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A new class of exact solutions is reported for an infinite stream of identical groups of bubbles moving with
a constant velocity U in a Hele-Shaw cell when surface tension is neglected. It is suggested that the existence
of these solutions might explain some of the complex behavior observed in recent experiments on rising
bubbles in a Hele-Shaw cell. Solutions for a finite number of bubbles in a channel are also obtained. In this
case, it is shown that solutions with an arbitrary bubble velocity U>V, where V is the fluid velocity at infinity,
can in general be obtained from a simple transformation of the solutions for U=2V.

PACS number(s): 47.15.Hg, 47.20.Ky, 68.10.—m

The original motivation for the research reported here was
provided by the experimental work performed by Maxwor-
thy [1] on bubbles rising in a tilted Hele-Shaw cell (a viscous
fluid confined in a narrow gap between two glass plates). In
Maxworthy’s experiments, air was continuously injected at
the bottom of cell leading to the formation of a stream of
rising bubbles. He noticed, however, that when the spacing
between bubbles was less than three or four bubble diam-
eters, alternate bubbles would catch up with their upstream
neighbors thus forming a pair of bubbles. Further pairing
would then follow, thus creating stacks of four bubbles, eight
bubbles, etc.

This complex bubble dynamics is reminiscent of similar
behavior displayed by other nonlinear fluid systems, e.g., the
“chaotic dripping faucet” [2]. In fact, recent experiments
performed by Tritton and Egdell [3] have shown that bub-
bling from a submerged orifice does indeed exhibit a chaotic
dynamics. In the case of bubbling into a tube [3] as well as
dripping from a faucet [2], the chaotic behavior is deter-
mined by the complex dynamics governing the detachment
of the bubble or drop from the orifice. In the case of a Hele-
Shaw cell, on the other hand, the rich behavior seen in the
experiments seems to stem from the hydrodynamic interac-
tion between bubbles rather than the details of bubble injec-
tion. For instance, it will be argued below that the origin of
the “pairing mechanism” might be related to the existence of
steady solutions for multiple Hele-Shaw bubbles.

First I recall that the motion of viscous fluid in a Hele-
Shaw cell is assumed to be governed by Darcy’s law [4]:

s

VZ—E/;[VP—Pg], (1)

where v is the fluid velocity (averaged across the gap), p is
the pressure, b is the gap width, u is the viscosity, p is the
density, and g is the component of the gravitational accelera-
tion parallel to the plates. Here I shall neglect surface tension
effects so that the pressure is constant along the bubble sur-
face. Note that in this two-dimensional model gravity plays
no dynamical role when g is parallel to the cell centerline (as
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was the case in Maxworthy’s experiment [5]) since it can be
removed from the equations of motion by a suitable rescaling
of variables [6]. The question then is how much of the com-
plex behavior observed in the experiments can be explained
on the basis of this simple model, without the need of intro-
ducing the complicating factor of surface tension, let alone
three-dimensional thin film effects.

To the best of my knowledge, the first theoretical work to
address this question is due to Burgess and Tanveer [7,8].
They found an exact solution for an infinite stream of iden-
tical bubbles in a channel when surface tension is neglected.
Although the Burgess-Tanveer solution is relevant to the
stream of approximately identical bubbles observed in the
experiments [1], it cannot account for the subsequent ““pair-
ing”’ that occurs once the initial stream of bubbles becomes
unstable.

In this paper I report a rather general class of exact solu-
tions for steady bubbles in a rectilinear Hele-Shaw cell when
surface tension is neglected. These solutions correspond to
an infinite stream of identical groups of bubbles in a channel,
in which the group centers are at a distance 2L apart from
each other. In other words, the solutions are periodic in the x
direction (taken to be along the channel centerline) with pe-
riod 2L. Let me however emphasize that the solutions pre-
sented below are general enough to allow any number m of
bubbles per unit cell. (Of course, the solutions with m=1
recovers the Burgess-Tanveer solutions.)

It should be noted at this stage that in view of the simpli-
fications of the model, chiefly among them the absence of
surface tension, the solutions above cannot be compared di-
rectly with the experiments. Nonetheless, the existence of
this class of exact solutions might provide a theoretical
framework within which one can understand (at least quali-
tatively) the pairing phenomena observed in the experiments
[1]. Accordingly, the solutions for higher m (or rather their
counterparts with small surface tension) might act as an ““at-
tractor” for the dynamics once the initial stream of bubbles
(or a solution with smaller m) becomes unstable. In this fash-
ion, a succession of instabilities (‘‘bifurcations”) could then
occur as the flow rate is increased, thus leading to successive
pairing (“period doubling”). Clearly a more complete study
of this complex process must necessarily take into account
surface tension effects. Such a task, however, is beyond the
scope of the present paper.

R3306 © 1994 The American Physical Society



50 MULTIPLE BUBBLES IN A HELE-SHAW CELL

ATARALIANAT
VAVIIVAY

2L

FIG. 1. The unit cell with four bubbles.

After this introductory discussion we shall now turn to the
description of our solutions. For definiteness, we assume that
gravity plays no role, i.e., the cell, whose width is 2a, is
horizontally placed. We then consider the problem of a peri-
odic array of m bubbles per unit cell all traveling with speed
U along the channel centerline (assumed to be the x axis).
The fluid inside the bubbles has a negligible viscosity and is
kept at constant pressure. In the plane z=x+iy moving with
the bubbles, the flow is described by the complex potential
W(z)=¢(x,y) +iy(x,y), where ¢ is the velocity potential
in the moving frame [i.e., ¢=—(b%/12u)p—Ux] and ¢ is
the stream function. Now let &}, denote the fluid-bubble in-
terface corresponding to the kth bubble. Then the function
W(z) must be analytic in the fluid region and satisfy the
following boundary conditions:

W=—-Ux+¢; on &, k=12,...,m, 2)
where the ¢;’s are real constants. Equation (2) encodes in a
single expression both the fact that the interfaces must be
streamlines of the flow [i.e., the imaginary part of W is con-
stant (zero) on %%] and the condition that the fluid pressure p
is constant along these interfaces (i.e., the real part of the
complex potential in the lab frame is constant on %7). (For a

more detailed discussion of these boundary conditions see,
e.g., Ref. [9].) We also have

ImW==*(V-U)a at y=*a, 3)

since the solid walls must be streamlines of the flow. Here V
is the average fluid velocity across the channel in the x di-
rection [7], and without loss of generality we set V=1.

We assume here that the bubbles are symmetrical with
respect to the channel centerline (the x axis) and suppose
furthermore that the flow is also symmetrical about the y
axis; see Fig. 1. As a result, we can reduce the problem to a
domain corresponding to one quarter of the original unit cell
(the upper right quarter say). This is advantageous because
now our domain of interest is simply connected. Next we
consider the conformal mapping z= f({) that maps the inte-
rior of the unit semicircle in the ¢ plane onto our fluid do-
main; see Fig. 2. Although most of the formalism that fol-
lows applies (with minor differences [10]) to cases with
either an even number or an odd number of bubbles per unit
cell, we shall for simplicity focus on the former, that is, we
take m=2N.
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FIG. 2. The flow domain corresponding to Fig. 1: (a) the z plane,
(b) the W plane, and (c) the ¢ plane.

Defining ®({)=W(f({)), we can then view the complex
potential as a conformal mapping W= ®({) from the { unit
semicircle to the W plane (see Fig. 2). Because the flow
domain in the W plane is the interior of a polygon (rect-
angle), one can easily construct the appropriate conformal
mapping. One then finds that ®(¢{) is determined by

@_ iC
A [{({—-a)(1-ad]?’

4)

where a, and C are real parameters taking values in the
ranges: —1<a<<0 and C>0.

To obtain the mapping function f({) we shall make use of
a theorem due to Tian and Vasconcelos [11]. Their result
implies, in particular, that if a curve & is a solution for a
Hele-Shaw bubble moving with speed U in a channel (in the
absence of surface tension), then the curve % obtained from
a 90° rotation of & is also a solution moving with the same
speed U. In our conformal-mapping representation, the new
(rotated) solution reads as z=g({)= —if({), with the corre-
sponding complex potential W=13,({) being given by [11]

2(D=i[®(OH+USfD]. ®)

Solving for f({) then yields

1
(9=~ GO +iZ()]. ©)

The advantage of this formulation is that the mapping func-
tion 3,({) can now be easily computed since the flow domain
in the W plane for the rotated problem is also the interior of
a polygon. One then finds that 3(¢) is determined by [10]
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K [I (1=2cosy;i+&?)
dx i=1
“d_: 2N 7, (7

{-a)1-a)]I (1-2cosv;i+ %)

i=1

where K, 7;, and v; are real parameters taking values in the
ranges: K>0, 0<v <wv,y<mw, and v, <7y, <v,, for
i=1,2,...,N.

Thus, Egs. (4), (6), and (7) give the generic solution to the
problem. This solution must, in addition, satisfy specific con-
straints as we shall now discuss. For instance, if we denote
by [W]¢cp the jump in the complex potential as we go from

point C to point D in Fig. 2, that is, [W]¢p

=W(0)—W(ia), then the requirement that [W]¢p

=i(U—1)a yields the following condition:
[®@lcp=i(U—1)a. (8)

Similarly, the conditions [ f]pc=ia and [f]cp=L imply, re-
spectively,

[X]cp=a,

Finally, one must also impose the conditions

ImUE_W“ f’({)d§}=0, k=12,....N, (10)

tVak-1

where the prime denotes derivative and the contour integrals
are along the corresponding arcs on the unit circle: {=e'?,
Vor— 1< 0<vy. The conditions (10) enforce the symmetry
about the channel centerline.

Thus for given U and L there are 3N+3 unknowns
(C,K,a;y,;,vp;_1,V2;, with i=1,...,N) and N+3 condi-
tions [Egs. (8)—(10)], so that the conformal map f({) possess
then 2N free parameters. These correspond, of course, to the
2N geometrical parameters of the solutions: the area and the
position (along the x axis) of each of the N bubbles.

Now we turn to discuss in some detail the particular case
of exact solutions for a finite number of bubbles in un-
bounded (not periodic) domains. Note that in this case the
velocity V introduced in Eq. (3) represents the fluid velocity
at infinity.

One such solution can be easily obtained from our general
solution by simply taking L —, which corresponds to let-
ting «— —1 (see Fig. 2). Thus, setting a=—1 in the pre-
ceding equations yields a (2N+1)-parameter family of solu-
tions for a group of 2N bubbles moving with velocity U
along the centerline of the channel. Another solution can also
be obtained by considering now L as a fixed parameter and
taking instead a—oo. This corresponds to letting a—0 (see
Fig. 2). Thus taking =0 in the equations above and con-
sidering the “rotated” conformal mapping z=g({) gives a
(2N +1)-parameter family of solutions for 2N bubbles in a
channel of width 2L. Note that in this case, however, the
bubbles are aligned perpendicularly to the channel. Since the
channel centerline is a streamline of the flow, one can alter-
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natively think of these solutions as giving a group of N
bubbles moving “side by side” in a channel of width L [10].

In the case of unbounded domains, the solutions with
U=2 possess an interesting property that deserves further
discussion. Let us then indicate with a zero subscript the
corresponding conformal mappings for this case, that is, we
write z= fy({) and

1
fo(§)=~§[<1>o(§)+i20(é)]- (11)

One can now easily convince oneself that the mapping func-
tion ® () for an arbitrary velocity U>1 is simply given by
®()=(U—-1)Py({). The conformal mapping z=f({) for
the general case can thus be written as

1
fO==GUU-D@(D+iZ(0]. (12)

Defining w=1—2/U, we can recast this in the form

1
(== 5[A+ @y +ill=wZy(O)  (13)

Now note that the shapes of the bubbles moving with
velocity U>1 are given by the parametric equations

k() +iy*(6)=f(e'?),

(14)
Vo 1=0<vy, k=1,...,N,
which in view of Egs. (11) and (13) can be written as
xK(6)=(1+ p)xk(0),
(15)

yE(O) =(1—w)yb(8),

where xf(60)+iyk(8)=fo(e'%) are the parametric equations
for the bubble shapes with U=2. Thus, we see that solutions
for any value of U>1 can be obtained from the solutions
with U=2 by a mere rescaling of the spatial coordinates.
This was first noticed by Millar [12] in the context of the
Taylor-Saffman [13] solutions for a single bubble in the
channel geometry. We have shown here that this result holds
in general for an arbitrary number of bubbles in an un-
bounded (rectilinear) geometry.

It is perhaps worth mentioning that there seems to be a
connection between the “special nature” of the U=2 solu-
tions (in the sense described above) and the so-called “se-
lection problem” for Saffman-Taylor fingers. The latter re-
fers to the fact that experimentally only fingers with width
N =1/2 (corresponding to U=2) are observed in the limit of
vanishing surface tension. (This problem is now fairly well
understood theoretically: asymptotics beyond all orders [14]
predict that for a given value of surface tension A has a
discrete set of values, all of which converge to A =1/2 as the
surface tension approaches zero.)

Such an analogy suggests, for instance, the interesting
possibility that in the case of periodic solutions, for which no
“special” value of U exists, the zero surface-tension limit
may not give a unique value for the bubble speed U (for
fixed bubble area). Indeed, in the numerical solutions ob-
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tained by Burgess and Tanveer [7] for a stream of bubbles
with surface tension, there was no clear indication that the
different branches of solutions were converging to the same
value of U as the surface tension parameter was decreased. I
am, however, unaware of any quantitative experimental
study of a stream of bubbles in a Hele-Shaw cell against
which to test the prediction above. Clearly further work is
required to settle this question.

As a final comment, I would like to add that the general
solution with an odd number (m=2N—1) of bubbles per

RAPID COMMUNICATIONS

R3309

unit cell can be easily obtained by setting v,=—w»; and
v1=0 in Eq. (7), and then making appropriate changes in the
subsequent formulas, the details of which will be worked out
in a future publication [10].
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FIG. 2. The flow domain corresponding to Fig. 1: (a) the z plane,
(b) the W plane, and (c) the { plane.



