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Infinitely divisible distributions in turbulence
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The imbedding of the scale similarity of random fields into the theory of infinitely divisible probability
distributions is considered. The general probability distribution for the breakdown coefficients of turbulent

energy dissipation is obtained along with corresponding similarity exponents. Related issues of self-similarity

and asymptotic behavior of statistical characteristics are also considered.
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The concept of scale similarity of random fields was de-
veloped more than a quarter century ago [1—3] (see also a
more recent account of this theory [4] with some additional
details, including the multifractal representation). The origi-
nal purpose of this concept was to describe the phenomenon
of self-similar intermittency of turbulent flows which was
observed experimentally [5].However, the concept is quite
general and its applications (and rediscoveries) have
emerged in many areas of science, as diverse as biology and

astrophysics. The main purpose of this Rapid Communica-
tion is to imbed the concept of scale similarity into the theory
of infinitely divisible probability distributions. This will give
us access to the well developed mathematical apparatus,
which can be used not only for the description of experimen-
tal data but also for derivation of scale similarity from basic
principles (from the Navier-Stokes equations in the case of
turbulence).

We can distinguish between discrete and continuous self-
similarity. In the discrete case there is a preferable scale fac-
tor leading to the logarithmically periodic modulations [1,4]
(this phenomenon sometimes is called lacunarity [6,7]). In
this paper we concentrate on the continuous self-similarity
without a preferable scale factor.

For simplicity consider a one-dimensional section of a
non-negative scalar field (e.g., dissipation rate). This is in
accord with experimental reading in time (with the aid of the
"frozen-flow" hypothesis). Thus e„ is the dissipation (or
similar quantity, see Ref. [3]) averaged over the segment r
For a turbulent flow which is locally isotropic in scales less
than a certain external scale L, the two- and three-
dimensional statistical characteristics have the same form
(see obvious exceptions in Ref. [4]).

Consider inertial range of scales l ~ &&r&&L, where l ~ is an
inertial scale, which can differ from the Kolmogorov internal
scale because of the intermittency correction [1,8,9]. In the
inertial range we shall single out three segments inserted in
one another with length r& p&l and introduce correspond-
ing breakdown coefficients (BDC's):

(q~t) =a (l/r) =a&(p/r)az(l/p),

az(l/r) = (I/r) "&, p, (0)=0.

(3)

(4)

Here ( ) means statistical averaging and we used arbitrari-
ness of p and normalization of probability. In Refs. [2,3] it
was shown that

/ (I)=o, 0&p(2)-=p&1,

/ (p+ ~) —I (p)-b (~-0)

I (p)-/ +p —2 (p-2)

(5)

(6)

(7)

Inequality (6) follows from (1), and (7) follows from (6) and

(5). The probability density W(q, l/r) for q„ t is uniquely
defined by the set of p(p) with integer p (p=0, 1,2, . . . ),
because (7) ensures the fulfillment of the Carleman condition
[10]:

g U2&= oo
2p

p=1

If function p,(p) has analytical continuation into the com-
plex domain, then the characteristic function of ln(q, t) has
the form

In (1) we utilized the fact that the dissipation rate is non-
negative. The scale similarity is determined by the following
conditions: (i) probability distribution for BDC's depends
only on the ratio of the corresponding scales and (ii) q„~ and

q~ t are statistically independent [instead of (ii) we can use a
less restrictive condition [4]]. More general conditions,
which take into account exact relative positions of segments,
are considered in Ref. [3] (see also discussion below). For
the moments of BDC's from conditions of scale similarity
and (2), we have

q„ t—= e„/et~ l/r, P(s, l/r) =(exp(is lnq, t)) = q"W(q, l/r)dq=(l/r)"t" .
Jo

qr, l qr, pq p, l (2) The last equality in (9) can be inverted, giving
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1
W(q, //r) = exp[ —is lnq+ p(is)ln(//r)]ds. (10)

2VTq J

(po.+ 1)' —1
p, (p)=x p—, , n41

The standard way to construct a model is to make an

assumption, say, about W(q, 2). From (4) we obtain

ln(po + 1)
In(~+1)

t 2

p, (p) = log, q&W(q, 2)dq .
0o

Then, from (10) [or from a lengthier formula [3,4] when

p(p) is not analytical] we may calculate W(q, //r) In .order
for the model to have physical and mathematical sense, we
must ensure that for arbitrary 1/r the probability density W
is non-negative and properly normalized by integration over
the finite interval [O,l/r]. Generally, it is not easy to verify
these conditions analytically or even numerically. Thus,
many models, proposed in the literature, remain question-
able.

The solution to this problem comes from the observation
that for arbitrary 1/r and arbitrary integer n, Eq. (9) can be
written in the form

A(s, //r) = P(s, (//r) "") (12)

y(s) = exp~ ibs-
Jo

P(dx), b~O. (13)

Here P is a measure on the open interval (0,~) such that

(1+x) ' is integrable with respect to P. From (9) and (13),
by using variable z„ i= ln[(r//)q„I] (0-z„—I & ), we get

u(p) = ~p-
Jo

F(dx), (14)

Thus, lnq„& has the infinitely divisible probability distribu-
tion [10].Now we can use the Levy-Baxter-Shapiro (LBS)
theorem [10],which gives the general form of the character-
istic function for the infinitely divisible distribution, concen-
trated on interval [Op&):

A particular case of (19) with a=o.=1 was considered in

Ref. [3]and corresponds to the constant density W(q, 2). The
density W(q, //r) for arbitrary 1/r was calculated analytically
in Ref. [3] and it has all the necessary properties. Another
case of (19) with a=1, o =0.283 was considered recently

[11]and compared with experimental data on p, (p). Formula
(19) with a = 1 corresponds to the I' distribution [10,11] for
z„&. A particular case of (18) with a=1, u= was also
considered recently [12] and corresponds to the distribution
of z„ i presented in Ref. [10],Problem 14, Chap. 13.As far as
I know, the general formula (18) and corresponding probabil-

ity distribution has not been considered before, at least, in

the literature on turbulence.
Experimental data on p,(p) (see, for example, Ref. [13])

corresponds to a smooth curve, which can be easily fitted by
choosing parameters in (18) or (19).A more sensitive crite-
rion will be comparison with detailed experimental data on
probability density W(q, 1/r) for a variety of scale factor 1/r.
Some measurements of W(q, l/r) have been presented in the
literature [14,15]. However, in order to find an optional
model, we need a more systematic study. A particular interest
is in the asymptotic behavior of W(q, l/r) when q ap-
proaches its maximum value 1/r. Physically it corresponds to
local events when all dissipation in the interval l is concen-
trated in the subinterval r&l.

Let us note that, having in mind the scale similarity con-
ditions, the optimal position of subinterval r is when its cen-
ter coincides with the center of interval I. To demonstrate
this, consider the opposite situation when one of the bound-
aries of subinterval r coincides with a boundary of interval /.

In this case, the complementary subinterval l —r can be con-
sidered on the same footing as subinterval r, taking into
account the local isotropy of the turbulent dissipation field.
From definition (1) we get a relation between corresponding
BDC's:

b
Ir= 1 — «1, P(dx) = ln(l/r)F(dx).

ln(l/r)
(15) q„,=k —(X —1)qI „I, P =//r~1. (20)

Here measure F has the same (stated above) properties as P.
From the first equality in (5) we have an additional condition
on the measure:

~"1 —e
F(dx) = a«1.

XJo
(16)

All other properties of p, (p) and W(q, l/r) are ensured by
the theorem (13). Thus we get an alternative approach for
modeling, namely, by choosing measure F.

Consider, for example, measure with the density

(q„,) = k(2 —k)+ (X—1)'(q,' „,). (21)

Here the statistical averaging is over the whole dissipation
field or over the joint probability distributions of two BDC's.
Equation (4), with the definition of p, in (5), gives

k~= k(2 —k) + (k —1) (22)

Here X is the scale factor for q„&, and the corresponding
scale factor for qi „I is k/(k —1). By squaring both sides of
(20), statistical averaging and using (5), we have

F'(x) =Ax 'exp( —x/o. ), (17)

where A, a, and o. are positive constants. From (14) and

(16) we get

We see that, no matter the value of ~ (experimentally

p,=0.2), Eq. (22) cannot be satisfied for arbitrary k. An ex-

ception is X.=2. For the central position of the subinterval we
do not have this contradiction with scale similarity.
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Returning to the asymptotic of W(q, )i) where q ap-
proaches its maximum value X., consider the case of a gap:

W(q, lt. )dq=O, kt&k. (23)

Thus

I (P)
h = lim -log, (Z, ) &1.

o ~ P
(25)

The value of h is important for the description of turbulent

velocity increments [16,17]. If there is no gap, then

(1~h ~ lim —log& kf W(q, k) dq = log&()i. ;)
p~m P

(26)

for any k;&X.. Thus h=1. We hope that the presented re-
sults, including the connection between self-similarity and

From (4) and (23) we get

p(p) =log~ q~W(q, k)dq I ~p log~(kt). (24)
JQ

infinitely divisible distributions, can serve as a basis for more

detailed experimental, analytical and numerical studies of
turbulence and other phenomena with scale similarity.

After this paper was submitted for publication, we be-
came aware of two works which are relevant to the subject
[18,19].The approach in Refs. [18,19] is more heuristic. Let
us note, the Levy-Khinchin representation in Ref. [18]does
not take into account that the energy dissipation rate e is
non-negative. The non-negativity leads to important con-
straints (5)—(7) and to the Carleman condition (8) (see details
in Refs. [3,4]). The LBS theorem (13) does the precise job,
reflecting all these facts. The concrete model, studied in
Refs. [18,19], corresponds to h =-', and, thus, to a substantial

gap (23) in the probability density function. Such a gap con-
tradicts the existing experimental data [14,15]. Let us stress
that more detailed experimental studies of W(q, k) are
needed in order to find an optimal model.
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