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We present a class of exact solutions for the so-called Laplacian growth equation describing the zero-
surface-tension limit of a variety of two-dimensional pattern formation problems. These solutions are
free of vite-time singe erities {cusps) for quite general initial conditions. They reproduce various
features of viscous fingering observed in experiments and numerical simulations with surface tension,
such as existence of stagnation points, screening, tip splitting, and coarsening. In certain cases the
asymptotic interface consists of N separated moving Sahan-Taylor fingers.
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The problem of pattern formation is one of the most
rapidly developing branches of nonlinear science today
(see, e.g., Ref. [1]). Of special interest is the study of the
front dynamics between two phases {interface} that arises
in a variety of nonequilibrium physical systems. If, as it
usually happens, the motion of the interface is slow in
comparison with the processes that take place in the bulk
of both phases (such as heat transfer, diffusion, etc.), the
scalar field governing the evolution of the interface is a
harmonic function. It is natural then, to call the whole
process Laplacian growth. Depending on the system, this
harmonic scalar field is a temperature (in the freezing
of a liquid or Stefan problem), a concentration (in
solidification from a supersaturated solution}, an electro-
static potential (in electrodeposition), a pressure (in flows
through porous media}, a probability (in diffusion-limited
aggregation), etc.

%e present, in this paper, a class of solutions of the
two-dimensional (2D) Laplacian growth problem in the
limit of zero-surface tension. These solutions are quite
general, no symmetries of the moving interface are as-
sumed. Most remarkably, they do not develop finite-time
singularities but, contrary to the common belief, remain
smooth for all times. Furthermore, they are able to
reproduce difFerent behaviors observed in experiments,
such as tip splitting, screening, and coarsening. Thus,
they may describe real fingering instabilities when surface
tension is very small, suggesting that surface tension
might be treated in this case as a regular perturbation. In
certain cases, they give rise, asymptotically in time, to N
separated fingers, each of which (for enough separation}
describes the Saaman-Taylor finger [2] in channel
geometry, and whose evolution closely resembles the X-
soliton formation in nonhnear integrable partial
difFerential equations (PDE's).

In the absence of surface tension, whose effect is to sta-
bilize the short-wavelength perturbations of the interface,
the problem of 2D Laplacian growth is described as fol-
lows:

Here u(x, y;t) is the scalar field mentioned above, I'{t)is
the moving interface, X is a fixed external boundary, t}„ is
the component of the gradient normal to the boundary
(i.e., the normal derivative), and u„ is the normal com-
ponent of the velocity of the front.

%e consider first an infinitely long interface. %e intro-
duce then a time-dependent conformal map f from the
lower half of a "mathematical" plane, g:/+i—ri, to the
domain of the physical plane, z=x+iy, where the La-

f
place equation (1) is defined, g~z. We also require
that f(t, g)=g for g~g —i~. Thus, the function
z=f(t, g) describes the moving interface. Using this
conformal map and taking into account the boundary
conditions of the problem, we find
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where the overbar means complex conjugate, the sub-
scripts t and g indicate partial derivatives with respect to
t and g, respectively, t}& is the component of the gradient
tangent to the interface, P is a harmonic function of x
and y, conjugate to u, that satisfies g=g due to the
boundary conditions (2) and (3). Equating the right hand
sides (rhs) in Eq. (4), in accordance with Eq. (3},we finally
obtain

Im( f,ff ) = 1, ff I g
(5)

As in Ref. [3],we will refer to Eq. (5) as the Laplacian
growth equation (LGE), because the scalar field determin-
ing the growth obeys the Laplace Eq. (1). The LGE was
first derived, to our knowledge, in 1944 independently by
Galin and Polubarinova-Kochina [4]. This equation has
time-dependent solutions, unexpected for nonlinear
PDE's, such as a set of solutions in the class of polynomi-
als [5] and other exact solutions, though for quite re-
stricted initial shapes [7]. Also the Saffman-Taylor finger

[2) is a particular traveling wave solution of this equa-
tion. All these properties {except the latter one} are non-
trivial and nonperturbative due to the nonlinear nature of
the LGE.

Unfortunately, despite these remarkable properties,
practically all known solutions of the LGE show finite-
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time singularities via the formation of cusps [5,6]. There-
fore, all these nonperturbative results are helpless to shed
light on the physics and geometry of the system in the
long-term hmit. (Although a few exact results have been
presented that have no finite-time cusps [7], they corre-
spond to cases with very restricted symmetries or initial
conditions of the moving interface. ) As a result it has
been generally assumed that these finite-time singularities
are an essential feature of LGE solution [8] and that, in
this sense, the physics represented by the LGE is incom-
plete. Thus, the natural attitude was to include surface
tension in the theory to stabilize the moving interface and
get rid of the finite-time singularities [8]. On the other
hand, surface tension was assumed to be unavoidable in
order to get certain types of evolution observed in experi-
ments of viscous fingering.

The main result of this paper is to show that the LGE
admits quite a broad class of exact time-dependent solu-
tions which remain smooth for an infinite time and repro
duce obserued phenomena usually attributed to surface
tension sects. Therefore, contrary to the widespread
view, zero-surface-tension solutions are able to reproduce
nonzero surface-tension evolutions for all times. Howev-
er, for the selection among our set of solutions, the in-
clusion of surface tension is indeed unavoidable.

To introduce these solutions, we start from the state-
ment that any function f(t,g) whose derivative, ft, has
an arbitrary distribution of moving poles, g» (t)
=g»+i'», and roots, Z»(t), in the upper-half plane,
Imp & 0, and no other singularities, such as

N+) g
—Z»(t}

n ( q(t) (6)

is a solution of the LGE. By substitution of Eq. (4) into
Eq. (5) we find

N+I
f= it+/ i—g a»l—n(g —g»), Imp&0,

k=1

where the complex constants of motion a» and P»
N+1

&» =f(4 }= it+—0» &' g —tst»(0» ——4»
1=1

1&k &N+1,
govern the dynamics of the poles g», and thus, of the in-
terface. This solution, for N= 1 corresponds to the de-
velopment of an isolated finger, similar to the one found
by Saffman for channel geometry [9].

The break of analyticity of the interface (a cusp) occurs
when at least one of the moving poles, g»(t), or zeros,
Z»(t), off&

crosses the real axis, g=0, of the mathemati-
cal plane, g. If all g»'s and Z»'s remain on the upper-half
plane during the whole evolution, then the moving inter-
face remains smooth (analytic) for an infinite time. To
obtain sufficient conditions under which this is true for f
given by Eqs. (7}and (8), we note the following.

(i) In order for the solution to exist as t ~ ao and satis-
fy gk &0 for all finite times, all ak's must have positive
real part. This is the only way that the divergent term

it in the r.h.s. of —Eq. (8) can be compensated. The

term that compensates it is —i Re(a» }in{/» —
g» }—i Re(a» )ln{ —2i q» ) and implies that ri» ~0 as

t~ Co.

{ii)An isolated singularity, g», can never reach the real
axis at a finite time. If it did, the term —ia»in{/& —

g» )
in Eq. (8) would diverge and could not be compensated by
any other. On the other hand, if all Reak's are positive,
then groups of M ~%+1 singularities could not reach
the real axis simultaneously at a finite time for exactly the
same reason So, if Rea» &0 and ri»(t =0)&0 for
1&k &N+1, then ri»(t}&0 for all finite times.

(iii) We assume first that all a»'s are real and positive.
After a little algebra, we write the real part off&

as

N+1

/krak

N+1

Since all a»'s and all q» (t =0)'s are positive, then by the
result in {ii), also g» &0 for all finite times. Thus, we see
from Eq. (9), that Ref& equals zero only if ri is strictly
positive. This means that the zeros, Z», of f& lie always
on the upper half of the mathematical plane and never
cross the real axis.

Consequently, if at time t =0, all a» 's are real and pos
itive and all ri» 's are positive, then the interface represent
ed by Eq. (7) remains smooth throughout its evolution

In spite of the lack of a rigorous proof, we believe that
also in the general case of complex ak's with positive real
parts, there are no finite-time cusps for a broad range of
initial conditions. In fact, we have performed numerous
computational experiments in this case and did not en-
counter cusp formation in any of them. Furthermore, we
monitored the movement of the roots and poles of f& in
the mathematical plane and they never crossed the real
axis. In the long-term limit, we found that roots and
poles separate on pairs such that ImZ» always exceeds
the imaginary part of the corresponding pole, g» [which,
as proved in (ii), can never reach the real axis if all
Rea»'s are positive]. Thus, we conjecture that solution
(7) is free of finite time cusps for all choices of g»(0)
[Imp»(0) &0] and a» (Rea» &0), except, possibly, for a
set of measure zero [10].

Equation (7) is not the only solution of the LGE that is
characterized by the motion of simple poles. For exam-

ple, if in Eq. (7) we replace 1n(g —g») by ln(e'~ —e "),
and introduce a parameter A, , we find a 2m-periodic solu-
tion, relevant for channel geometry, of the form

Nf= i +A/ i—g—a—l»n(e'~ e), —~ i '~k

»=1

n& Re) m, —Im( &0, (10)

where A,:—1—Xkak is the fraction of width of channel oc-
cupied by the fingers. This solution has the same proper-
ties as Eq. (7). In particular, there exist N constants of
motion defined by P» =f(g») and cusps are absent if all
a&'s are real and positive and all qk's are positive, as it
follows from the equation
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N

k=1 )I —e

if Im (~0 . (11)

A solution of the LGE similar to Eq. (10), but with e
instead of e'~, was proposed in [8], where cusps were
found via numerical simulations. Taking advantage of
the corresponding constants of motion, Pz, we can easily
show the necessity of these cusps if Reak &0 [10] (as in
Ref. [8], where ak = 1 for all k).

The constants ak have a clear geometrical meaning in
the physical plane for both solutions (7} and (10}: ~nak ~

and arg(ak ) are related to the width and the slope of the

gap between adjacent moving fingers, in the case of
enough separation [10]. We show this property in Fig. 1,
where we have plotted the interface Y:Imf(—t,x) vs
X—:Ref(t, x), for the solution (7) with two singularities
(N =1), at a particular time. The real parts of both a' s
are positive, but while a, is purely real, az has a nonvan-
ishing imaginary part. We have drawn on top of each
gap a dashed line of length ~trak ~

and slope Imak /Reaq
that highlights the meaning of ak. We conclude then
that, if all ak s are real and positive, the interface is a
single-valued function Y(X). Among the experiments on
two-dimensional viscous fingering in a channel, one can
Snd diferent degrees of bending and ramification of the
moving Sngers [11]. It follows from these experiments
that non-single-valued interfaces generally appear.
Therefore, complex a's are necessary to describe them us-

ing Eq. (7) or Eq. (10). As we show later, we can indeed
reproduce these observations by means of solutions (7)
and (10) with complex a' s.

The constants Pk also have a clear geometrical mean-

ing in the physical plane: the points (RePk, ImPk
+Reakln2) are the coordinates of the tips of the gaps be-
tween Sngers. We show this property in Fig. 2, where we
have plotted the interface obtained from Eq. (7) at
different times for N=6 and real and positive ak's. For
the sake of generality we have deliberately taken the ini-
tial condition without any particular symmetry. We have
indicated in this Sgure the location of the tips with aster-
isks. As one can see, they are "stagnation points" of the
interface. These kind of stagnation points have been ob-

t~9
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served in numerous experiments [11]and numerical simu-
lations [12]. It is interesting to note that we can also
identify stagnation points occurring in numerical [13]
and physical [14] experiments of diffusion-limited aggre-
gation (DLA) (a feature usually explained as a "screen-
ing" efFect). This is in accordance with the view (which
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FIG. 2. %e plot the interfaces, Y as a function of X, at times
i=0,9,24, and 30, for f given by Eq. (7) with a, =0.80,
Pt =6.00—i37. 11, a2=2.00 Pi=20 44 . i3—3 98,. a&=1.00,
P3=35.61—i34.49, a4=0.50, Pg=43. 15—i36.31, ag=1.50,
P5=54 58 . i3—2 78,.a6=0.35, PAL=64 65 . i4—0 88,.at= 1.80, and

P7 =72 90 . i 3—7 40 . In. this case the singularities move towards
difFerent points on the real axis while the interface develops
N =6 separated Sngers with stagnation points, indicated with
asterisks, in between.
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FIG. l. We plot the interface, Y=Imf(t, g} as a function
of X=Ref (t, g) for f defined in Eq. (7} with a, =0.8;
a2=0.8+i0.1. The dashed lines that we have drawn on the
gaps between fingers have length ~ tra„~ and slope
Im(ak )/Re(ak ).

FIG. 3. %e plot the interfaces, X as a function of —Y, ob-
tained with Eq. (7}, for three simulations that reproduce
different phenomena observed in experiments: screening and
coarsening (a); side branching (b); screening, coarsening and tip
sphtting (c). The parameters are ak=0.7+i0.1, 0.8+i0.08,
0.8—iO. 1, 0.7—i0.08, 0.7+ iO. 1, 0.8+ i0.08, 0.8—iO. 1,
0 7 i0 08; gk(0. )—= —.6.4+i7, —3.924778+i6, i6, 2.5+i7 5, .
7+ i7, 9.5+ i6, 13.4+i 6, 16.4+i 7.5 (a); ag =1+i0.9,
0.07—i0.5, 0.06—i0.4, 0.05+ i0.45, 0.07+ i0.7, 1 —i 1.15;
gk(0}= 5+i5, i6—, 0 5+i8, 4+i&5, 7+i6, 12+i5 (b);
ak=3+i0. 19, 0.7—i0. 1, 0.3—i0. 11, 0.8+i0.15, 0.6+i0.14,
0 7+i0 13, 2. 5+i0. 1; g.k(0}=.—2+i5, —0.3+i6, 3+i9,
7.5+i15, 8.2+i5, 11.2+i3, 13+i3 (c).
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we believe) that DLA fractal growth is described by the
LGE in the continuous limit.

Solutions (7} and (10}are also able to reproduce other
features observed in experiments, as we show in Fig. 3
where we plotted the interface given by Eq. (7) in
different cases. Figure 3(a) exhibits coarsening and
screening (a phenomenon analyzed in Ref. [16]),Fig. 3{b},
side branching and Fig. 3(c), a combination of tip split-
ting, coarsening, and screening. We chose the parame-
ters in Fig. 3(c}so as to imitate the evolution displayed in
Fig. 5(a) of Ref. [17],which corresponds to an experiment
with fairly small surface tension. We can observe that in-
itially two fingers are formed, one of which gets initially
broader, but then starts to split, while the other stops
growing. Usually these phenomena have been attributed
to a competition between surface-tension and the fmger-
ing instability [17]. However, these simulations show
that surface tension is not necessary to Snd this type of
evolution and hopefully might be treated as a regular per-
turbation [18]. The main differences between Figs. 2 and
3 are produced by the choice of complex a's and the
merging of singularities in the latter {for more details, see
Ref. [10]).

Following an argument similar to that of Howison in

Ref. [7], it is possible to prove that any smooth initial
condition of the LGE can be approximated, to any degree

of accuracy, by Eqs. (7) or (10) with an appropriate, but
not unique, choice of N, ak, and gk(0} [15]. However, in-

itial conditions that generate cusps are dense in this same
sense [7]. This refiects a highly unstable situation, in
which nearby initial conditions can lead to very difFerent
evolutions. Thus, these zero-surface-tension solutions
lack predictability and only the inclusion of surface ten-
sion would select a unique evolution.

The evolution of the interface in Fig. 2 resembles the
N-soliton solution of classical exactly solvable PDE's,
where in the long-time asymptotics one can also have N
separated solitons, each of which described by the single-
soliton solution of the corresponding PDE. An evident
difference is that fingers, unlike "classical" solitons, al-
ways have a nonzero velocity component normal to the
interface. The connection between the N-soliton and the
N-finger solutions is deeper than a superficial resem-
blance. In fact, we believe that the LGE might have an
underlying Hamiltonian structure with separation into
action-angle variables. We are presently working in this
direction.
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