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Control of dynamical tunneling in a bichromatically driven pendulum
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We demonstrate that the avoided level crossing between the Floquet state associated with the chaotic part of
classical phase space and a member of the quasidegenerate doublet may lead to the enhancement of the doublet

splitting by several orders of magnitude. As a result of this interaction the two-level tunneling dynamics is

replaced by the more intricate dynamics involving three states. It is shown that three-level tunneling is much

more robust against symmetry breaking perturbations than is ordinary tunneling.

PACS number(s): 05.45.+b, 03.65.—w, 73.40.6k

The recent advances in the generation of laser pulses with
specific properties (ultrashort pulses, shaped pulses, pulses
with well-defined phase relationship) and high intensity have
created novel opportunities for the control of quantum dy-
namics with laser fields [1].The possible applications of this

emerging technology comprise, among others, active product
selection in chemical reactions and the control of tunneling
for a diverse class of chemical and physical systems.

The investigation of the latter problem was initiated after
Lin and Ballentine [2] discovered that the tunneling rate in
the quartic double well potential may be increased by several
orders of magnitude by the application of an external mono-
chromatic driving field. Herein we use a broad definition of
tunneling which accommodates both conventional penetra-
tion of classically insurmountable potential barriers pnd the

quanta motion between parts of classical phase space sepa-
rated by dynamical barriers, the phenomenon known as dy-
namical tunneling [3].Grossman er al. [4] demonstrated that
with the appropriate choice of frequency and amplitude of
the external field it is possible to suppress tunneling alto-
gether, i.e., to permanently localize a wave packet in one of
the wells of the potential. Bavli and Metiu [5] found that the
suppression of tunneling may also be accomplished with a
semi-infinite laser pulse. Holthaus [6]pointed out that when
a perturbation is turned on sufficiently slowly the nearly de-
generate eigenstates which form a wave packet 1ocalized in
one of the wells evolve into the connected Floquet states
with phase factors determined by the corresponding quasien-
ergies. Consequently, under the in6uence of a smooth pulse
both components of a wave function acquire a relative phase
difference which may lead to a tunneling time much shorter
than the one resulting from the splitting of the unperturbed
doublet or, in the opposite limit, to complete localization of
wave function. Thus the shaping of the driving pulse presents
another possibility for controlling tunneling.

External driving can significantly affect the structure of
the classical phase space of one-dimensional systems. With
increasing perturbation strength classical dynamics under-
goes a gradual, intricate transition to chaos [7]. It is well
established that the signatures of chaos may be found in the
spectrum of quantum systems and in the structure of eigen-
functions or quasienergy states [7]. On the other hand, the
largely unanswered question remains whether, or to what ex-
tent, purely quantum mechanical phenomena such as tunnel-
ing between symmetry related regular regions of phase space

may be in6uenced by the stochastic layer which surrounds
these regular islands. Utermann, Dittrich, and Hanggi [8]
found that the splitting of quasidegenerate doublets increases

by several orders of magnitude as the regular tori which
originally supported the doublet states dissolve into the cha-
otic sea.

The behavior of the splitting of quasidegenerate doublets
has also been the subject of the recent papers by Bohigas
et al. [9] and Tomsovic and Ullmo [10].Using the autono-
mous system of two coupled quartic oscillators they showed
that the tunneling rate may be increased as the result of the
interaction between one of the doublet states and a state as-
sociated with the chaotic part of the phase space, the latter
state facilitating the transport of a wave function across the
stochastic layer. In the previous papers [11,12] we estab-
lished that the influence of the avoided level crossing
(Landau-Zener effect) on tunneling goes beyond the en-
hancement of the doublet splitting. For sufficiently strong
coupling between the regular doublet and the third state, a
condition which may be satisfied close enough to the center
of the avoided crossing, the initial two-level dynamics is
replaced by the much more complicated dynamics involving
three states. This three-level dynamics can give rise to a
variety of different quantum effects. In particular, in the cen-
ter of the avoided crossing the tunneling rate may be several
orders of magnitude greater than the rate far away from the
crossing (where the influence of the third state is negligible).
This property is interesting for possible applications since it
enables one to turn tunneling on and off with only small
variation of the driving field.

Tunneling is associated with existence of discrete symme-
tries of the underlying Hamiltonian. Thus one expects that
tunneling is suppressed whenever the relevant symmetry is
destroyed. Morillo and Cukier in their studies of proton-
transfer reactions [13]used a static field to i»ibit tunneling.
Farrelly and Milligan [14] achieved control of tunneling in
the double well potential with the help of two external fields
whose frequencies were in a 1:2 ratio. The main field was
employed to enhance the doublet splitting while the addi-
tional symmetry breaking field was used to arrest a wave
packet in one of the wells of the potential. In the same vein,
the purpose of the present paper is to investigate the differ-
ences between the effects of sy~~etry brealdng perturba-
tions upon the ordinary two-level and three-level dynamical
tunneling.
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FIG. 1. The avoided crossing between the quasienergy state 8
and a member of nearly degenerate doublet A. The other doublet

state, labeled by C, is not affected by the crossing. The vertical
gridline indicates the center of the crossing (8=0) .

As our model system we choose the bichromatically
driven pendulum H =Ho p, yqco—s(At) pecos—(2Qt+ P),
where the unperturbed Hamiltonian Ho reads Ho=p /2p
+p,(1+ coqs), y is the peak amplitude of the main external
driving field, and 0 is its frequency. The auxiliary symmetry
breaking field has the amplitude 8' and frequency 2Q.
Throughout this paper 0=2, p, =5, and P= m/2. The angle

q varies between 0 and 2m.
The periodicity of the above Hamiltonian enables us to

describe the evolution of a wave function in terms of the
Floquet states ~u„(t)) which are true stationary states of pe-
riodically time-dependent quantum systems [7].The Floquet
states are eigenvectors of the operator W=H itic/Bt wit—h
the periodic boundary condition imposed in time. The corre-
sponding eigenvalues, quasienergies e„, for bounded sys-
tems are real numbers. For times t=kT, k=1,2, . . . the
wave function may be written as [7]

~
f(kT)) =g exp( —iE„k)~u„)(u„~P(0)),

where E„=e„T and ~u„)= ~u„(0)). It is apparent from (1)
that only the Floquet states overlapping the initial wave func-
tion contribute to its subsequent time evolution.

In the absence of the symmetry breaking field (8=0) the

Hamiltonian 0 remains invariant under the following dy-
namical symmetry: q~ —q, t~t+ m/0 and the Floquet
states may be classified into states of even and odd parity
with respect to this generalized parity transformation.

In Fig. 1 we present a small portion of the Floquet spec-
trum of the driven pendulum (8=0). One can see from this

figure that a characteristic double cone structure of the
avoided level crossing originates as a result of the interaction
between a member of nearly degenerate doublet A and

quasienergy state B, both having the same symmetry. The
other member of the doublet, labeled in Fig. 1 by C, has a
dynamical symmetry opposite to that of states A and B and is
not affected by the interaction. A more extensive discussion
of the properties of the quasienergy states from Fig. 1 may be
found in Ref. [12].Far away from the center of the crossing,
where the inhuence of the state B is small, the Husimi dis-
tribution of the doublet states is localized in the region of
quantum phase space where classically there are two promi-

FIG. 2. Poincare surface of section of classical phase space of
the bichromatically driven pendulum with y=0.90 and 8'=O. J5.
Momentum was scaled by the parameter p, .

nent nonlinear resonances immersed in the stochastic sea (cf.
Fig. 2); see, for example, [12],for a discussion of the Husimi
distribution in this context. By taking a symmetric or anti-

symmetric combination of the doublet states one obtains a
wave packet localized on one of the islands which in time
tunnels to the other one. The application of the symmetry
breaking perturbation may significantly change this two-
level dynamics.

In Fig. 2 we show the Poincare surface of section of the

bichromatically driven pendulum for y=0.90 and 8= 0.15.
The classical motion was strobed at t=kT, k=0, 1,2. . . .
The large symmetric Kolmogorov-Arnold-Moser (IGLOO) is-

lands, immersed in the stochastic sea, for 8'=0 underlie the

structure of the doublet states. Interestingly enough, the
modifications of the surface of section produced by the aux-

iliary field are hardly noticeable. However, the quantum ef-
fects of the symmetry breaking are much more strongly pro-
nounced.

In Fig. 3 we contrast the structure of Floquet states A, 8,
and C calculated for y=0.90 (top panel) with those of the

corresponding states in the presence of the symmetry break-

ing field with amplitude 8=0.15 (bottom panel). The states
were expanded in the eigenbasis of angular momentum op-

erator (~ P„)), ~ P„)= exp(inq)/$27r In all th.e graphs in

Fig. 3 the quantum number n varies between —20 and 20,
the range of occupation probability is [0,0.15]. It is apparent
that the perturbation destroys the double hump form of states
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FIG. 3. Expansion of Floquet states A, 8, and C in the basis of
the eigenfunctions of angular momentum operator plotted for two

values of the amplitude 8' of the symmetry breaking perturbation

(y=0.90).
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FIG. 4. Time evolution of the survival probability of the wave

packet I' for different values of the amplitude 8' of the symmetry
breaking perturbation (y= 0.90).

S(kT) = —,'+ 2mos[(E& —E3)k], (2)

where E& and E3 are thc scaled quasienergies of states A and
C, respectively. The solid line in Fig. 4 corresponds to (2).
With the growing amplitude of the symmetry breaking field
the nearly degenerate states lose their double hump structure
and the state A dominates the expansion of the wave packet
P (in the two-dimensional basis made up of states A and C)
which explains its trapping on the right island. This trapping
is illustrated by the time evolution of the survival probability
depicted in Fig. 4 for 8=0.15 and 8=0.30. Note that the
increased frequency of the oscillations of the survival prob-
ability in the presence of the auxiliary field is caused by the
enhanced splitting of quasicncrgies E& and E3. This effect
may be accounted for with the help of a simple two-level
model.

If in the absence of the syrrunetry breaking we again use
the wave packet P as an initial condition but we increase the
amplitude y of the main field, then the quantum dynamics
gets more involved [12].Due to the repulsion between states

A and C whose Husimi distributions, as indicated by the
basis expansion, are predominantly localized on the right and
left KAM torus, respectively (cf. Fig. 2). On the other hand,
for 8'= 0.15 the state B remains essentially unaffected by the
symmetry breaking perturbation which may be explained by
taking into account the low value of the dipole moment of
this delocalized state. We have shown previously that the
Husimi representation of this state while not fully chaotic is
spread out in the stochastic part of the phase space [12].The
change of the structure of the doublet states under the influ-
ence of the symmetry breaking field is reflected in the quan-
turn dynamics of wave packets centered on the KAM islands.
For simplicity let us form such a wave packet by taking the
symmetric superposition of the doublet states from the top
panel of Fig. 3 (y=0.9 and b=0). This wave packet, in
further discussion referred to as P, is localized on the right
KA.M island shown in Fig. 2. Note that the doublet states are
obtained directly from the numerical calculations, therefore
wave packets centered on either of the symmetric islands
may be obtained from a suitable combination of these states.
In the absence of the auxiliary field the wave packet P tun-
nels back and forth between the islands. In this case using (1)
one obtains the following expression for the survival prob-
ability S(t)=(qi'(t)~W(0)) at the integer multiples of the
period:

FIG. 5. Expansion of Floquet states A, B, and C in the basis of
the eigenfunctions of angular momentum operator plotted for two
values of the symmetry bre»lug amplitude b (y= 0.9159).

A and B (cf. Fig. 1) the wave packet becomes the linear
superposition of all three quasienergy states A, B, and C.
This is associated with the exchange of the structure of in-

teracting states, a generic property of the Landau-Zener ef-
fect [15].The first panel in Fig. 5 shows all three states at the
center of the avoided crossing (y=0.9159) where the mix-
ing of states A and B is most strongly pronounced. It is clear
that state A no longer resembles its doublet counterpart C.
Both states A and B are now appreciably delocalized and
their dipole moments are significantly smaller than that of
state C which maintains its double hump structure. Conse-
quently, it is not surprising that the effect of the symmetry
breaking on these states (cf. the bottom panel in Fig. 5) is
very limited compared to the change of the doublet states in

Fig. 3. The symmetry breaking operator p, hqcos(2Qt) is odd
with respect to the previously mentioned generalized parity
transformation. States A and B have the same dynamical
symmetry so that considering the weak interaction, in the
first approximation, this perturbation docs not directly mix
these states. On the other hand, state C is coupled to both
states A and B. However, as can be seen from Fig. 5 the
modification of state C is rather minor. Note that for the
same value of the amplitude 8 the doublet states in Fig. 3
have already lost the tunneling —double hump structure.

We have already pointed out that despite the change of the
structure of one of the quasidegenerate states, in the absence
of the auxiliary field, the tunneling rate is maximal at the
center of the avoided crossing. In this case the time evolution
of survival probability of the wave packet P is given by [12]

S(kT) = 2/1+ cos[(E,—E3)k])—4d, d2sin [(E,—E3)k],
(3)

where d& and d2 are the square moduli of the overlap of the
packet with the quasicnergy states A and B, respectively. In
Fig. 6 we plotted the above function along with the survival
probability for two values of the amplitude h of the symme-
try breaking perturbation used in Fig. 4. We can sec that even
for 8=0.30, the strength of the field almost completely sup-
presses the two-level tunneling, but the three-level tunneling
persists and the quantum dynamics remains very similar to
that given by Eq. (3).The increase of the frequency of oscil-
lations in Fig. 6 is significantly smaller than that of the two-
level dynamics in Fig. 4. This small change is another mani-
festation of the weak influcnce of the symmetry breaking
field on the Floquet states and their quasienergies.
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FiG. 6. Time evolution of the survival probability of the wave

packet P for different values of the amplitude 8 of the symmetry
breaking perturbation (y= 0.9159).

We attributed to delocalization of the quasienergy state A,
stemming from the interaction with the state B, the insensi-
tivity of three-level dynamics in Fig. 6 to symmetry breaking
perturbation. This interpretation is corroborated by the addi-
tional numerical simulations which show that away from the
center of the avoided crossing, where the influence of state B
is weaker, the quantum dynamics is more responsive to the
auxiliary driving.

The various methods of controlling quantum dynamics of
bistable systems [4—6] proposed so far have relied on purely
quantum mechanical effects. Herein we have demonstrated

that control of tunneling may, in principle, be based upon the
phenomenon of avoided level crossings between one of the

quasidegenerate states and a third state associated with the

chaotic part of the phase space. Unlike the previous ap-

proaches, this method is intimately related to the metamor-

phosis of the structure of classical phase space induced by
the external driving field. We emphasize that the avoided
crossing between a tunneling doublet and a regular state
[e.g., one associated with the large island around the elliptic
fixed point (0,0) in Fig. 2] is quite conceivable. However,
our analysis of the Floquet spectrum of the driven pendulum
shows that this type of crossing is significantly less prevalent
than the one involving a third state which is "chaotic" and

consequently is less important with respect to possible app1i-
cations. Moreover, if the third state is sufficiently delocalized
(characteristic feature of Floquet states associated with the

stochastic layer) then three-level tunneling may be signifi-

cantly more robust against symmetry breaking perturbations
than is the ordinary two-level tunneling. This property might
be useful in discriminating between two and three level tun-

neling, for example, in molecular systems with anharmonic
bonds.
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