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Punctuated equilibrium and "history-dependent" percolation
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I. Ibl'I'RODUCTION that this species will acquire in the process of evolution. The
current value of fitness of a particular species is defined by
the fitness of the lowest dry cell in its column.

At each three subsequent time steps (t, t+ 1,t+ 2), the liq-
uid propagates by one cell in three neighboring columns. The
order in which the three cells are occupied is random. The
central column must have fitness below a certain preassigned
value p. The fitness values of the side columns are irrel-
evant. If there is more than one column with fitness less than

p, we select the central column according to a specific
model-dependent rule (see below).

At steps t+3,t+4,t+5, we use the same rule to select
three new columns. This process corresponds to a mutation
of the species represented by the central column and a con-

Some 20 years ago, Gould and Eldredge introduced a
theory of punctuated equilibrium of ecological systems in
order to explain the phenomenon of biological evolution [1].
This theory states that the evolution takes place in terms of
sudden outbursts of activity, which are separated by long
periods of stability. It has been suggested that for this reason
ecological systems evolve into a self-organized critical
(SOC) state [2].

Bak and Sneppen (BS) have recently proposed a SOC
model for punctuated equilibrium [3]. It has an important
advantage over previous models, because it does not need an
external tuning parameter to evolve into the critical state [4].
In the BS model, every species is represented by a single
parameter, called the "f't tness. "The fitness parameter can be
regarded as a complex combination of factors such as genetic
material and forces of natural habitat. The interaction be-
tween species and the dynamics in the model is introduced

by assuming the fitness of each species is affected by the
fitnesses of the species surrounding it. Species adapt into a
rugged multipeaked fitness landscape. The system usually
"finds" a local fitness maximum very fast, and remains
there. However, the scaling properties of the BS model and
its relation to known statistical models such as percolation
remains unclear.

We propose here a "history-dependent" invasion percola-
tion type model, and we study three types of updating rules
(models 1—3). Model 1 will be mapped to the BS model,
while models 2 and 3 yield different exponents. A similar

mapping was presented recently in [5], where the idea of
relating to directed percolation is originally proposed.

O.8 O.g O.g O.7 0.8

0.8 O.S 0.4 0.6 0.8
t 3

0.8 0.7 0.6 0.9 0.8
0

(b) (c)

I
0.7 p.s 0.4

O,g 0.7 0.3

I I
O.4 O.6 O.8
4 s J

0.6 0.9 0.8
I 2

p.3 p, 1 0.7 0.5 0.40.3 0. 1--3

0. 1 0,9

0.8 0.5
J s

0.8 0.7

J

0 1 0.9 0.9 0.7 0.3
a I

0.8 0.5 0.4 0.6 0.8
J 7 5 4 J
0.8 0.7 0.6 0.9 0.8
9 2 1 3 6

--2

H. "HISTORY-DEPENDENT" PERCOLATION MODELS
-- 0

We begin with a square lattice, each cell of which is char-
acterized by its fitness p;, which is a random number be-
tween 0 and 1, Fig. 1. We describe the history-dependent
percolation models using the language of Quid imbibition

Assume that at t=0, the interface is horizontal. All cells
with a coordinate y &0 are wet, while all cells with y ~0 are
dry. Each vertical column of the system represents a species
where the values of the fitnesses of the cells with
y=0, 1,2, . . . represent the subsequent values of fitnesses

FIG. 1. (a) Three updating steps of the BS model. (b) Model 1
represents a two-dimensional mapping of the BS model. (c) Model
2 is a variant of two-dimensional percolation with a different up-
dating order. The top number of each cell is the fitness p;. The
bottom number in (b) and (c) is the order of updating. In (c), the
numbers in the cells represent the fitness of the species at time t.
The arrows in the cases (b) and (c) point to the cells that cannot be
chosen as central because p;~p, where p =0.66 here.
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We study the Bak-Sneppen (BS) punctuated equilibrium model of biological evolution and calculate its

critical exponents. We show that this model can be mapped onto a two-dimensional model of the invasion

percolation type, which is "history dependent, " in that the exponents depend on the order in which the sites of
the system are updated. We find that the critical exponents y, v~, o., and ~ for the BS model are different

from those of the directed percolation model, but the combination cr v~ is the same.
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sequent change of the fitnesses of its neighbors. The process
is iterated until the fitness value of all columns is above p.
This corresponds to an avalanche of mutations specified by
the value of p.

We investigate three models which differ by a rule of how
the position of the central column is selected.

Model 1. The column with the smallest fitness value is
selected [see Fig. 1(b)].

Model 2. The last updated column with fitness smaller
than p is selected [see Fig. 1(c)].

Model 3. The column for updating is selected randomly
among those with fitnesses smaller than p.

Figure 1(a) represents the evolution of the one-
dimensional BS model. In our example, we have an ava-
lanche of size 6. If we place the one-dimensional arrays,
representing the successive time steps of the BS model, on
the square lattice, we can see that the geometrical properties
of this avalanche are exactly the same as for model 1, repre-
sented in Fig. 1(b). In both models, there exists a critical
parameter p=p, below which the avalanches are finite, but
above which there is a finite probability to obtain an infinite
avalanche. If we choose p&p, , then the behavior of the
infinite system described by model 1 is exactly the same as
for the BS model. For p&p, , the behavior described by
model 1 is the same as in the BS model within the single
avalanche defined by the value p at which the avalanche has
started.

This mapping shows that the one-dimensional BS model
has the same avalanches and therefore the same critical be-
havior as model 1 for dimension d =2. However, it is clear
from Figs. 1(b) and 1(c) that even for the same configura-
tions of the lattice disorder, the avalanches for models 1 and
2 are quite different. Our numerical simulations suggest that
models 1 and 2, which differ only in their updating order, are
in different universality classes. This finding is in contrast to
the regular percolation models such as directed percolation
(DP) or invasion percolation, for which the shapes of the
clusters are independent of the growth history [8].

III. RESULTS

Our results are obtained by computer simulations of sys-
tems of linear size L =2' =16384.Averages are taken over
10 configurations. We study the following quantities by as-
suming their scaling forms in analogy with percolation [8].

(1) The number of avalanches of size s behaves as

n(s) s'f(six p-, l' ), - (1)

From the relation n(b)db =n(s)ds, we find

7 —1
(3)

The quantity o.v~ describes how a typical avalanche of base
b scales with typical cluster size s. In our models, s is ex-
actly equal to the number of steps, or time t, so

b(t) —t (4)

when approaching p, (see Fig. 3).
(2) The number of avalanches with horizontal base of

length b is

n(b)-b "f(bip p,l"')—
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FIG. 2. (a) The mean horizontal size of the avalanche (b) is
plotted as a function of reduced probability [(p,—p)/p, )] for mod-
els 1 and 2, on a log-log plot. (b) The average avalanche size (s) as
a function of reduced probability [(p,—p)/p, )] for models 1 and 2.
on a log-log plot. The exponents y~ and y are different for models
1 and 2. The value of p, was obtained by the best linear fit of the
data points.

where y~ = v~
—P [8] [see Fig. 2(a)].

(5) Diffusion of mutations. Following BS, we study the
coordinate x(t) of the site that we update at time t, and the
distribution P(d x) of distances b,x=x(t) x(t 1) between- —
the successive updates. We find

P(hx) —~Axi

The function x(t) visually resembles a random walk with a
power law distribution of step length. Such a random walk
with uncorrelated steps is known as a Levy fiight [9]. It is
known that for co)3, the mean square displacement Of the

(3) The mean avalanche size (s) —
~p

—p, .
i

~ [see Fig.
2(b)1

(4) The mean horizontal length of the base of the ava-
lanche

(b)-Ip-p;I '
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TABLE I. Results for models 1—3 and directed percolation.
10

Model 1 Model 2 Model 3 Directed
percolation

10
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2.7~0.1
1.08~ 0.05
0.35~ 0.02
3.1~0.2

0.98~0.03
1.23~0.08
1.8~0.1

2.2~ 0.1
1.08~ 0.05
0.40~ 0.02
3.2~ 0.2

0.80~ 0.02
1.07~ 0.08
1.4~ 0.1

2.75~ 0.08
0.92~ 0.05
0.43~ 0.01

2.75~ 0.08
0.89~0.05
0.43~ 0.01

0.667~ 0.001 0.653~ 0.001 0.635~0.001
2.3~0.1

1.08~ 0.05
0.40~ 0.02

NIA

0.83~ 0.02
1.11~0.08
1.4~0.1

2.75~ 0.08
0.92~ 0.05
0.43+ 0.01

0.645
2.28
1.12
0.39

2.1~0.2
0.82
1.097
1.73

2.78
0.89
0.43
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Levy flight (x )-t, as for the regular random walk. In our
case, however, (x ) scales with time exactly the same way as
the horizontal size of the avalanche scales with its mass s
[see Eq. (4)].Thus the quantity o v~ can be considered as the
diffusion exponent. We measured trv~ using Eqs. (4) and

(x )-t "&, and we found excellent agreement between the
results obtained by these two methods.

Using our calculations of (s) and (b), we calculated the
critical probability p, and critical exponents y~ and y for
models 1—3. The results are presented in Table I. All the
exponents and combinations of exponents have been mea-
sured numerically, except cry which was obtained by rnulti-

plication. In order to compare our models with the model of
DP we include in the table the known exponents for DP [8].
The exponent co is not defined in the classical DP problem,
however, it can be defined for an invasion directed percola-
tion where the next site to be included in the cluster is se-
lected as the site with the smallest value of pinning force.
The growth activity of such clusters jumps from one site to
the next, similar to the way it jumps in the BS model. We
have studied the invasion directed percolation numerically
and find that the components of these jumps perpendicular to
the direction of growth are distributed according to Eq. (6).
The exponent cu of this distribution is reported in Table I.
The value of the percolation threshold p, for the DP model
reported in Table I is the value for bond directed percolation
on the square lattice [8]. The values of the thresholds for
other types of DP can be significantly different [10]. The
error bars have been tested by applying our method to the DP
model, for which accurate values of exponents are known.

IV. DISCUSSION

The results in Table I and Figs. 2 and 3 suggest that mod-
els 1 and 2 are in different universality classes. The differ-
ence in the critical exponent y between the two models is
much larger than the error bars. The exponents of model 2,
with the exception of the exponent co and y~, are very close
to the exponents of directed percolation. However, the qual-
ity of our data is not sufficient to claim that they are exactly
the same.

In contrast with the exponents characterizing the scaling
of the variables with ~p

—p, ~
(such as y and v~), the com-
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FIG. 3. (a) The distribution of avalanches n(s) as a function of
s, on a log-log plot for model 1. The points with dashed lines are
for different simulations with p(p, , while the straight line is the
best linear fit of the data for p =p, . (b) Shows the data collapse for
I+Pc.

binations of these exponents which characterize relations be-
tween the variables describing purely geometrical properties
of the avalanches (such as the diffusion exponent o v~) are
very close for all three models. A similar observation was
made by Prakash et al. [11],while studying percolation mod-
els with long-range correlations. This may indicate the exist-
ence of superuniversality, which would be broader than the
standard universality. The models for which the combina-
tions of critical exponents are equal would be in the same
superuniversality class, although they may not be in the same
class with respect to the standard exponents. Therefore we
suggest that the "superuniversality class" of directed perco-
lation includes the BS model, models 1—3, as well as several
other models such as ballistic deposition with poisoned sites.

The dependence of exponent co on the dynamics of the
process suggests that this is an independent dynamical expo-
nent, which cannot be simply related to classical exponents,
such as o. and v..

It is interesting to note that in contrast with directed per-
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the values of v~~, and found that for modified model 1

~~~ / v~ = 2.1~0.1 and for modified model 2 v~~/ v,
= 2.3~0.1, indicating that the avalanches of modified mod-
els 1 and 2 are more elongated than the clusters of DP [see
Fig. 4(d)], for which vl/v„=1. 58. However, for modified
model 3 we get vI /v~ = 1.6~ 0.1. Indeed, clusters for modi-
fied model 3 look very similar to the DP clusters [see Fig.
4(d)]. The hyperscaling relation

v. + vI = 1/o. + P = y+ 2P

0.0
0.0 1000.0

FIG. 4. The shapes of clusters for (a) model 1, (b) ballistic

deposition variant of model 1, (c) ballistic deposition variant of
model 3, and (d) invasion directed percolation. Each is presented

when the height reaches 1000 lattice units.

colation, models 1—3 produce geometrically compact ava-

lanches [see Fig. 4(a)], for which (see also [10])
v~ + vl = 1/o. = y+ P. (7)

However, models 1—3 can be modified in such a way that the

heights of all three updated columns in three subsequent time

steps are taken to be equal to the highest of the three. Such
models can be described as variants of ballistic deposition of
rectangular bricks of width 3 and height 1. These models

produce ramified avalanches similar to one shown on Figs.
4(b,c), which is the reason why Eq. (7) does not hold for
them. All the exponents of these modifications are the same

as for corresponding models 1—3 except v~~. We calculated

is valid for DP, but is violated by models 1 and 2 proposed
here, and is probably correct for the ballistic deposition vari-
ant of model 3.

The similarities between certain combinations of expo-
nents such as the diffusion exponent crv~, observed in Ref.
[5] and our work, may indicate the existence of a superuni

versality class that includes both BS and DP models. How-

ever, the striking differences between models 1 and 2, and

the DP model, as well as their unusual dependence on the

history of growth, do not support the recent argument [5] that

the BS model is in the universality class of Reggeon field

theory, which is known to be represented by the DP model.
Exponents y, tr, to, v~ are different for model 1 (which is the

same as BS) and for DP, therefore suggesting that they be-

long to different universality classes. This claim is supported

by the avalanche shape analysis done above.
After this work was completed we learned that the obser-

vation that the original BS model is in its essence two-
dimensional was made independently by Ray and Jan [12].
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