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Domain wall between traveling waves
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A boundary (wall) separating two domains filled with traveling waves is considered within the framework of
coupled Giuzburg-Landau (GL) equations with complex coefficients aud group-velocity terms. The domain

wall may be realized as a boundary produced in two dimensions by a collision of waves traveling in different

directions, or as a sink or source of left- and right-traveling waves in one dimension. In the latter case the

configuration is always symmetric, while in the former case it may be asymmetric. Under the assumption that

the group velocities and imaginary parts of the coefficients in the GL equations are small, while the nonlinear

coupling coefficient is close to 1, both symmetric and asymmetric solutions are obtained analytically. In

particular, it is found that the sink must be broader than the source, which seems to agree with the recently

reported experimental observations [P. Kolodner, Phys. Rev. A 46, 6431 (1992)] of the sinks and sources in

traveling-wave convection, and that the wall uniquely selects the wave numbers of the colliding waves. In the

asymmetric case, it is demonstrated that the boundary is moving at a certain velocity, which is also found.

PACS number(s): 47.54.+r, 44.25.+f

Since the pioneering works of Cross [1]and Manneville

and Pomeau [2], linear defects in the form of domain walls
(DW's) in two-dimensional (2D) patterns have attracted con-
siderable attention from theorists [3—6]. In experiments with

convection in pure and binary fluids, which is the most typi-
cal example of a physical system able to produce well-

ordered 2D patterns, the DW's have not been in a focus, but

they were observed as a "byproduct" in many works (see,
e.g. , Refs. [7]).Another well-controllable system allowing
accurate experiments with various patterns was the so-called
Faraday ripples, i.e., a liquid layer subject to vertical oscil-
lations. In this system, a linear defect that could be certainly
identified as a stable DW was observed recently [8].As con-
cerns the theory, the DW solutions were analyzed in rather
full detail in the framework of the Ginzburg-Landau (GL)
equations with real coefficients [1—6], which corresponds to
the classical Rayleigh-Benard convection in pure liquids (in
systems of this type, a DW separating the trivial phase and a
nontrivial one can also be generated by the so-called ramp,
i.e., a spatially inhomogeneous region sandwiched between
sub- and supercritical domains, which was analyzed in detail
in terms of convection [9]and the Couette-Taylor flow [10]).

The objective of this work is to consider the DW's in

models of wave (oscillatory) media, which can be realized,
erst of all, as the traveling-wave convection in binary liquids
(see, e.g., Ref. [11]).In these systems, a DW may be pro-
duced in two different ways: as a result of a collision be-
tween two traveling waves propagating under different
angles in 2D geometry, or as a result of a collision between
left- and right-traveling waves in 1D. In the latter case, one is
dealing with local defects of the sink and source type (a sink
absorbs the colliding waves, while a source emits waves),
which may be regarded as spatiotemporal DW's. Generally,
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the 2D case is more complicated, and it was not studied

systematically. Contrary to this, interaction of the left- and

right-traveling waves in 1D was considered in a number of
experimental works; e.g. , in Ref. [12], as well as theoreti-

cally [13,14].Results of a very thorough experimental inves-

tigation of the source and sink defects in 1D were recently
reported by Kolodner [15].

It is noteworthy that structures that are qualitatively simi-

lar to the spatiotemporal DW's in the 1D pattern-forming
media may as well occur in absolutely different physical
contexts. An interesting example is an exact solution of this

type found in Ref. [16]for the system of two coupled equa-

tions for the pump and Stokes waves in a nonlinear optical
fiber, the coupling being produced by the stimulated Raman

scattering.
The theoretical description of the DW in the nonoscilla-

tory systems is based on a pair of coupled GL equations for
the amplitudes of the basic spatial harmonics which consti-
tute the 2D pattern [3,5]. It is natural to expect that the DW
in the 2D wave system may also be described by coupled GL
equations. However, the GL equations for the wave system
must include complex coefficients (which combine the dissi-

pative and dispersive properties of the medium, correspond-

ing, respectively, to the real and imaginary parts of the com-

plex coefficients), as well as additional group-velocity terms.

Similar coupled GL equations are well known to govern in-

teraction of the left- and right-traveling waves in 1D. The

coupled GL equations with the group-velocity terms but with

purely real coefficients were introduced by Cross [17] (ear-

lier, a description of the system of the same type based on a

single fourth-order GL equation, which is, in fact, equivalent
to a pair of the coupled second-order equations, was put
forward in Ref. [18]). In the present work, the following

system of the GL equations will be considered, which is
similar to the equation system recently employed by Coullet
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where A& and Az are complex envelope functions of the two
interacting waves (the left- and right-traveling waves in the
1D geometry, or the waves colliding at the DW in 2D; in the
latter case, x is the coordinate perpendicular to the DW
[3,5]). The coefficients ~c,z, y, D, and PD, z account for
linear properties of the medium, i.e., respectively, the mean

group velocities, overcriticality, dissipation, and spatial dis-
persion. In the 1D case, there is a full syrmnetry between the
two waves, hence the subscripts 1 and 2 attached to the co-
efficients c and D can be dropped. In the 2D case, the DW
may be asymmetric, [5], i.e., the normal to it may have un-

equal angles 8& and 8z with the carrier wave vectors of the
two waves, so that

c„=ccos8„,D„=Dcos8„.
As will be demonstrated below, an important difEerence of
the DW in the wave system from that in the nonoscillatory
system is the fact that the asymmetric DW will be moving at
a certain velocity u. In order to find a steady solution, it is
then natural to consider Eqs. (1) and (2) in the reference
frame moving with the velocity u, modifying Eqs. (3) as
follows:

cy 2= c cos8~~Q . (4)

The signs in front of the term u in Eq. (4) are opposite for
n = 1 and n =2 to compensate the opposite signs in front of
c, and cz in Eqs. (1) and (2). The meaning of different non-
linear terms in Eqs. (1) and (2) is obvious. In particular, the
real coefficients p, , a, and y account, respectively, for the
nonlinear cross-dissipation, self-phase modulation, and
cross-phase modulation.

The main issue to be addressed in this work is obtaining
DW solutions of Eqs. (1) and (2) in an approximate analyti-
cal form. Guided by the experience gained in solving other
problems for the generalized GL equations (e.g. , finding a
solution for a stable solitary pulse in the quintic GL equation
[19]), one should attack the problem assuming that all the
dispersive parameters p, n, and rg are small. In the zeroth
approximation, it is necessary to find a DW solution to
Eqs. (1) and (2) for the case when these parameters are ab-
sent but the group velocities are present. In this approxima-
tion, one may look for a real time-independent solution that
satisfies the equations

et al. [14] for analysis of the sources and sinks in 1D:

(At)i+cd(Ai)»=yAt+Di(Ai). +&PDt(A~)..—IAtl'At

—2u IAzl'Ai —i~lA x I'Ai —2r ~IAzl'At

(I)

Equations (5) and (6) cannot be solved analytically (except
for the case when one may completely neglect the second
derivatives [14]; however, this case seems oversimplified).
Moreover, the analysis developed in Ref. [5] has shown that,
even in the case cz z= 0, exact solutions can be found only in
exceptional cases. The most important tractable case was that
when the nonlinear coupling coefficient 2p, was close to 1,

2p, =1+e, @&&1 .

A|=—Rcosg, Az—=Rsiny . (8)

It is easy to understand that, in the lowest approximation
with respect to the small parameters, one may assume the
amplitude R to be constant, reducing Eqs. (5) and (6) to a
single equation for the angle y. The simplest way to derive
this equation is to notice that Eqs. (5) and (6) with c,z=0
can be deduced from the Hamiltonian

(dA, ~
' (dA, ~

'
H= = Dg +Dz + —y(A, +Az)2

~
dx ( ~

dx ( 2

——(A +A ) ——eA A
1 2 22 1 22
4 1 2 2 1 2' (9)

The terms in Eqs. (5) and (6) proportional to c, z break the
conservation of the Hamiltonian according to the following
obvious equation:

(dAt)
dx i dx (10)

Next, one may make use of the well-known balance equa-
tions technique (see, e.g., Ref. [20]), inserting Eqs. (8) into
Eq. (10), assuming in accordance with what was said above
that R =Ro=—const, and calculating the left- and right-hand
sides of the equation. After a simple algebra, this procedure
gives rise to the following equation for g(x):

1
(D&sin y+Dzcos y)g"+ —(D~ —Dz) sin(2g)(y')

2

1-- —eRosin(4g) = (c,sin y —cocos y)y', (ll)

the prime standing for „—"„.In the symmetric case

(Dq=Dz—=D, c&=cz——c), Eq. (11) simplifies to

1
y" = —eD Rosin(4g) cD cos(2y) g' . —(12)

The inequality (7) will be adopted in this work too. Simul-
taneously, it will be assumed that the group velocities c& z are
also small. Note that it makes sense to consider only positive
e, as otherwise the solutions with constant A

& 4 O, A2= 0 or
Az + O, A &

=0, which correspond to the uniform phases sepa-
rated by the DW, are unstable [5].

In the case when e and c& z are small, it is natural, follow-
ing Ref. [5], to introduce the polar variables:

ct(A q)»= yA r

+Dr�

(A t)»» A t 2@AQ &, — —

—cz(Az)»= yAz+D~(A~)»» A~ 2pA, A2. — —

(5)

(6)
Note that at c~@=a=0 the Hamiltonian (9) conserves the
angular momentum M =A&Az —AzA,'—=R y'. It is straight-
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also be explained in the framework of Eq. (14). Indeed, it is
known from the empirical data for the traveling-wave con-
vection (see Ref. [21] and references therein) that the effec-
tive group velocity of the traveling waves is rather small. At
the same time, an actual value of the parameter e defined by
Eq. (6) that corresponds to the real traveling-wave convec-
tion should not be really small. Then, Eq. (17) with c small

and e nonsmall yields the ratio of the two widths, which is
only slightly larger than 1.

The analysis developed above applies only to the symmet-
ric case. It will be shown now that in the asymmetric case
(c, 4 c2, D t 4 D2) the DW will be moving, which is a seri
ous difference from the nonwave systems [5].To tackle the

asymmetric situation, one may consider the case when c, 2

are much smaller than e. In the zeroth approximation,
c&2=0, the asymmetric DW does exist, as was said above,
and in this approximation the corresponding function g(x) is
determined by the equation [5]

y'= —PeRsin(2g)(D, sin y+D2cos y) (15)

FIG. 1. The schematic structure of the sink (a) and source (b}
solutions as given by Eqs. (8) and (13).The continuous and dashed

lines depict, respectively, the amplitudes A, (x) and A2(x). The
arrows show the sign of the group velocity associated with each
amplitude.

forward to check that application of the balance-equations to
the quantity M when c and e are different from zero leads
exactly to the same Eq. (12).

The DW solution to Eq. (12) can be found in an exact
form:

1 -1
y(x) = tan '[exp(rrx)], Ir= D'( c~ g—c +46—DRo).

(13)

To construe this solution, one should insert it back into Eqs.
(8). Then, setting, for the definiteness, c)0, one sees that the
solutions with the upper and lower signs in Eq. (13) take the

form shown, respectively, in Figs. 1(a) and 1(b). In both

cases, one has asymptotically, at x~ ~~, one of the ampli-

tudes A& 2 equal to Ro and another equal to zero. Thus, this
solution may indeed be regarded as a boundary separating
domains filled with two different phases. In Fig. 1, the ar-

rows show the sign of the group velocity of the waves in

each phase according to the choice c&0. One immediately
notices that the DW shown in Fig. 1(a) is a sink, while the
one in Fig. 1(b) is a source. As follows from Eq. (13), the

sink and source have different widths L —
I rrI

$4@DR&+c +c
L lLsink source

p+C C
(14)

So, Eq. (14) predicts that the sink should be broader than the
source. Plots representing a detailed structure of the sinks
and sources observed in the traveling-wave convection can
be found in Ref. [15].It seems that, according to those plots
(see, in particular, Fig. Sa), the experimentally observed
sinks are indeed broader than the sources. However, the dif-
ference in their widths is not very conspicuous, which can

Next, substitution of Eqs. (8) withRo=const and ct 4 cz into
the energy-balance equation (10) yields

dH
=Ro(c, sin y —c2cos y)(g')'. (16)

To proceed further, it is necessary to insert Eq. (15) into Eq.
(16) and calculate the net change hH of the Hamiltonian

along the solution from x = —~ to x = +~:

t +"dH
AH =— dx.

oc dx
(17)

Calculation of the integral yields

5H= ~—(/Dt+ /D2) peRO(2ct /D2 2c2/Dt—

+c, u D, c2 /Dz), —

1
tr = c(cos8t cos02) .

3
(19)

Thus, the asymmetric DW moves at the velocity given by
Eq. (19).It is relevant to emphasize that this expression has

a dynamical origin, and it should not be interpreted as a
kinematic formula for the velocity of a point of intersection
of two moving lines.

Thus far, the dispersive terms in Eqs. (1) and (2) have

been ignored. They will now be taken into account as small

perturbations, and it will be demonstrated that they lend each

where + and —correspond, respectively, to the source and

sink. On the other hand, the DW boundary conditions ac-

cording to which A] =0 A2=Rp at one infinity, and A2=0,
A, =Rp at the opposite infinity correspond to equal values of
the Hamiltonian (9), which demands b H= 0. Now, inserting
into Eq. (18) the coefficients D, 2 from Eq. (3) and c, 2 from

Eq. (4), one immediately finds that b,H vanishes at
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wave A& and A2 a uniquely determined wave number. Only
the symmetric case will be considered. The solution is sought
as

A„=R„(x)exp[i/„(x)—i rut], (2o)

where n = 1,2, and the amplitude functions Rt 2(x) are taken
as given by the right-hand sides of Eqs. (8), with R=Ro and

y(x) as per Eq. (13). Substitution of Eq. (20) into Eqs. (1)
and (2) leads to equations for the phases which can be con-
veniently written as follows:

D(R„q„)' = —ruR„—PR„R„"+aR„+2 rJR3 „R„,(21)

where q„—=P'. At x= ~ ~, Eqs. (21) yield an expression for
the frequency: co= nR&. The next step is to find the asymp-
totic wave numbers Q„—=q„(x= ~ ~). Integrating both parts

of Eq. (21) over x from —~ to +~, one notices that the

integral of the left-hand side, which is a full derivative, is
~DRoQ„,while the integral of the right-hand side can be
calculated explicitly if one inserts the expressions (8) for
R„,and then the expression (13) for y(x). Eventually, it is
easy to find

, , i1 i, 1
Q„=(—1)"(Da) Ro —u —

rg Ro ——Pv2
(22)

Equations (22) demonstrate how the DW performs the wave
number selection for both domains, which is a well-known
general problem of the pattern formation theory [10,11].

I am indebted to W. S. Edwards, A. A. Nepomnyashchy,
and H. Riecke for useful discussions.
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