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Topological instabilities and phase behavior of fluid membranes
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A phenomenological model of membrane phase behavior is presented in which the lamellar (L ) phase is

subject to two instabilities, one towards the formation of multiply connected, nearly minimal surfaces, and the

other toward the formation of disconnected, nearly spherical surfaces. It is shown that upon dilution, fluctua-

tions generally drive the system through one of these instabilities at a lamellar spacing d, less than the

persistence length $„beyond which they destroy its mean rigidity, resulting when d, (~ g„ in isotropic phases of
quasirigid membranes with well-defined preferred topologies.

PACS number(s): 64.70.—p, 05.20.—y, 02.40.—k, 87.22.—q

Dilute solutions of surfactant can exhibit several phases in
which the molecules aggregate as extended bilayer mem-
branes [1].These include a smectic-A lamellar (L ) phase,
an isotropic bicontinuous (Ls) or "sponge" phase [2], and,
less frequently [3,4], an (L4) phase of disconnected vesicles.
An analogous set of phases can occur in microemulsions of
oil, water, and surfactant, in which microdomains of oil and
water are separated by monolayers of surfactant. It has been
the goal of a great deal of theoretical work, including the
present paper, to describe the phase behavior of these surfac-
tant systems in terms of the elasticity and fluctuations of
their constituent membranes.

The microscopic elasticity of a bilayer fluid membrane is
described [5] by a harmonic bending energy

0= dA{-,'AC + trK)

in which C=C&+C2 and K=C&C2 are the membrane's
mean and Gaussian curvatures, C& and C2 are the principal
curvatures, and ~ and k are the mean and Gaussian rigidities.
The integral over Gaussian curvature is directly related, by
the Gauss-Bonnet thereom fdAK=4m(1 —g) [6], to the to-
pological genus g, or number of "handles, "of the surface in
question. Consequently, the parameter k enters 0 only as a
chemical potential for the formation of handles, while ~
along determines the energies of topology-preserving defor-
mations of the membrane.

The free energy cost of imposing upon a fluctuating mem-
brane a deformation of length scale g can be described theo-
retically by a scale-dependent renormalized rigidity tr(g). .

Several calculations of «(g) [6,7] have shown that it is soft-
ened by fluctuations, and decreases as

ctT
tr(g) = «(a) — ln—

4~ (al
(2)

with increasing length scale, with a coefficient n=3, where
a is a microscopic cutoff length. A similar -renormalization
has been found [6] for the renormalized Gaussian rigidity
tr($), which determines the free energy cost for the forma-
tion of handles of size g. The length scale g„-ae4 "/ at
which tr(g) vanishes, known as the persistence length, is the

correlation length beyond which the orientations of distant

points on a membrane of simple topology become uncorre-
lated.

The thermodynamic consequences of this softening of ri-

gidity has been explored in a series of phenomenological
"random surface" models of both the L3 [2,8] and bicontinu-
ous microemulsion [9—11]phases. The Ls phase is described
in such models as a random self-avoiding surface, which is
characterized by a structural length tr that determines the

typical radii of curvature and distances between membranes.
The magnitude of (, like the spacing d of the L phase, is
determined by the amount of surfactant available to form
membranes. The softening effects of thermal fluctuations are
included by the use of a (-dependent bending energy. For
simplicity, these models have often used a single-bending-
constant approximation, which uses a scale-dependent mean

rigidity tr(() but sets tr(g) to zero. Within the assumptions
of a random topology and of zero Gaussian rigidity, the Ls
phase is found to have a lower free energy than the L phase
for concentrations such that g~(„, in agreement with the
original heuristic argument of de Gennes and Taupin [9] that
a random structure should become stable at concentrations
for which its typical radii of curvature exceed the orienta-
tional correlation length („of the membrane.

An alternative view of the L3 phase has been put forward
by Porte and collaborators [13,14], who describe the L -Ls
transition as a topological transition controlled primarily by
the value of k. This description is based on several experi-
mental observations:

(i) Comparison of measurements of tr and of phase be-
havior show that the L phase can, in at least some systems
[15], melt at a critical spacing d, that is several orders of
magnitude smaller than the calculated value of („.

(ii) Neutron scattering [13,15—17], transport (electrical
conductivity and self-diffusion) [13,16—18], and freeze frac-
ture microscopy [19]results are all consistent with a descrip-
tion of the L3 phase as a single multiply connected sheet
with almost uniformly negative Gaussian curvature.

(iii) The phase boundaries of the L and L3 phases seem
to show a sensitive and systematic dependence on k. In
membranes that contain a mixture of surfactant and alcohol
cosurfactant, increasing the volume fraction g of cosurfac-
tant is believed to decrease —tr (where tt(0) for bilayers
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separated by water but to increase —K for inverted bilayers
separated by oil, while decreasing K in either case. Both
types of system typically exhibit a sequence of phases with

increasing Gaussian curvature, passing from an L3 to an L
to either an L4 or micellar phase, as y is varied in the direc-
tion of increasing —K [4,13,16,17,20]. This sequence is also
observed in single component membranes, where K can be
controlled by varying temperature [21] or solvent salinity

[15].Where an L and Ls phase coexist, the minimum struc-

tural length of the L3 phase typically decreases with decreas-

ing —K, even, as when varying y in an inverted bilayer [17],
when this is also the direction of increasing K.

In what follows, I present an extension of the random

surface models, in which one treats more carefully the scale
dependence of K and the effect of both K and K upon the
system's topology. Many of the ideas presented here have

been arrived at independently by Golubovic [12].I begin by
rewriting bending energy (1) in a symmetric form that em-

phasizes the limits of stability of a flat surface,

H= —,
' dA(K+C++ K C (3)

in which C =C, C2, K+ = K+ (1/2) K, and
= —(1/2) K. A flat membrane is energetically stable only

when both K+ and K are positive: When K+~0, the flat

state is unstable towards the formation of many spherical
surfaces, for which C&=C2, with a bending energy of
E=8'rrK+ per sphere. When K (0 (or K)0), it is unstable

towards the formation of an infinite minimal surface, defined

by the property that C&= —C2 everywhere. Because these
instabilities both involve discontinuous changes of topology,
rather than continuous deformation, I refer to K as the to-

pological rigidities of the membrane. The membrane be-

comes unstable with respect to continuous deformations only

under the more stringent condition that K~ 0, where
K= K++ K

To describe the system's phase behavior, I use an analo-

gous description of the free energy. The free energy of a

fluctuating membrane of fixed topology, with a characteristic
structural length g and equilibrium curvatures C+ and C
can be written in terms of a renormalized bending energy [6]

H/r=-2 dA(K+(()C++K (g)C

in which K+(g) =K(()+(1/2)K(() and K ($)—=—(I/2)K(().
The rigidities K (() both decrease with ( as
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FIG. 1. Phase diagram for varying 2//~ at fixed ~=2T as a

function of pa (i.e., inverse lamellar spacing). The solid lines show

boundaries of idealized L3 and L4 phases within their expected

regions of validity, with vertical tie lines to show phase coexistence
between the L and L3 or L4 phases, and between the L& and a

dilute phase of micelles or single surfactant molecules. The dashed

lines show g

g4/9 g5/9

indicating that („ is always intermediate between the two

topological persistence lengths. The instability associated
with K(() is thus always preempted by one of the topological
instabilities. This conclusion also follows immediately from

the observation that, because K(()=K+(()+K ((), K(()
will always remain positive at a length g for which one of
topological rigidities vanishes while the other remains posi-
tive. A crossover between the regimes g &g„((+ and

g+&(„&( can be affected by varying the ratio of bare

parameters (Fig. 1) and occurs at the point

K (d), K+(d), or K(d) vanishes, indicating an instability

towards the formation of, respectively, either nearly minimal,

nearly spherical, or random surfaces. The rigidities are evalu-

ated at length scale (-d because the characteristic lengths of
the competing L and disordered phases are expected to be
similar near the melting transition. Using the calculated scale
dependence of („and (, it is found that

K/t K= 9, K. //K

with coefficients u+ = -', and u = '-, equivalent to the coeffi-
cients a=3 and u= ——', [6] for K and K. By analogy with

the definition of the persistence length $„as the length at

which K((') vanishes, I define g -ae "-/t —,as the

lengths at which these topological rigidities vanish.
For mechanically stable membranes, for which the bare

K ~0, one expects that upon dilution the L phase will melt

at a critical spacing d, =min(g, g+, g ) corresponding
roughly to the first value of d for which one of the rigidities

for which g+ —g
This stability analysis suggests a division of the phase

diagram into three regimes, based on the value of an elastic

parameter 5=—K+ (10/9) K:

(I) For b, ~T [or K~ —(10/9)K], where g &&$ (&(+,
the L phase is expected to melt at a spacing d- g into an

L3 phase of multiply connected surfaces with small mean

curvature C+ . A mean rigidity of K((' )=(9/10)h remains

along this limit of stability and increases with increasing
thus tending to suppress conformations for which
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C+ 4 0 and to make a description of the resulting phase as
one of minimal surfaces increasingly accurate as 5 is in-

creased.
(II) For A~ T—, where g+(«g„(«g, the L phase is

expected melt upon dilution at a spacing d- g+ into an L4
phase of primarily spherical surfaces. A mean rigidity of
«(g )=(9/8)~4~ remains when g-(, which, as Ih~ is in-

creased, becomes increasingly effective in suppressing the
appearance of nonspherical surfaces.

(III) For ~b, ~(«T, where g -(+-(„, the L phase is
expected to melt at a spacing d-g„ for which all of the
renormalized rigidities are of order T. It is only within this
crossover region that the physical assumption of a random
surface and the corresponding prediction [8—11]of a struc-
tural length of order ('„are correct.

These differences in geometrical structure are naturally

parametrized by a quantity t/I—=2(K)/(C, +C2) that mea-

sures the degree of correlation between the principal curva-
tures C& and C2, and that approaches t/1= ~1 for ~5~~T. A
rough idea of the width of the crossover region, or the range
of 5 over which P crosses between ~1, can be obtained by
considering the energies of various defects that are expected
to appear in the idealized minimal and spherical structures as
3~0, such as the bending energy E=4m a((+)- 44.4b, —
of a toroid of size (+ within the L4 phase or the energy

E= 8m K+(g )-22.65 of a disconnected sphere within the
L4 phase. The relatively large [i.e., O(10)] prefactors found
in such defect energies suggest the possibility of a rather
narrow crossover region, of width significantly less than T,
for which the division into three regimes would remain valid
even for the rather small rigidities «=(1—3)T typical of
experiments.

As pointed by Cates et al. [8], the L3 and L4 phases can
also be distinguished by considerations of symmetry: The
properties of a bicontinuous phase are statistically symmetric
with respect to a global relabelling of "inside" and "out-
side" volumes of solvent, while those of a vesicle phase are
not. The existence of this hidden symmetry implies that there
must exist a phase transition separating the asymmetric"
L4 phase from a symmetric" L3 phase, where the L3 phase
may continuously connect regions of random and nearly
minimal surfaces. A separate transition between an L3 phase
of disordered but nearly minimal surfaces and a true minimal
crystal may occur for K=O.

The results of an approximate calculation of the sc depen-
dence of the membrane phase diagram, in which the L3 and
L& phases have been treated as idealized structures of mini-
mal and spherical surfaces, is shown in Fig. 1.The approach
taken here is most appropriate for comparatively large 5,
and is a natural complement to the random surface approxi-
mation appropriate for 5 near zero. I consider a system with
a number density p of surfactant molecules and a membrane
area of a per molecule, giving a lamellar spacing of
d= 1/(pa ) in the L phase and a structural length (—d in
the competing L3 phase. For 5~T, an L3 phase is found to
be stable over a narrow range of concentrations
p-1/(g a ) corresponding to a structural length g- g and
to coexist with a phase of nearly pure solvent at lower con-
centrations, in agreement with the narrow range of stability
seen in experiments [4,15—18,21].For b, ~ T, an L4 phase is

found to be stable for concentrations below an upper limit of
stability p-1/(/+a ) close to that predicted above, and re-
mains stable upon dilution down to p=0. The upper phase
boundaries of the idealized L3 and L4 phases are seen to
converge near the point a/ir= —10/9, giving an extrapolated
phase boundary p-1/(g„a ) at this point of order that pre-
dicted by random surface models.

Details of this calculation are as follows: The free energy
of the L phase is approximated by the steric confinement
free energy by Helfrich, given by

f =CapT/Ir, (8)

where C is a numerical prefactor, for which I use Helfrich's
estimate of C = 3m /128.

For 5~T, the free energy of the L 3 phase is
approximated by the renormalized bending energy
Hrt =Pc(g)fdAK of a minimal surface Ass.uming a structural
length g ~ 1/(pa ), this gives a free energy density of the
form

(9)

where C3 is a dimensionless constant, and p -I/(a g ) is
the concentration corresponding to a structural length

. This functional form has been proposed previously
[15,14] on the grounds of a scaling argument that assumes
only that the structure in question dilates affinely under
changes in p. The assumption of a minimal surface thus
enters primarily through the identification of (, rather than

g„, as the structural length for which HR changes sign. For
concreteness, «((') is evaluated in Eq. (5) by using a char-
acteristic length g defined as the inverse rms curvature,

—= (1/2)(C, +Cz), consistent with the use of the radius
on a spherical surface, and using a cutoff equal to the mo-
lecular length a. The remaining geometrical coefficients are
set to values C3=0.48 and p =0.74/(g a ) that are within
10% of those appropriate for any of the simpler cubic mini-
mal surfaces [22].Free energy density (9) is concave at small

p, and as a result is unstable for p& p e towards coex-
istence with a phase of pure solvent.

For A~ —T, the L4 phase is described as a polydisperse
suspension of spherical vesicles. The free energy is approxi-
mated by the ideal gas free energy

f4= g p„fT In(p„a ) T+F„t, —
n~n

C

(10)

of such a suspension, as in Ref. [23], in which p„ is the
number density for vesicles of n molecules and area
A„—=4'„=a n, n, is a minimum vesicle size (chosen
to give R„=50 A in Fig. 1), and F„=8'+(R„)
+(5/2)T ln(n) is the internal free energy of a vesicle of con-
strained area and center-of-mass position, as calculated in
[23].Equilibrium values of p„and f4 are obtained by mini-
mizing (10) subject to a constraint on the total surfactant
density p=—X„np(n), and, in order to crudely take into ac-
count the effects of packing constraints at high concentra-
tions, an additional constraint that the volume fraction
Q=Z„(4'„/3)p(n) enclosed by the vesicles not exceed
some value P" of order unity (/* =0.3 in Fig. 1). These
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constraints are imposed by introducing as Lagrange multipli-
ers a chemical potential p, and an inside-outside pressure
difference p, where p=0 for tb«. P*. The average vesicle
radius (R)~Pip is found to increase with p as (R)~p '

while P«- P*, and reaches a maximum value (R)—g+ when
at a concentration p*=1/((+a ), beyond which

packing constraints become important and induce a first or-
der transition to the L phase.

The region near»/»= —10/9, representing regime (III),
has been left blank in the figure because the simple approxi-
mations used to calculate phase boundaries in the surround-

ing regions are not expected to be valid here. The arguments
given above suggest, however, that this region should con-
tain a random bicontinuous structure, much like that postu-
lated by earlier random-surface models, that is continuously
connected to the nearly minimal phase, but that is separated
from the vesiclelike phase by a thermodynamic transition.

The above results are based upon the use of a perturba-
tively calculated renormalized elastic energy Hz that is ac-
tually valid [6] only for surfaces of characteristic structural
length g(«(„, for which»($)~T. It is thus important to
note that within the quasirigid regimes (I) and (II), (««g„not
only at the L -L3 and L -L4 transitions but at lower concen-
trations as well, due to the narrow range of stability of the

Ls phase and the decrease of (R) with decreasing p in the

L4 phase, both of which act to prevent the relevant structural
length from increasing further with increasing dilution. The

use of a perturbative treatment of undulations is thus valid
throughout these regions.

The above analysis explores the effect of membrane elas-
ticity upon the stability and topological structure of the dis-
ordered phases of an ensemble of membranes. By dropping
the assumption of a randomly connected surface made some
in earlier models, it is shown that the appearance of a bicon-
tinuous phase in a system described by Hamiltonian (1) is
primarily controlled by the Gaussian rigidity k, as argued by
other authors on the basis of experimental evidence, and pre-
dicts a structure that ranges from random to nearly minimal
depending upon the value of »/». The predicted phase dia-

gram, in which an L phase lies between disordered phases
of different topology and inside-outside symmetry, is strik-
ingly similar to those reported in Refs. [4,20], though in
other systems a micellar or other nonbilayer phase is often
found in place of the predicted vesicle phase. The prediction
of an 1.3 phase with a structural length (-( that varies
logarithmically with ~, with a narrow range stability as a
function of concentration, is consistent with the phase behav-
ior obtained for simple binary solutions of water and non-
ionic surfactant [21].Experiments to examine the effects of
various control parameters upon both k and the structural
length of either an L3 or bicontinuous microemulsion phase
would provide the best way of further testing these ideas.
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