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We study reaction zones in three different versions of the A+B+0 system. For a steady state formed by
opposing currents of A and B particles we derive scaling behavior via renormalization group analysis. By use

of a previously developed analogy, these results are extended to the time-dependent case of an initially

segregated system. We also consider an initially mixed system, which forms reaction zones for dimension

d&4. In this case an extension of the steady-state analogy gives scaling results characterized by new expo-
nents.
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The reaction-diffusion process A+B+0 has received
much attention since the work of Toussaint and Wilczek [1],
in which it was demonstrated that density fluctuations are
important when the dimensionality d~4. Attempts to incor-
porate the fluctuation effects, including the application of
renormalization group (RG) methods, have proven success-
ful for one-species reactions [2—4]. However, the physics of
the two-species reaction is somewhat different, as the num-
ber difference of A and B particles is locally conserved.
Nonetheless, the main results of the RG analysis may be
extended to this case [5,6].

In the present work we are concerned with situations in
which the A and B particles are well segregated, so that
reactions are then confined to reaction zones, on the bound-
aries between the A- and B-dominated regions. The segrega-
tion may be a consequence of the initial conditions, or arise
asymptotically from a mixed initial state when d &4. Both of
these cases may be compared to that of a steady state formed
by directing steady, uniform currents of A and B particles
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towards each other. In all three cases the structures of the
reaction zones are very similar.

Reaction zones were studied by Galfi and Racz [7] in the
context of a system with segregated initial conditions. Their
analysis is essentially a mean-field result, as we will show,
which holds asymptotically for d&2. More recently, Ben-
Naim and Redner have derived the mean-field behavior for
the steady-state problem [8], and Cornell and Droz extended
this to d&2 via RG motivated scaling arguments [9].Reac-
tion zones in initially homogeneous systems have been stud-
ied by Leyvraz and Redner [10,11]. In this paper we use
exact RG methods both to confirm previous results and to
derive new exponents which characterize the scaling behav-
ior of the reaction zone.

The model we shall use for the A+B~O reaction is one
of particles undergoing continuous-time random walks on a
hypercubic lattice. We consider general, nonzero values of
the diffusion constants Dz and Dz. If an A and a B particle
are together on a lattice site, then they annihilate with some
characteristic reaction rate X. In the field-theoretic approach
it is convenient to allow multiple occupancy of lattice sites,
regardless of particle type, but this is not expected to alter
the universal properties.
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TABLE I. The exponents, as defined in the text, for the scaling
behavior in the cases of segregated and homogeneous initial condi-
tions.

The characteristic nearest-neighbor distance in the reac-
tion zone / is found from the scaling form of the densities
in the reaction zone (3). Consider the total number of par-
ticles N in the volume of the reaction zone for a given inter-
facial surface area Sd

Segregated d~2 1

2(d+ 1)
d+2

2(d+ 1)
1

2(d+ 1)
xc+ w

N —Sg i dx(a(x)+b(x))-Sq, t

Homogeneous

d~2

d(2

2(d&4

1

6

d+2
4(d+ 1)

d+2
12

(d+ 2)
4(d+ 1)

d+2
3

1

3d

d+2
4(d+ 1)

d+2
6d

First we consider the steady state reached when equal
currents J of A and B particles are directed towards each
other. The average densities then vary only in the direction of
the currents. In this case the width of the reaction zone goes
as a power of J, as J~O,

J—1/(d+ 1) y( 2

J—1/3 d)2.

The typical nearest-neighbor distance in the reaction zone
Y„scales as

J 1/(d+ 1) y(2
rz J—2/3d d&2. (2)

The second example we consider is that of initially seg-
regated particles. Consider a system prepared with only A

particles in the region x&0 and only B particles for x~0.
The behavior in the reaction zone again scales, now with
respect to time, with w rand 8 --t'r. The densities in the
reaction zone, where ~x

—x,
~

~w, have the scaling form

I'x —x, 'I

(a),(b)-t ~~F, b (3)

The values of the exponents are given in Table I.
The final example is that of random, homogeneous initial

conditions, with equal densities np of A and B particles. It
has been shown in the mathematical treatment of Bramson
and Lebowitz [12] that this system exhibits asymptotic seg-
regation for d(4. We present a simple derivation of this
result from an effective field theory, which is valid for
2&d~4. We argue that reaction zones which result from the
segregation can be studied in the same fashion as in the
previous problems. As a result, we predict the same scaling
forms as given by Eqs. (3) and (4), with new values for the
exponents, which are listed in rows 3 and 4 of Table I.

where x, ~ t' is the reaction zone center. The angular brack-
ets will be defined precisely below. The reaction rate R also
has the scaling form

Ix —x, )
R(x,r)-r /'G

i

JX —WC

Since the volume of this region is Sd, t, then the average
volume per particle goes as t~". If one assumes that there is
just one length scale describing the typical nearest-neighbor
distance, both in the direction of the interface and perpen-
dicular to it, and also for both like and unlike particles, then
this length is given by 8„-r".A convenient definition of

which follows from the derivation above, is
8„—= (a(x,))

The model for A+8~0 can be mapped to a field theory.
which is useful for the application of RG methods [5,13].We
summarize here the results of a study of this field theory
which pertain to the problem at hand. A more detailed ac-
count will appear in [6].One feature, which is general to all

irreversible reaction-diffusion systems, is that there are no
diagrams which dress the propagator. This means that there
is no wave function renormalization, and consequently no
anomalous dimension for the fields. The significance of this
will be noted below.

There is only one coupling constant Xp in the field theory
(in the notation of [5]),which is given in terms of the origi-
nal microscopic parameters as Xo

= Xh "/D, where
D = (D„+Ds)/2 and h is the lattice size. The coupling k„ is
found to be irrelevant, in the RG sense, for 8~2, marginal
for 8=2, and relevant for d&2.

In general, one can derive from the field theory the equa-
tions of motion

8,(a) =DqV (a) —R, 8,(b) =Dye (b) —R, (6)

where R = ROD(ab) is the reaction rate. The angular brack-
ets refer to averages over the stochastic processes of diffu-
sion and reaction, but not over the initial conditions. Aver-

ages over the initial conditions will be denoted with a bar:

(a). Note that the quantity (a b) obeys a sim—ple diffusion
equation when DA=D&.

When d~2 the irrelevance of the coupling leads to the
asymptotic result that R I(a)(b)-T'hen the. equations of
motion (6) are simply differential equations with rate con-
stant I . This is the starting point in the analysis of Refs.
[7,8], consequently their results are applicable for d)2.
When d(2 one finds that the coupling X.p can be renormal-
ized exactly, allowing us to derive the scaling behavior of the
reaction zones.

Consider the steady state reached by imposing currents

J,=Jx at x = Land Jb = Jx at—x =L, where —L && w From.
the analysis in [7,8] one finds for d) 2 that

R (a)(b) Jf(x—J-
froin which the exponents for d) 2 given in Eqs. (1) and (2)
follow directly.

For d(2 one must consider the effects of renormaliza-
tion. We work in units of time where the average dif-
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where, as J~O, the running coupling g~g* =O(2 —d), in-
dependently of the initial value of X.o. When d=2 the run-

ning coupling goes as g-B/In/~ for small J. The simple
form of the overall scale factor in (8) is a result of the ab-
sence of wave-function renormalization.

The significance of Eq. (8) is that, in the limit of small J,
the only J dependence on the right-hand side comes from the
overall scale factor. Therefore any length will scale asymp-
totically as w-d'„-J /("+ ), giving the results stated in

Eqs. (1) and (2) for d~2. When d=2 the running coupling

g is J dependent. However, it can be shown that the right-
hand side is finite in the limit g~0 [6].Therefore the lead-

ing term for small J is unchanged, and there are no logarith-
mic corrections. It should be noted that while this result
holds' for general

~
b~ &1, the limit of

~
b~ ~ 1 does not neces-

sarily commute with the asymptotic limit in our analysis, so
our results are only for the case when both species are mo-
bile.

The asymptotic limit of any dimensionful quantity can be
found by the same technique, using only dimensional analy-
sis. Therefore the densities in the reaction zone have the
scaling form

(u(x)) (b(x)) Jd/(d+1)F (xJ1/(d+1)) (9)

and the reaction rate

R (x) J(d+ 2)/(d+ 1)G(xJ1/(d+ i)) (10)

The scaling functions F, b and G are expected to
be universal, up to metric factors, and should be calcu-
lable within a (2 —d) expansion. Note that
R~(ab)-J(2 ")/(" '+(a))(b) for small J. This result can be
demonstrated explicitly within the original field theory [6].

An equivalent and less formal way to state these results is
that there are only two input parameters with dimension: J,
and X.o. However, for d~2, in the asymptotic limit the
theory is independent of the initial value of X.o, so the re-
maining J dependence can be determined on dimensional
grounds.

These results were found by Cornell and Droz [9],by use
of an RG-motivated scaling analysis. Our work provides a
quantitative confirmation of the lack of anomalous dimen-
sion and asymptotic lack of X.o dependence. They performed
simulations for d= 1,2,3 which are in good agreement with
the predictions.

fusion constant D = 1, and define the parameter
b= (D„D—/))/(D&+D/)). One can show that b' is not renor-
malized, for the same reason that there is no wave-function
renormalization. In these units the dimension of the current
is [J]=(length) ' . The width w can depend in the steady
state on Xo, J, and 8 only.

In the field-theoretic RG, the Xo dependence is traded for
a dependence on a renormalized coupling X.z, defined at an

arbitrary length scale Jo +' . We then consider w as de-

pending on J, 8, Jo, and the the dimensionless renormalized

coupling g„—=k+0" / +' . This then satisfies an RG
equation whose solution is

/ J ) —1/(d+1)

)v(J,g„,JO, B)= — w(Jo, g(J/Jo, g/t), 8), (8)
(,Jo/

b

FIG. 1. The profile of a reaction zone.

We now turn to the problem of segregated initial condi-
tions. At t=0 the boundary is at x=0, and the A and B
particles are randomly distributed within their regions, with
initial densities ao and bo, respectively. A profile of the den-
sities at a later time t is sketched in Fig. 1. The densities are
depleted out to a range Wd-t', which is the length over
which particles will have had a chance to diffuse into reac-
tion range. Provided that a& 1/2, which will be verified self-
consistently, then asymptotically w&& Wd . Consequently one
finds in the depletion regions w &« ~x

—x,
~
&«Wd that R =0 and

Eq. (6) reduces to the diffusion equation. As a result, it fol-
lows that the density profiles in this depletion region are
linear in x —x, . The slope can be determined by observing
that the A particle density goes from ao to zero in a range
Wd, so the slope —ao/Wd- —t

In Ref. [8] Ben-Naim and Redner show that this linear
depletion regime provides the same boundary conditions for
the reaction zone as was found in the steady-state system. In
that case the slope in the linear region (w&« ~x~ &L) is given
by 8,(a) = —J. Therefore we can apply the results obtained
from the steady state to the time-dependent reaction zone by
making the scaling substitution J-t +. The result is the
scaling forms given by Eqs. (3) and (4) with the exponents
shown in Table I. The exponent y has not been calculated
previously.

The exponents u and P, which describe w and R, were
derived in the analysis of Cornell and Droz [9].They find
reasonable agreement with these predictions in d = 1 simula-
tions, although the asymptotic region is difficult to obtain.
Other simulations in d=1 find evidence for multiscaling
[14]. Since the parameters in these simulations are at the
opposite extreme from the weak coupling expansion implicit
in the field-theoretic approach, it is conceivable that they
might fall into a separate universality class. However, more
extensive simulations seem to indicate that ordinary scaling
is recovered asymptotically [15].

The final case we consider is the system with homoge-
neous initial conditions. The A and B particles are randomly
distributed with equal initial densities no. Starting from Eq.
(6) one can show that the average over initial conditions

yields a density (a)-t / for d&4 [6].As argued by Bram-
son and Lebowitz, the A and B particles segregate asymp-
totically, which may be shown directly from Eq. (6) for
2&d&4 as follows. We use the notation (a)—+a, since
R=I ab for d)2.

Given that f ~f, where f is a real quantity, then

min(a, b) ~ (a +b (—a+b)~a ——b~).

Since a and b correspond to the physical density for a par-
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ticular initial condition, they are everywhere non-negative.
Therefore a+ b~ ~a —bI at every point (x, t), which implies
that

2min(a, b) ~ —(a +b —(a —b) )=ab (12)

From Eq. (6) it follows that

1
ab= —B,a=O(t ' "t ), (13)

so one has the result

FIG. 2. A sketch of the percotated domain configuration in

d = 2. The domains have a characteristic length scale which grows
in time as t'~~.

The values for the exponents u and P have not been de-
rived previously. We note that a~1/2 from below as
d~4. This is consistent with the view that segregation is
breaking down, since the reaction zones are then on the same
scale as the domains. The exponent y was derived by
Leyvraz and Redner [10,11] by a different method. They
were interested in the quantity E~rt, which is the character-
istic nearest-neighbor distance when the nearest neighbor of
a particle is of the opposite species. This quantity can be
measured directly in simulations. Since the particles are seg-
regated, the contributing particles to the distribution for

must be within the reaction zone, and therefore
r'„s-8„-t~. Leyvraz and Redner found from both scaling
arguments and simulations values of y which agree with our
predictions for d = 1,2. However, they argue for d &2 that

y=1/4, and show the results of d=3 simulations. Our pre-
diction for d=3 is y=5/18, which is very close to t" It.
appears from the data of [11] that either value of y is an

equally good fit. A numerical value for a fit to the data is not
provided. The significance of this discrepancy is that the

nearest-neighbor distance in the bulk (a) 't —t" for
d(4. We claim that Y„scales with a different exponent than

the bulk nearest-neighbor distance for all d(4.
A check on the above results is to calculate the character-

istic domain size. Integrating the equations of motion (6)
over the entire system of size V gives

min(a, b)~O(t " ')(&t "'

when d &4. Therefore the local minority density goes to zero
relative to that of the majority species. A sketch of the seg-
regated domains in d = 2 is shown in Fig. 2.

In this case we may make a similar analogy to the steady-
state case, except now the height at the edge of the depletion
region is time dependent. The rectangle in Fig. 2 gives the
cross section of a reaction zone, which will have the same
form as Fig. 1. The time dependence of the height is in

general complicated, but we argue that in most regions it will
scale with the bulk density. The picture one has is that the
densities in the bulk will be fairly uniform since there the
particles diffuse without reacting. This uniform density must
scale as t ",so that averages over the reaction zones of the
whole system will yield exponents which can be derived

simply by taking ao, bo~t " . The resulting steady-state

analog is given by J-t ~" ~'. This gives the scaling re-
sults in Eqs. (3) and (4), with the exponents listed in Table I
for the homogeneous case.

d"xa, (a)—— d"x(ab)

or equivalently

(16)

where A is the interfacial area of the domain boundaries.
This first result follows from the fact that the only significant
contribution to the reaction rate comes from the reaction
zones, the second from Eq. (4). This leads to the character-
istic domain size

X = V/A t /' "-"-'4 t"- (17)

for all d&4. This result, while often assumed, follows for
d(2 only because R 4 (a)(b).

%e would like to thank Stephen Cornell and Michel Droz
for useful discussions. This work was supported by a grant
from the SERC.

[1]D. Toussaint and F. Wilczek, J. Chem. Phys. 7$, 2642 (1983).
[2] L. Peliti, J. Phys. A 19, L365 (1986).
[3] M. Droz and L. Sasvari, Phys. Rev. E 4$, R2343 (1993).
[4] B. P. Lee, J. Phys. A 27, 2633 (1994).
[5] B.P. Lee, Ph.D thesis, University of California, Santa Barbara,

1994.
[6] B. P. Lee and J. L. Cardy (unpublished).

[7] L. Galfi and Z. Racz, Phys. Rev. A 3$, 3151 (1988).
[8] E. Ben-Naim and S. Redner, J. Phys. A 25, L575 (1992).

[9] S. Cornell and M. Droz, Phys. Rev. Lett. 70, 3824 (1993).
[10]F. Leyvraz and S. Redner, Phys. Rev. Lett. 66, 2168 (1991);

Rev. A 46, 3132 (1992).
[11]F. Leyvraz, J. Phys. A 25, 3205 (1992).
[12] M. Bramson and J. L. Lebowitz, J. Stat. Phys. 65, 941 (1991).
[13]L. Peliti, J. Phys. (Paris) 46, 1469 (1985).
[14] M. Araujo et al. Phys. Rev. Lett. 71, 3592 (1993).
[15]S. Cornell (unpublished).


