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Inelastic collapse in two dimensions
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Molecular dynamic simulations show that a two-dimensional gas of inelastic disks, started from random

initial conditions, has a finite time singularity in which a group of particles spontaneously forms a straight line.

The inelastic disks then collide infinitely often in a finite time along their joint line of centers. The upshot of
this process is a multiparticle collision that occurs through the accumulation of an infinite sequence of binary

encounters.

PACS number(s): 47.50.+d, 05.20.Dd, 47.55.Kf, 62.90.+k

In this paper we present the results of recent molecular
dynamic simulations of a two-dimensional granular medium.
This is a gas of inelastic disks in which interactions occur
only through collisions. The inelasticity is modeled with a
coefficient of restitution O~r~1 that reduces the relative
velocity along the line of centers so that momentum is con-
served and kinetic energy is dissipated [1].The classical hard

core gas is the special case r = 1.The granular medium is at

once a useful idealization in many applications and a funda-

mental model in dissipative statistical mechanics.
Consider a granular medium that begins in an initial state

of uniform density with a Maxwellian distribution of veloci-
ties. (This initial condition is established by running the

simulation with r =1 for several hundred collisions per par-
ticle. ) The medium then "cools" as the collisions dissipate
the kinetic energy of the initial condition [2]. Recent work

[3,4] has established that the cooling granular medium does
not remain spatially uniform: the state of uniform density is
unstable so that clusters and voids form throughout the gas.

It is essential to draw a clear distinction between cluster-

ing and collapsing in a granular medium. By clustering we
mean that the density of the granular medium spontaneously
becomes nonuniform as described in the previous paragraph.
The term collapse refers to "inelastic collapse" which is a

finite time singularity previously documented only in one
dimension [3,5]. In one-dimensional inelastic collapse a

group of particles moving on a line collides infinitely often
in a finite time so that the interparticle spacing becomes zero
and all of the kinetic energy in the center of mass frame is
dissipated. The result of inelastic collapse is that the particles
come into contact without interparticle forces or cohesion.

By contrast, in a cluster the particles are close together, but

they are not in contact.
In one dimension, inelastic collapse is tolerably well un-

derstood and it is possible to estimate the minimum number

of particles N;„(r) required to form the finite time singular-

ity [3,5]. When r(&1, so that the system is almost inelastic,
only small numbers of particles are involved. For instance,

if 0 & r &7 —4 +3 then the collapse only takes three particles;
if 7 4J3&r&—3 —2+2 then collapse requires at least four

particles. The elastic limit is singular in the sense that

N;„(r)- in[4/(1 —r)]/(1 —r)~~ as r~ 1.
One might suspect that inelastic collapse is a pathology of

one dimension. But the first result of this paper is that col-
lapse also occurs in two dimensions and does so by recapitu-
lating the one-dimensional phenomenology. Figures 1 and 2
show the results of the "inelastic few-body problem. " We
have three or four inelastic disks moving in a doubly peri-

odic domain. In both cases r = 0.05 &7 —4+3 and the disks

occupy 4 of the area. Figures 1 and 2 show the configuration
of the disks at the time of the singularity [6]. Remarkably,
one finds that the disks are roughly in a line. Thus in two
dimensions, three or four inelastic disks can collide infinitely
often in a finite time by bouncing back and forth along their

joint line of centers. Figure 3 provides a more quantitative
illustration by showing the number of collisions as a function
of elapsed time in ten simulations. The singular events are
the vertically rising segments which terminate seven of the
ten simulations.

We performed 50 simulations with N = 3 particles,
r=0.05 and solid fraction v=4. Twenty-one realizations
were stopped in finite time by inelastic collapse detected by
the separation criterion explained in [6].The other 29 real-
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FIG. 1. Three inelastic disks (N=3) in a doubly periodic do-

rnain at the time of collapse. One period is contained within the

dotted square. The solid fraction v= 4 and r =0.05.
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FIG. 2. Four inelastic disks (N =4) in a doubly periodic domain

at the time of collapse. As in Fig.1: r =0.05 and v= 4.
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FIG. 3. The cumulative number of collisions as a function of
elapsed time in eight simulations. The configurations shown in Figs.
1 and 2 are the heavy dots labeled "1"and "2."

izations ran till C/N =30. In a second suite of 50 realizations
with N=4 particles (once again r=0.05 and v= —,') 41 real-
izations were stopped by inelastic collapse while the other 9
ran till C/N=30. In Figs. 1 and 2, and in all of the other
singular events, one finds that the particles are arranged in a
rough line. In most of the cases with N= 4 this line contains
only three of the four particles. But in a few instances (e.g.,
Fig. 2) the line involves all four particles.

In Figs. 1 and 2 the velocities transverse to the line of
centers are not zero so that in two dimensions the singularity
does not dissipate all of the kinetic energy in the center of
mass frame of reference. In fact, in the final stages of the
singularity there is very little energy dissipation because the
relative velocity of collision is going to zero exponentially
with the total number of collisions. If one could "pass
through the singularity" then the transverse velocities in
Figs. 1 and 2 would break up the line. Our collision based

computational strategy [7] cannot proceed past this singular-

ity and capture the ensuing dispersal of the line. However
this is not a fault of the numerical algorithm because the

computation attempts to represent a singularity that is a true

consequence of the idealized model defined in the first para-

graph of this paper. In this classical model there is a collision
rule for only two particle interactions. Inelastic collapse
means that three (or more) particle collisions occur in finite

time. The many-particle interaction occurs through the accu-
mulation of an infinite sequence of two particle collisions as
shown in Fig. 3.Thus the idealized model, with only a binary
collision rule, becomes undefined at the time of the first sin-

gularity.
Inelastic collapse is a pathology of an idealized math-

ematical model. We hope that analyzing this singularity will

help understand the behavior of real granular systems and we
speculate that inelastic collapse is one route by which cohe-
sionless grains can come into contact and develop long range
position and velocity correlations. In a real granular medium

this process does not require an infinite number of collisions,
but merely a very large number. In this qualified sense the
mathematical singularity identified by the idealized hard core
model is an approximation of a physical phenomenon. A re-
maining issue is the "regularization" of the hard core model
so that molecular dynamic simulations can advance through
the singularity. But it is also essential to document the sin-

gularity itself, and this is the focus of the remainder of this

paper.
It is interesting that in the kinetic theory of elastic (r = 1)

hard spheres the calculation of the short time or high fre-

quency behavior of the scattering functions requires the re-
summation of a sequence of three body recollision events
which occur in an infinitesimal time interval [9].Perhaps this
phenomenon in the elastic case is related to the inelastic
collapse. The extension of the calculation in Ref. [9] to the
inelastic case is nontrivial because inelastic dynamics vio-
lates detailed balance.

We turn now to the consequence of the collapse singular-
ity in many particle systems. Figures 4—6 show a selection of
final [6] configurations in simulations with N=1024 disks
and a solid fraction of v= 4. In these three figures the solid
disks are all of the particles that have been involved in the
last 200 collisions of the simulation.

In Fig. 4 the coefficient of restitution is r =0.99 and the
number of collisions is C/N=400. This is an example of
what might be called the "kinetic regime:" the inelastic disks
behave much like molecules in a gas and there is no sponta-
neous clustering. The continuum models described in [1]are
probably valid in this case. We have compared the rms fluc-
tuation in solid fraction [8] v, for simulations with
r =0.99 with v~, for simulations with r = 1. The simula-
tions with r =0.99 do have a slightly larger value of v, so
that there is a statistically significant amount of clustering in
Fig. 4 although this is not apparent to the eye.

In Fig. 5 r=0.8 and the number of collisions is C/N
=400. This is an example of the "clustered regime" in
which the density becomes spontaneously nonuniform but
there is no finite time singularity. For instance, we have ad-
vanced simulations such as that shown in Fig. 4 until C/N
=3000. Although the energy is monotonically decreasing
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FIG. 4. The final (C/N=400) "kinetic regime" configuration
of W= 1024 inelastic disks with v =

4 and r =0.99.The solid disks
are all the particles that participated in the final 200 collisions of
this simulation.

FIG. 6. The final (C/N=68. 3) "collapsed regime" configura-
tion of N =1024 inelastic disks with v= 4 and r=0.6, The solid
disks are all the particles that participated in the final 200 collisions
of this simulation.

there is a statistically steady state in the sense that quantities
such as v, achieve stationary values.

The transition from the kinetic regime (Fig. 4) to the clus-
tered regime (Fig. 5) is a long wavelength instability which
is described by the kinetic theories [1]:see Refs. [3] and [4].
The simulation in Fig. 4 does not form clusters because the
domain is too small to contain the linearly unstable waves.

In Fig. 6 r=0.6 and the simulation is stopped by the
separation criterion [6] when C//t/=68. 3. At this point the
collision count was rising vertically as shown previously in

Fig. 3 and we claim that inelastic collapse occurred: Fig. 6 is
an example of the collapsed regime. The most striking
change between Fig. 6 and the previous two figures is the
number and configuration of the solid disks. In Fig. 6 all of

the particles that have participated in the final 200 collisions
of the simulation are 14 so1id disks in a rough straight line.
In Figs. 4 and 5 the disks involved in the most recent 200
collisions are scattered without obvious correlations through-
out the domain.

There is a qualitative difference in the dynamics of this
system when we decrease the coefficient of restitution from
r=0.8 (Fig. 5) to r=0.6 (Fig. 6). The transition between
the collapsed regime and the clustered regime occurs at some
intermediate value of the coefficient of restitution which we
denote by r „(X,v) .

In Fig. 7 we summarize the results of a suite of 600 simu-
lations all with solid fraction v= and %=1024 particles.
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FIG. 5. The final (C/N = 400) "clustered regime" configuration
of N = 1024 inelastic disks with v= 4 and r =0.8. The solid disks
are all the particles that participated in the final 200 collisions of
this simulation.

FIG. 7. The final energy in a suite of 600 simulations all with
v= 4 and W= 1024. At each of 100 values of r there are six real-

izations. The simulations that were stopped by collapse are indi-

cated by an asterisk while those that ran till C/N=1500 are indi-

cated by an open circle.
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We start at r&=0.01 and proceed upwards in steps Ar
=0.01 until after 99 steps the elastic limit rypp=1. 00 is
reached. At each value of r there are six realizations. The
realizations stop if either the collision count per particle
reaches C/N=1500 or if the separation criterion [6] with
y=10 ' indicates that inelastic collapse has occurred.

The ordinate of Fig. 7 shows the energy remaining in the
realization when it stops. In the two limiting cases, r =0.01
and 1.00, all of the initial energy remains. This is obvious in
the perfectly elastic case r=1.00. In the almost inelastic
case r =0.01 the simulation stops in finite time so quickly
that all of the initial energy is "frozen in. "This explains the
counterintuitive result that as r increases from 0.01 the final

energy decreases up until r reaches about 0.85. We do not
have an explanation for the double minima found in the re-
gion 0.80&r&1.00.

In Fig. 7 the asterisks indicate realizations which stop in
finite time because of inelastic collapse while the open
circles indicate simulations that run until C/N=1500. The

transition between the collapsed regime (*)and the clustered
state (0) occurs at about r ~(1024,,')—=06.1

We do not know of any theoretical approach to calculating

r, (N, v) in the two-dimensional case. Our simulations lead

us to speculate that r, (N, v)~1 as N~~. For instance,
simulations such as those in Fig. 7, but with N=4096, in-

dicate that r ~ (4096,,)=—077. T.he single optimistic indication
from our simulations is the unexpected relevance of the one-
dimensional models: just as in Fig. 6 we find that with

N =4096 the finite time singularity occurs through the for-
mation of a nearly one-dimensional chain of disks. This phe-
nomenon poses considerable challenges for granular kinetic
theories the thrust of which has been to draw analogies be-
tween grains and molecules. Multiparticle collisions and hid-

den linear order have no molecular analogs. Both of these
phenomena must be captured by any satisfactory theory of
inelastic kinetics.
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