then the random overall charge Q is of the order of qoN +.
We also study random sequences with long-range correla-
tions similar to those that have been found in DNA [9] and
protein [10] sequences. For such sequences the net charge

with O~u&1. In the absence of long-range correlations
a=1/2, while u&1/2 corresponds to anticorrelations and

u)1/2 corresponds to positive correlations. In particular,
a = 1 corresponds to polyelectrolytes.

The important dimensionless parameter in the problem is

u=—q,/a/tnT,2 (2)

where T is the temperature and kz is the Boltzmann constant.
It is seen that the parameter u is just the energy of the Cou-
lomb interaction of neighboring charges along the chain, di-

vided by k~T. If u ~ 1, then Coulomb interactions are strong,
while u&&1 corresponds to weakly charged polyampholytes
or to high temperatures.

Consider, first, the case of strong electrostatic interactions
when u~1. In this case a globular state with maximal den-

sity p-a seems to be the most favorable. Indeed, in such
a globular state each charge is surrounded mainly by charges
of the opposite sign. As a result charges are effectively
screened on the microscopic scale a and electrostatic inter-
actions are effectively short range. Therefore the free energy
of the globule is additive, i.e., it is proportional, in the ther-

modynamic limit, to the number of charges N. In fact, such
a dense globular state was observed in the computer simula-
tion of neutral polyampholyte chains [4]. It should be men-

tioned also that if the chain is not too flexible, then there
must be a frozen phase at low enough temperature as in the
case of short-range interactions [11].In this phase only a few
conformations dominate in equilibrium.

These arguments resolve the question when the chain is
neutral (Q=O). If Q 4 0, then this extra charge Q is not
screened and its contribution to the energy of a globule can
be estimated as E,-Q /R, where R is the size of the glob-
ule. If the globule has a spherical shape, then

R-(N/p) -aN'+ and E,-Q /aN +. Therefore the en-

ergy E, of Coulomb repulsion of the net charge becomes of
order N only when Q qoN /, i.e-., when tx=2/3 Thus one.

might think that when a(2/3 the net charge is negligible
and only when u&2/3 does the Coulomb repulsion caused

by the net charge destroy the globule.
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l'a come to the conclusion that the random net charge must not
be neglected for a&1/2 and it strongly elongates the globule
in this case with

R -aN~4 -'~"
~~

—a

and

Rii R -aN

FIG. 1. Elongated globule. R~~ is the length of the globule and

R~ is its width. The globule is formed by tightly packed blobs. a, is

the size of a blob.

This conclusion is wrong. In fact, the net charge cannot be
neglected when u~ 1/2, in particular, in the case of uncorre-

lated sequences. The Coulomb repulsion due to the net

charge does not destroy the globular state but it makes the

globule elongated (to be compared with [13]).
More exactly, let us consider a strongly elongated globule

with length Rl and width R~«R~~ (see Fig. 1). Since the

density inside the globule p- a and its volume

V-R~Rl, we have R~R~i~/a -N and R~-(a N/Rl)'~ . The
main contribution to the free energy of such a globule is of
order N and it is the same as for a spherical globule. The
difference is only due to the surface tension and the electro-
static repulsion caused by the net charge. A simple estimate
of the corresponding contributions to the free energy is pos-
sible.

Since in a dense globular state Coulomb interactions be-
tween all charges but the net charge are screened and, there-

fore, are effectively short range, the surface-tension

coefficient o can be estimated as o.-qo/a . The surface

area of a strongly elongated globule is of order of
S-R~Rl-(a NRl)" and the surface free energy

F ~S qo(NRII/a')"'.
Now we estimate the contribution to the free energy due

to the net charge. Coulomb repulsion of this charge results in

a homogeneous distribution of the net charge inside the glob-
ule (more precisely, on the surface of the globule, see be-
low). The homogeneity of the distribution makes it possible
to estimate the energy of the electrostatic repulsion E, due to
the net charge. Neglecting logarithmic corrections we have

E,-Q /Ri~i.

Thus the nonadditive part of the free energy

as a function of the length R~~ reaches the minimum at

R, -a(Q/q )4"N

the width being

R~-a(Q/qo) ~ N

(4)

Let us note that this estimate is valid when R~&~R~~. This
implies a limitation on the value of the net charge Q:
Q&)qoN ~ . In other words, if the net charge is small

(Q ~ qoN" ), then the shape of the globule is close to
spherical. In contrast, when Q &&qoN ' the globule is

strongly elongated. Taking into account that Q-qoN, we

In particular, at +=1, i.e., for polyelectrolytes, R~~-aN and

R~ —a which means that a chain is completely stretched as it
should be in the case of strongly interacting polyelectrolytes.

Thus, when a&1/2 a polyampholyte globule is strongly
elongated. The degree of the elongation can be described by
the ratio of the length to the width of the globule
A —=R~~/R~ . For the polyampholyte globule

g —N2~ ~&+ 1

when a& 1/2. At the same time, the most interesting case of
uncorrelated sequences corresponds to a=1/2. In this case
the minimization of the nonadditive part of the free energy
with respect to Rl formally gives Rl-R~-aN" and
A-1. However, the assumption that R~«Rl is not valid and

a more delicate consideration is required.
First of all, we notice that due to changes in the chain

conformation the net charge can move inside the globule. In
this sense a polyampholyte globule behaves as a conductor
with respect to this charge. In fact, the movement of the

charge leads to a certain loss of the free energy. In order to
estimate this loss, we notice that in an ordinary conductor an

overall charge is on the surface of the conductor. Placing a

net charge on the surface of a polyampholyte globule can be
considered in terms of [12] as a somewhat weak separation
between negative and positive charges. The loss of the en-

tropy due to a weak separation was calculated [12]. In the

case of a polyampholyte with Q -qoN'~ this gives the value

of order of N, the polymeric bonds being unimportant.
Thus the loss of the free energy caused by placing a net

charge Q-qoN" on the surface of a polyampholyte globule
is of order of N' . At the same time, the nonadditive part of
the free energy is of order of N . Therefore a polyam-
pholyte globule does behave as a conductor with respect to a
random net charge.

The problem of a charged conducting droplet is a classical
one [14]. If the overall charge Q of the droplet does not
exceed a certain threshold Q*, then the spherical shape of
the droplet is stable under small deformations. When Q ex-
ceeds Q* the spherical shape becomes unstable. However, at

even lower (than Q*) overall charge the spherical shape be-
comes globally unstable; dividing the original droplet into
two equal droplets with equal charges and separating them
from each other at infinite distance is more favorable. In
other words, in equilibrium, a charged conducting droplet
always has a spherical shape and breaks into smaller droplets
when its charge increases.

For a polyampholyte globule this breaking is impossible
because all charges are connected by polymeric bonds into
one chain. Therefore, when Q&Q*, such a globule cannot
do anything but elongate. One can calculate the value of the
threshold Q* exactly [14]but for our consideration a simple
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estimate is enough. The fact that at Q =Q* the energy of the
electrostatic repulsion E, is comparable to the surface free
energy F, [14] provides such an estimate. For polyam-
pholytes it gives Q*-qoN / . At the same time, for polyam-
pholyte chains without long-range correlations (a= 1/2) the
random net charge Q has a Gaussian distribution with a zero
average and with the standard variance hQ=qoN'/ -Q*
Therefore a net charge Q exceeds the threshold Q* with a
finite (in the thermodynamic limit) probability. Accordingly,
a finite fraction of random polyampholytes form elongated
globules with A ~1 and the other (also finite) fraction form
spherical globules.

Thus, even for uncorrelated sequences one cannot neglect
a net charge imbalance, because it can change the shape of a
polyampholyte globule. In addition, this effect is not self-
averaging in the sense that at a~1/2 the shape of a globule
(the value of A) strongly depends on the specific sequence.
Thus, for example, the radius of gyration strongly changes
from sequence to sequence, even in the thermodynamic limit
N —+~. That means that averaging over random sequences of
the radius of gyration does not cover the problem. It should
be noted that with respect to the free energy the system is
self-averaging, because the main contribution to the free en-

ergy is of order of N and it does not depend either on the

shape of the globule or the net charge.
Until now we considered the case of strong electrostatic

interactions when u =qo/aksT —~ 1. Let us now consider the

opposite case of weakly charged polyampholytes in which
u(&1. In such a case it is convenient to introduce the new
renormalized monomer consisting of g original monomers
neighboring on the chain. The charge of such a renormalized
monomer q„(g)-qog and its size a„(g)-ag", where
v= 1/2 in a 8 solvent and v=3/5 in a good solvent. Accord-
ingly, the renormalized dimensionless parameter

u, (g) =q„(g)/a „(g)—k&T- u g

This consideration is valid only up to u„(g) 1.
If u~ v/2, which corresponds to strong enough anticorre-

lations in sequences of charges, then for any g the renorrnal-

ized parameter u, (g) (&1, that is, electrostatic interactions are

negligible on all scales. Thus the conformation of a polyam-
pholyte is not perturbed by charges.

In contrast, at a& v/2 the parameter u„(g) grows with

increasing g and becomes of order 1 when

g go g1/(v —2a)))

That means that electrostatic interactions between the renor-
malized monomers become strong and we come back to the
problem, considered above, of strong electrostatic interac-
tions, but instead of real monomers we have renormalized
monomers (blobs). As we showed before, such a chain forms
a globule of tightly packed (renormalized) monomers (see
Fig. 1).Therefore the density p of such a globule is equal to
the density of the original monorners inside the blob:

g 4/ 3(g 4
)

—3 (3 v —1)/(2u —v)

This result for a= 1/2 coincides with the result obtained in

[3] by means of the Debye-Hiickel theory.
The result also shows that with increase of electrostatic

interactions (decrease of temperature) the density of the
globule increases. It is not clear, however, what happens to
the shape and the size of the globule. When v/2( n( I/2 the

globule is spherical and it just collapses as temperature de-
creases. In order to analyze the behavior at n) 1/2 we just
use the results for R~~, R~, and A obtained for the case of
strong interactions. These results are valid now for blobs, in

particular,

A -N„'(g *)-(N/g) (12)

which means that with decreasing temperature the globule
becomes more elongated. Accordingly, the width of a globule

R~ always decreases, while the length

N(4u —1)/3( s) v+(1 —4u)/3

—aN( u ')/ (q2/~ak T)('+('
yqpi 0 (13)
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It is seen that if 1/2(u(n*—=(3v+1)/4, then with de-
crease of temperature (decrease of g*) the length of a glob-
ule decreases as well. In contrast, when n& o.* with decreas-
ing temperature the length of the globule and, therefore, the
radius of gyration grow in spite of the growth of the density
inside the globule.

In conclusion, we have investigated the effect of a random

charge imbalance on the behavior of a single polyampholyte
chain composed of a random sequence of positive and nega-
tive charges with equal probability. The Coulomb attraction
between charges of opposite signs leads to globularization of
a chain. Nevertheless, a random charge imbalance can result
in strong elongation of the globule. This effect is drastic for
polyampholytes with positive long-range correlations in a
sequence of charges. An unusual behavior when the radius of
gyration grows as temperature decreases is possible for such
chains. The degree of the elongation strongly depends on the
value of the net charge, i.e., on the specific sequence, even
for very long chains.

The strong elongation predicted by us can be verified ex-
perimentally using, for example, small-angle scattering. The
results of scattering experiments on polyampholytes are re-

ported [15].Here one comes across the solubility problem
which is vital for real experiments. We think that the solution
of the single chain problem presented in the present paper
may help to approach the solubility problem. The corre-
sponding work is in progress.
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